
Anomaly Detection in Large Sets of High-Dimensional Symbol

Sequences

Suratna Budalakoti, University of California, Santa Cruz
Ashok N. Srivastava, Ph.D., NASA Ames Research Center
Ram Akella, Ph.D., University of California, Santa Cruz

Eugene Turkov, Research Institute of Advanced Computer Science

Abstract

This paper addresses the problem of detecting and
describing anomalies in large sets of high-dimensional
symbol sequences. 1 The approach taken uses unsu-
pervised clustering of sequences using the normalized
longest common subsequence (LCS) as a similarity
measure, followed by detailed analysis of outliers to
detect anomalies. As the LCS measure is expensive to
compute, the first part of the paper discusses existing
algorithms, such as the Hunt-Szymanski algorithm,
that have low time-complexity. We then discuss why
these algorithms often do not work well in practice
and present a new hybrid algorithm for computing
the LCS that, in our tests, outperforms the Hunt-
Szymanski algorithm by a factor of five. The second
part of the paper presents new algorithms for outlier
analysis that provide comprehensible indicators as to
why a particular sequence was deemed to be an out-
lier. The algorithm provide a coherent description
to an analyst of the anomalies in the sequence, com-
pared to more ’normal’ sequences. The algorithms we
present are general and domain-independent, so we
discuss applications in related areas such as anomaly
detection.

1 Introduction

We consider the problem of finding anomalies in a set
of N discrete sequences X = {x1,x2, ...,xN}, where
each sequence xi = {xi1, xi2, ...xini} where the xij

correspond to the jth symbol in the ith sequence.
We assume all symbols are drawn from a finite but
large alphabet A and that each sequence has a vari-
able length ni. We define an anomaly in the sequence

1This work was supported by the NASA Aviation Safety
Program, Aviation Systems Monitoring and Modeling element.

to be a subsequence that differs significantly with re-
spect to some measure from the majority of sequences
in X . We use the normalized longest common sub-
sequence as the measure underlying an unsupervised
clustering algorithm. Those sequences that are ’far
away’ from the majority of sequences in a cluster are
called outliers or anomalies.

Although this is a general problem in anomaly de-
tection in large sequences, we have built this method-
ology to address a key question in the aviation safety
domain. We assume that we are given a set of se-
quences X that correspond to N landings of a spe-
cific aircraft model at a specific airport. The symbols
that are recorded correspond to the switches in the
cockpit of the airplane. As the pilot undergoes ma-
neuvers to land the airplane, he or she flips switches
and sets levers and other control mechanisms. The se-
quence of switches that a pilot flips during the course
of the landing phase of the flight corresponds to the
sequence xi. Notice that in this scenario, since the
duration of the landing phase can vary from flight
to flight, and also since not all switches in the set A
need to be flipped in each flight, the sequence length
will be variable. We have tested our algorithms on se-
quences where the size of the alphabet is |A| ≈ 1000.
A recent paper discusses the domain problem in more
detail and elucidates some of the difficulties in ad-
dressing it using standard methods [11]. An example
of the kind of anomalies the system targets for detec-
tion are mode awareness problems, such as confusion
about the current state of cockpit automation.

Previous approaches to the task of anomaly de-
tection focus on continuous sensor data, and do not
distinguish discrete sensors from continuous. In this
process they ignore the non-continuous as well as the
sequential nature of the discrete sensors. In compari-
son, we focus on discrete sensors, specifically, sensors
recording pilot actions, or switches. We are inter-

1

ested in the sequence in which the values for these
sensors change during the course of a flight and find-
ing anomalies in flight behavior based on this infor-
mation.

Our system performs two tasks, as part of the task
of atypical events detection in flights: a) detection of
atypical flights, b) finding events during the course of
such flights that are anomalous or atypical. Task b)
is important as each flight generates large amounts of
data during its course, and simply identifying a flight
as anomalous still leaves the problem of identifying
the problem areas inside the flight unaddressed.

The first step of our approach is to merge data
from all discrete sensors into a single sequence. This
is done by recording a sensor only when it makes a
transition. This transformation provides us with an
event sequence for each flight. Following this, in the
absence of training data, we treat the problem of find-
ing atypical flights as an unsupervised learning prob-
lem. We first cluster the flights for each itinerary
into groups, and identify the outliers in each clus-
ter as atypical. We use the Longest Common Sub-
sequence, a common measure in bioinformatics and
Intrusion Detection systems, as the similarity mea-
sure for clustering flight data. We then present two
new algorithms that use Bayesian Networks to effi-
ciently identify anomalous events during the course
of the flight.

We demonstrate the performance of these al-
gorithms using operation information from about
10,000 flights, and developing the base clusters and
locating anomalous flights by using these sequences.

A preliminary analysis of this problem may lead
to a time-series based state-space approach, where
at each time step, the current state of all symbols
in the alphabet is recorded. For each sequence, we
would obtain a matrix of size (ni × |A)| in size. A
decomposition of this matrix through an SVD ap-
proach could be used to generate a list of anomalies.
The problem with this, and most other state-space
approaches, is that the results are independent of the
order of the data. Thus, the inherent pointers of phe-
nomenon such as mode confusion can be lost.

Another approach that could be taken is to build
Hidden Markov Models on the data sets and then an-
alyze the likelihood of a particular sequence. While
this approach maintains the sensitivity to the sequen-
tial nature of the data, it does not lend itself to in-
terpretable models. Thus, we develop a new class of
algorithms to detect anomalies and to present them
in a comprehensible manner.

The area most closely related to the problem of
anomaly detection in flight sequence data is that of
anomaly detection. Anomaly detection in computer
systems typically involves forming a model of normal
behavior, and flagging any variation from the ’nor-
mal’ model as an anomaly. The problem of anomaly
detection in aircraft flight data is thus, by its nature
related to the area of anomaly detection.

The approach we use to detect outliers is similar
to some sequence analysis approaches for anomaly
detection [7, 10]. Though superior results have been
reported using the LCS metric in anomaly detection
system [7], the same papers have also reported the
cost of computing the LCS as a deterrent. Here,we
present a faster algorithm for computing sequence
similarity using LCS, which can help improve the
speed of LCS based anomaly detection system. The
amount of manual work required to be done by a sys-
tem analyst is a large concern in the area of anomaly
detection. The latter part of the paper present al-
gorithms that accurately identify anomalous events
inside a sequence. These algorithms can easily be
adapted to the requirements of an anomaly detection
system, and automate the task of identifying anoma-
lies to a much larger extent, thereby cutting down
the work required to be done by an analyst.

The area of sequence analysis and comparison owes
much of its growth from its practical application in
the area of bioinformatics. In this way, the new al-
gorithms we present in this paper for sequence com-
parison and analysis are also related to the area of
bioinformatics.

2 Outline of Approach

The main steps for the approach we use for anomaly
detection in flight data is described below:

1. Cluster the sequences into groups, using the nor-
malized common subsequence metric as the sim-
ilarity measure. The clustering algorithm we use
is the CLARA [1] k-medoids algorithm.

2. For each cluster, identify a certain percentage of
the outliers as the anomalous sequences.

3. Do an analysis that tries to identify where and
how the sequence deviates from normal behavior.

Simply classifying a sequence as anomalous or non-
anomalous is not sufficient from the point of view of
the end-user, i.e., the aircraft data analyst. Due to

2

the large number of flights that fly each day, and
the large amount of data they generate, identifying a
certain percentage of flights as anomalous still leaves
too much data to be processed by the analyst. Hence,
we developed algorithms that analyze the anomalous
sequences, in order to provide the analyst with a rea-
sonable explanation of why a particular sequence was
considered anomalous.

3 The Hybrid LCS Algorithm

We use the normalized longest common subse-
quence(nLCS) as the similarity measure for compar-
ing flight sequences. Thus, given two sequences X
and Y, of lengths m and n respectively, we calculate
the normalized LCS by the formula:

nLCS =
length(LCS)√

m · n
Given two sequences X and Z, Z is a subsequence of

X if removing some characters from X will produce
Z. Z is a common subsequence of two sequences X
and Y if Z is a subsequence of X and Y. The longest
such subsequence between A and C shall be called the
longest common subsequence (LCS). LCS is a very ef-
fective metric as it is able to detect similarity between
two sequences without restricting itself to a location-
based one-to-one match. The LCS metric has an op-
timal substructure property, which is the foundation
of the well-known dynamic programming algorithm.
Given two sequences X[m] and Y[n], the algorithm
constructs a two-dimensional table L(m,n). An entry
L(i,j) in the table gives the length of the LCS between
the first i characters of X and the first j characters
of Y. Figure 1 shows the table L constructed by the
algorithm for two sample sequences. More informa-
tion on the optimal substructure property and the
dynamic programming algorithm can be found in [2].

The time complexity of the algorithm is m·n,
which makes the algorithm very expensive over a
certain sequence length. A vast amount of literature
[3, 4, 5] exists that considers algorithms that attempt
to improve the bounds on the computational time.
A survey on LCS algorithms by Bergroth et al
[6] divides such algorithms into three groups and
compares their results empirically. The comparison
turns up no clear winners. However, the group
consisting of the algorithm introduced by Hunt and
Szymanski [3] (and its variants), remain the most
popular of the group, perhaps because they are

relatively easy to implement.

3.1 The Hunt-Szymanski Algorithm

For completeness, we give the Hunt and Szymanski
algorithm below. The algorithm we describe below
gives just the length of the LCS. It does not give
the actual LCS sequence, as we only need the
length of the LCS to measure similarity. For the ver-
sion of the algorithm that also gives the LCS, see [3] .

Algorithm 1: The Hunt-Szymanski Algorithm.

Input: Sequences X[m] and Y[n].
Output: Length of LCS.

Step 1: For each character in X, find where it occurs
in Y. Store the information as a decreasing linked list
array.
for i:= 1 to m

Set matchlist[i]:= < j1, j2, . . . , jp >, such that
j1 > j2 . . . > jp and X[i] = Y [jq], for i ≤ q ≤ p.

Step 2. Initialize the thresh array. Set all values
to n+1.
for i:= 1 to n

thresh[i] := n+1.

Step 3. Compute thresh values through m iterations.
for i:= 1 to m

for each j on matchlist[i]
Find k s.t. thresh[k − 1] < j ≤ thresh[k].
if j < thresh[k]

thresh[k]:=j.

Step 4. The lcs length is the largest k such
that thresh[k] was updated.
k := largest k such that thresh[k] 6= n + 1.
return k.

One way to understand the algorithm [3] is in
term of successive computation of threshold values.
Threshold Ti,k = the smallest j such that X[1:i] and
B[1:j] contain a common subsequence of length k. At
the end of iteration i, the array thresh contains the
values Ti,1...n. Thus, at the end of m iterations, the
LCS length is k such that T[k] has a valid value.

Another way to look at the algorithm is in terms of
the two-dimensional table L created by the standard
dynamic programming algorithm and how the Hunt-

3

Figure 1: Example: Longest common subsequence
table.

Szymanski algorithm relates to it. We first cover
some standard definitions:

Given two sequences X and Y, (i, j) is said to be a
match if X[i] = Y [j].

A match (i,j) is called a k-match(or is said to have
rank k) if the location L(i, j) = k.

A k-match (i,j) is called a k-dominant-match if, for
all other pairs (i′, j′) of rank k, either i′ > i and
j′ ≤ j, or i′ ≤ i and j′ > j.

The broken line between all (k-1)-matches and k-
matches is called a k-contour-line. For example, in
Figure 1, (8,6),(7,6-9),(6,9-12) form a 5-contour-line.

Based on these definition we define a new term, a
k-dominant contour point:

A location (i, j) in table L is k-dominant contour
point for line i if, for all other location pairs (i, j′)
with value k, j′ > j. Notice that a k-dominant con-
tour point does not have to be a match. For example,
location (5,2) is a 2-dominant contour point, but it is
not a match.

In light of these definitions, we can say that, at
the end of i iterations, the array thresh contains the
location of the k-dominant contour point in row i at
location thresh[k].

The Hunt-Szymanski(HS) algorithm for two se-
quences X[m] and Y[n] can now be understood as
follows:
Algorithm 2: The Hunt-Szymanski Algorithm in
terms of dominant contour points.

For i = 1 to m,

For each match (xi, yj),yj in decreasing order,
if yj lies between the kth

and (k + 1)st dominant contour point,
move the (k + 1)st dominant
contour point location to yj .

For example, suppose we are processing X[3] = ’G’
in example figure 1, using the HS algorithm. Look-
ing at the indices backwards, we find the first match
for G at location 9. We look back and see that this
match lies between the current 1-match(at 1) and 2-
match(at 12). The algorithm does this by searching
through ’thresh’ in step 3. As the match (3,9) lies
between the current 1 and 2-dominant contour point,
we move forward the 2-dominant contour point to 9.
For the table L, this can be done by setting all values
between 9 and 12 to 2. The HS algorithm does this
by setting thresh[2] from 12 to 9. The reason why
both these algorithms try to move dominant contour
points forwards is to create space for more dominant
matches. The later a dominant contour point occurs
in sequence Y, with respect to sequence X, the less
space is there for more matches of X with Y.

The computation complexity of the HS algorithm
can now be calculated as follows. Assuming both se-
quences are of equal length(n), it searches through
array thresh of length n, r times, where r is the total
number of matches between the two sequences. Ig-
noring the time required to create the index, the com-
plexity of the HS algorithm is given by O(r · log n).

If σ is the set of unique characters(symbols) over
both sequences X and Y, and if there are k such
unique characters, the value of r is given by

r =
k∑

i=1

η(σX
i) · η(σY

i)

where, η(σX
i) represents the count of character σi

in sequence X.
As is clear from the expression, the value of r is

small when the σ frequencies are small, or when the
frequency distributions for σX and σY are different.
However, if the sequences being compared are drawn
from the same dataset and represent the same phe-
nomenon, this is unlikely to be the case.

In fact, in most areas where the LCS metric is used,
these conditions seldom hold. For example, in bioin-
formatics, the frequency distribution of characters is
uniform and the character size is small(4-8), lead-
ing to large values of η(σi). In anomaly detection
[7, 8], system calls and user commands frequencies

4

are better modeled as Zipf-like distributions than as
uniform distributions. In Web Usage Mining [9], an-
other area where LCS can be used as a measure, web
traffic is known to show a Zipf-like frequency distri-
bution. Again, in text matching, language characters
and words are known to follow a Zipf-like distribu-
tion. Clearly the HS algorithm does not perform opti-
mally for Zipf-like distributions, where certain η(σi)s
are very large compared to others.

A number of methods have been devised to reduce
the actual value of r in the term O(r · log n). A sim-
ple one, which works very well in practice, will be to
search through ’thresh’ only if we crossed a dominant
contour point between two successive index locations.
This can be done simply by first checking if the lo-
cation k updated in the previous iteration satisfies
thresh[k − 1] < j′ ≤ thresh[k], where j′ is the cur-
rent index location being processed. For characters
with a large value of r, this cuts down the number of
searches by quite a margin. However, this still means
we have to search through the entire thresh array for
each search. This search is more difficult to optimize.

3.2 The Hybrid Algorithm

One of the reasons that the HS algorithm does not
perform better in many cases is because its data
structure(the thresh array) provides it with very little
information. We next present a new algorithm that
attempts to make up for this drawback of the HS
algorithm. The algorithm may be considered a hy-
brid of the HS algorithm and the standard dynamic
programming algorithm[2]. This is because, it es-
sentially does what Algorithm 2 above does, like the
HS algorithm. However, it maintains a different data
structure, an array ’row’ which, at any iteration i of
the algorithm, corresponds to the row L(i, 1:n) of the
standard dynamic programming algorithm.

We give the hybrid LCS algorithm below:

Algorithm 3: Hybrid Algorithm for LCS.

Input: Sequences X[m] and Y[n].
Output: Length of LCS.

Step 1: For each character in X, find where it occurs
in Y. Store the information as a decreasing linked list
array.
for i:= 1 to m

Set matchlist[i]:= < j1, j2, . . . , jp >, such that
j1 > j2 . . . > jp, and X[i] = Y [jq] for i ≤ q ≤ p.

Step 2. Initialize the row array. Set all values
to 0.
for i:= 1 to n, row[i] := 0.

Step 3. Compute L(1,1:n) at each iteration i.
Set prev index := n.
for i:= 1 to m

for each j on matchlist[i]
Set row[j] := row[j] + 1.

Step 3.a. Check if a dominant contour point
exists between the two match points.

If it does not, skip
to next iteration.
if row[j] = row[prev index]

prev index = j.
skip.

Step 3.b. If a dominant contour point exists,
find it and move it to j.
find j < k ≤ prev index s.t.
row[k] = row[j] + 1.
if ∃k

row[j+1 . . . k] = row[j] + 1.
prev index = j.

Step 4. The last value in row gives the lcs length.
k := row[n].
return k.

Let us now see how the hybrid algorithm pro-
cesses X[3] = ’G’ in example figure 1. At the
start of iteration 3, ’row’ will look exactly like
L(2,:) of the example. The algorithm will find the
match j at location 9. It will look at the value
of row(prev index)(prev index set at the beginning
of Step 3). As it is greater than row[j], it will
search through (j,prev index) for the dominant con-
tour point. It will find it at 12, and increment
row[j + 1 . . . previndex], thus moving the dominant
contour point to j. It will then set prev index to j,
and move to the next location, and so on.

The complexity of the algorithm can be calculated
as follows: We ignore the time taken to create in-
dex, as with the HS algorithm. Step 2 takes linear
time. Step 3.a is executed r times. Assuming a uni-
form distribution of σ, we can assume the matches
r are distributed uniformly across row. In that case
step 3.b is executed n · (min(r / n,count(dominant
contour points))). As the maximum possible number
of dominant contour points in a row is equal to the
LCS of the sequence, we can say that Step 3b is ex-
ecuted n · (min(r/n, LCS)) times. Each time we do

5

a binary search through a small portion of the sorted
array row. Assuming that the matches are evenly
distributed across each row, we say that the average
length of array row is log(n2/r):

O(n ·min(
r

n
, LCS) · log(

n2

r
))

It is obvious that this value shall generally be much
smaller than r · log n, and can never be larger.

It must be remembered that the time complexity
computed is only in terms of number of comparisons.
The algorithm performs more read-writes than the
HS algorithm. In the worst case, the time complex-
ity of the number of read-writes performed is O(n2).
However, we find that the cost of memory writes is
negligible in practice. Also, as most of the writes con-
sist of the same value written over contiguous areas
inside an array, a clever programmer can easily find
many ways to optimize these writes. But our current
implementation makes no such optimizations.

Table 1 and 2 compare the computation running
time of the LCS algorithms described above. The
test data we use is generated exactly the methodol-
ogy followed in the survey paper on LCS algorithms
by Bergroth et al [6]. More information on the test
data generation methodology can be found in Sec-
tion 5. Our results show that the hybrid algorithm
runs many orders faster than the HS algorithm for all
tests.

4 Outlier Analysis

For data embedded in a vector space, or following a
known statistical distribution, once the outliers have
been identified, the reasons why these particular data
points were considered outliers is generally easy to
answer. For example, in the vector space model, if a
data point is an outlier, it is because it has an abnor-
mally high/low value along one or more dimensions.
Such properties are easy to detect. However, in the
case of sequential data, even after the identification
of outliers, it is often difficult to say, by simple obser-
vation or analysis, why the sequence was considered
an outlier.

However, simply declaring a sequence as anoma-
lous is not very useful for an analyst, particularly
if the sequences are long. Manually analyzing a se-
quence to discover why it was considered anomalous
is a taxing and time-consuming activity. This section
describes algorithms that attempt to automate this

activity as far as possible. Our system, once it classi-
fies a sequence as anomalous, analyzes this sequence
further, and is expected to provide detailed informa-
tion to the analyst about the atypical events inside
the flight sequence. The information the system tries
to provide the analyst with may be classified into (1)
A sequence of switches was expected at a given stage
but were not flipped. (2) A sequence of switches was
not expected at a given stage but were flipped. (3) A
sequence of switches were flipped in the wrong order.

The approach we take to identify such anomalies
inside a sequence consists of the following steps:

Define/derive an objective function to maximize
over the outlier sequence. We define an objec-
tive function F for the outlier sequence, maximizing
which, we believe, will maximize the likelihood that
the sequence is not an outlier member of its cluster.
A reasonable objective function is the average, or the
weighted mean, of the similarity score(nLCS) of the
outlier sequence with all the sequences in the clus-
ter. Alternatively, we construct a generative model
for the sequences in a cluster, and derive F from this
model.

Identify possible changes to the sequence. We next
try to identify the changes(insertions/deletions) that,
if made to the outlier sequence, will maximize this
objective function F.

We now divide anomalies to be identified inside
a sequence into two categories, and define them in
terms of the objective function O.

Non-essential Character: A character at a loca-
tion in a sequence is said to be non-essential to
the sequence if its removal from that location will
improve the objective function score F for the
sequence, in relation to its cluster.

Missing Character: A character is said to be
missing from a particular location in a sequence if its
addition at the location will improve the objective
function score F for the sequence, in relation to its
cluster.
The problem of finding the anomalous areas in a
sequence can thus be divided into two parts: a) find
all the non-essential characters inside the anomalous
sequence, and b) find all the missing characters from
the sequence.

We next discuss the objective function F and the
different ways to construct it.

6

Sequence Lengths(characters)
Algorithm Name 500 1000 2000 4000 10,000 20,000 40,000
Hybrid Algorithm 0.001 0.004 0.02 0.06 0.50 3.30 14.00
Hunt-Szymanski Algorithm 0.006 0.02 0.06 0.25 1.60 8.00 33.40
Std. Dynamic Programming 0.007 0.03 0.14 0.60 3.90 17.00 114.50

Table 1: Running time of LCS algorithms(seconds)- σ distribution is Zipf

Sequence Lengths(characters)
Algorithm Name 500 1000 2000 4000 10,000 20,000 40,000
Hybrid Algorithm 0.002 0.008 0.036 0.14 1.21 4.90 27.20
Hunt-Szymanski Algorithm 0.01 0.038 0.166 0.52 4.85 20.90 96.00
Std. Dynamic Programming 0.009 0.032 0.14 0.64 5.10 18.10 109.20

Table 2: Running time of LCS algorithms(seconds)- σ distribution is uniform

4.1 The Objective Function

4.1.1 Bayesian Network based model of F

A generative model for a cluster can be constructed
in terms of a simple Bayesian Network. As part of
this network, each of the sequences in the cluster is
generated by the centroid(identified during the clus-
tering stage) by a certain probability. The probability
of generation of a sequence from the centroid can be
taken as proportional to the value of the normalized
LCS score between the sequence and the centroid.
The outlier sequence can be considered as being gen-
erated by each of the sequences of the cluster by a
certain probability. We assume that the probabil-
ity of generation of the outlier from each sequence
is proportional to the normalized LCS score between
the sequence and the outlier.

We now calculate the changes required to be made
to the outlier sequence, that maximize the probabil-
ity that the outlier sequence was generated from the
cluster.

Let C be the centroid, the sequences inside the clus-
ter be represented by S1, S2, . . . , sn, and O be the
outlier. In that case, we want to maximize P (C/O).

P (C|O) ∝ P (O ∧ C)

P (O ∧ C) = P (C)
N∑

i=1

P (O|Si) · P (Si|C)

∝
N∑

i=1

P (O|Si) · P (Si|C)

Since P (O|Si) ∝ nLCS(O, Si) and P (Si|C) ∝
nLCS(C, Si), we get

P (C|O) ∝
N∑

i=1

nLCS(O, Si) · nLCS(C,Si)

Hence, in the case of a Bayesian Network based
model for a cluster, the objective function to be max-
imized is given by

F ′(O, C) =
N∑

i=1

nLCS(O, Si) · nLCS(C,Si)

=
N∑

i=1

LCS(O,Si)√
lO · lSi

· LCS(Si, C)√
lSi · lC

=
1√

lO · lC
·

N∑

i=1

lcs(O,Si) · lcs(Si, C)
lSi

=
β√
lO
·

N∑

i=1

lcs(O,Si) · lcs(Si, C)
lSi

Ignoring β, the objective function is given by

F (O, C) =
1√
lO
·

N∑

i=1

lcs(O, Si) · lcs(Si, C)
lSi

In general, a Bayesian Network based model based
objective function is more effective when the cluster
is large can be said to contains small sub-clusters, as
the Bayes net model optimizes with respect to the
sequences most similar to the outlier.

7

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

20

40

60

80

100

120

Sequence Length

M
ea

n
tim

e
pe

r
co

m
pu

ta
tio

n(
in

 s
)

Hybrid

H−S

DP

Figure 2: Time to compute LCS - Zipf Distribution

4.1.2 Mean / Weighted Mean based Objec-
tive Function

Given an outlier sequence O and a cluster C, a
weighted mean based objective function F can be
given by:

F (O,C) =
N∑

i=1

λi · nLCS(O, Si)

Here N is the number of sequences in the cluster.
The weight λ can be set as equal for all sequences,
or alternatively, it may be set as proportional to the
score the sequence with the centroid.

Expanding the value of nLCS(O,Si), we get

F (O,C) =
1√
lO
·

N∑

i=1

λi · LCS(O, Si)√
lSi

It should be better to use the weighted mean based
objective function when the clusters are small and ho-
mogenous, as it assumes that the outlier should re-
semble all sequences in the cluster equally closely, and
enforces a very stricter homogeneity on the outlier, so
that even slight deviations may count as anomalies.

4.2 Maximizing the objective function

We discuss the algorithms used to find the changes
that would maximize the objective function, based on
the objective function derived for the Bayesian Net-
work based model of a cluster. The same algorithms
can be applied, with minor modifications, to the case
where the objective function is defined as a weighted
mean.

Suppose we removed a character c from a location
l inside outlier sequence O. The impact would be as
follows:

1. The length of the outlier sequence would de-
crease by 1.

2. For the sequences Si where c is part of their LCS
with O, the LCS value will decrease by 1.

3. The LCS value will remain unchanged for all
other sequences in the cluster.

The objective function is given by:

F (O, C) =
1√
lO
·

N∑

i=1

lcs(O, Si) · lcs(Si, C)
lSi

Let the new F(O,C) as a result of this change be
represented by F’(O,C). F’(O,C) is given by:

F ′(O, C) =
1√

lO − 1
{

∑

c∈lcs(O,Sj)

(lcs(O, Sj)− 1) · lcs(Sj , C)
lSj

+
∑

c/∈lcs(O,Sk)

lcs(O,Sk) · lcs(Sk, C)
lSk

}

=
1√

lO − 1
· {

N∑

i=1

lcs(O, Si) · lcs(Si, C)
lSi

−
∑

c∈lcs(O,Sj)

lcs(Sj , C)
lSj

}

Let
∑

c∈lcs(O,Sj)

lcs(Sj , C)
lSj

= bc

Replacing bc and F(O,C) in the equation for
F’(O,C) gives:

F ′(O,C) =
1√

lO − 1
· (

√
lO · F (O, C)− bc)

It can be shown that, given k characters at different
locations, all with same value of bc = b:

F ′(O, C) =
1√

lO − k
· (

√
lO · F (O, C)− k · b)

8

4.2.1 Detecting non-essential characters

We can now present a simple greedy algorithm to
find all characters removing which shall improve
the objective function score. The algorithm is given
below:

Algorithm 4: Non-essential character Detection
Algorithm.

Input: Outlier sequence O and cluster C with
sequences < S1, . . . , Sn >
Output: N ,the list of non-essential characters in O.
Step 1:Declare array b[l], where l is the
length of O.
for i:= 1 to l, b[i] := 0.

Step 2:Calculate F, and bc for each character c in O.
for i:= 1 to n

Get the LCS of O with Si. For each
c ∈ LCS(O, Si),
Set b[c] := b[c] + lcs(O,Si)/lSi

.
Set F = F + lcs(O, Si) · lcs(C, Si).

Step 3: Find the next character to be replaced.
Find b = min (bc).
Find all C, such that, bc = b.
Set k := Size(C).

Step 4: Calculate new value of F.
Set F old = F.
F = 1√

lO−k
· (√lO · F − k · b)

If F > F old
Add c ∈ C to N.
Set b[c] = max+1, for all c ∈ C.
Go to Step 3.

Step 5. All non-essential characters are stored in N.
Return N.

4.2.2 Detecting missing characters

This section focuses on the problem of finding the
missing characters from a sequence. An analysis sim-
ilar to the one above shows that adding a character
σ to a location c in an outlier sequence O sequence
changes the objective function F as follows:

F ′(O,C) =
1√

lO + 1
· (

√
lO · F (O, C) + bcσ)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

20

40

60

80

100

120

Sequence Length

M
ea

n
tim

e
pe

r
co

m
pu

ta
tio

n(
in

 s
)

Hybrid

H−S

DP

Figure 3: Time to compute LCS - Uniform Distribu-
tion

Here the value of bcσ is given by the following ex-
pression:

bcσ =
m∑

i=1

lcs(Si, C)
lSi

Here m is the number of sequences in the cluster
will contain the symbol σ as part of their LCS with O,
if it is added between location c-1 and c of sequence
O.

Similarly, adding k symbols to a sequence at var-
ious locations, such that for all k symbols, bcσ = b,
will give change F as follows:

F ′(O,C) =
1√

lO + k
· (

√
lO · F (O,C) + k · b

We provide below a greedy algorithm based on the
above formulae:

Algorithm 5: Missing characters Detection Al-
gorithm.

Input: Outlier sequence O and cluster C with
sequences < S1, . . . , Sn >
Nsymbols: the total number of unique symbols
in the sequence.
Output: M ,the list of missing characters in O.

Step 1:Declare array b[l], where l is the

9

length of O.
for i:= 1 to l

for j:=1 to Nsymbols, b[i][j] := 0

Step 2:Calculate F, and bcp for O.
for i:= 1 to n

Get the LCS of O with Si.
Foreach cj ∈ LCS(O,Si),

Set b[c][k] := b[c][k] + lcs(O, Si)/lSi
.

where k occurs in Si between cj−1 and cj .
Set F = F + lcs(O, Si) · lcs(C, Si).

Step 3: Find the next set of missing characters.
Find b = max (b).
Find C = all (i,j) pairs, such that, b(i,j) = b.
Set k := Number of such (i,j) pairs.

Step 4: Calculate new value of F.
Set F old = F.
F = 1√

lO+k
· (√lO · F + k · b)

If F > F old
Add (i,j) ∈ C to M.
Set b(i,j)=0 for all (i, j) ∈ C.
Go to Step 3.

Step 5. All missing characters and their locations
are stored in M.
Return M.

4.2.3 Reconstructing missing character se-
quences

The algorithm given above can only detect the sym-
bols that should be inserted between two characters
in a sequence, but cannot detect the order in which
they should be inserted. For example, suppose we
have a symbol set A,B,...,F. The algorithm might, in
that case, be able to say that characters D and E
should be inserted between characters A and C in a
given outlier sequence, but not whether the final se-
quence should look like ’ADEC’ or ’AEDC’. We need
a more sophisticated algorithm in order to do that.

There are two possible approaches towards an algo-
rithm which shall detect the exact sequence in which
characters should be inserted, along with the char-
acters to be inserted. The naive approach would
be to actually insert the character in the outlier se-
quence each time the addition algorithm prescribes
an addition, and recalculating the array b accord-
ingly. Updating b might involve re-comparing the
modified outlier sequence with all the sequences in

the cluster.
We present below an alternative approach, which

minimizes the number of comparisons between the
outlier sequence and the cluster, but allowing extra
characters to creep into the sequence. However, at
the end, we make a call to Algorithm 3 above, which
detects and removes these extra characters.

The algorithm is based on the observation that, for
a given sequence of length l, adding a symbol sigma
before a character c will increase the score F of the
sequence with respect to the cluster only if the value
of bcσ is above the certain threshold. This threshold
can be derived to be:

bcσ > T = (
√

l + 1−
√

l) · F
If every insertion we make to the sequence is

a valid insertion, that is , it is greater than the
threshold described above, the value of this thresh-
old increases with every insertion. Thus, at a given
sequence length l, if we pick all (c, σ) pairs such that
bcσ is greater than the threshold at l, we have picked
all the possible candidates for insertion in the future,
as the threshold value can only increase. Due to lack
of space, we only give a short outline of the algorithm.

Algorithm 6: Algorithm to compute missing
character sequences.

Step 1: Given an outlier sequence O of length
l and cluster C, calculate the array b(l, η(σ)) and the
current value of F, as in Step 2 of algorithm 5.

Step 2: Calculate the current value of the threshold
T.

Step 3: Set O′ := O. Set b′ = b. Find all
Candidates = b(i, j) > T .

Step 4: Before each row i of b, find character
σj , if it exists, such that b(i, j) ∈ Candidates and
b(i, j) = max(b(ithrow). Insert σj in O′, at the
location in O′ for which b′ has the maximum value
for σj , between the rows corresponding to i-1 and i
in b. Set b(i, j) = 0.

Step 5: Calculate b′(l, η(σ)) for the new O, ,
as in Step 2 of algorithm 5. Go to Step 4.

Step 6: Call Algorithm 4 with O and C, to
remove inessential characters that were added.
Compare Oold and O to get the list of additions.

10

Essentially, Step 4 and 5 combine to find what the
final sequence would look like if all the candidates
were inserted into the sequence. These steps work as
follows:

Suppose we have an outlier sequence ABCD, and
step 3 finds characters E,F and G, above T between
A and B, such that b(B,E) > b(B,F) > b(B,G), and
I > T between C and D(here b’(B,E) is read as the
score in array b’ for character E, for its insertion be-
fore location B in ABCD). In the first iteration, the
algorithm will insert E between A and B, and I be-
tween C and D. It will then recalculate the bcσ ar-
ray for AEBCID. It will then check if F has a higher
score before E or after E, and insert F accordingly.
Suppose the new sequence is AFEBCID. It will then
check whether G has a higher value in b’ between AF,
FE, or EB and insert G there. The final sequence may
look like AFGEBCID.

Step 6 calls Algorithm 4 to remove the extra char-
acters from O’. Now, supposing it was found that F
was a non-essential character in the sequence and re-
moved. However, we know that G is still in the right
location because, supposing F had never been in-
serted, b’(E,G) would still be greater than b’(B,G),as
the same relation held when F was inserted between
A and E, even though the insertion of F reduced the
value of b’(E,G).

4.3 Discussion: Optimality of Algo-
rithms for insertion/deletion

We say an algorithm for detecting non-essential /
missing characters is optimal if it gives the exact set
of deletions/insertions which will maximize the value
of the objective function F. However, the greedy ap-
proaches we presented above are optimal only when
the values of bc / bcσ do not change once they are
calculated at the beginning of the algorithm, or do
not change significantly enough to have an impact.
However, this is not always be the case. The mar-
gin of error may be acceptable in many cases, as
it is in ours, as the purpose of our system is only
to provide pointers to analysts about the potential
problem areas given an anomalous sequence. How-
ever, an approach to get the optimal value of F, if
we are looking for non-essential characters, can be
to call the algorithm 6 to find all missing charac-
ters right after the algorithms for non-essential has
been called, with the modified sequence as input. If
it suggests an insertion of a character at a location
where the character already existed before the dele-

Figure 4: Sample: Generated graph for an atypical
flight.

tion algorithm was called, re-insert that character.
However, again, it may be the case that the insertion
algorithm makes some wrong suggestions. To cover
all such cases, the algorithm to detect non-essential
characters may be called again, and so on alternately
till one of the algorithms makes no further sugges-
tions of insertions/deletions.

5 Experimental Results

The two datasets used to compare the LCS algo-
rithms was generated synthetically, using exactly the
procedure used by Bergroth et al[6] in their survey, to
facilitate comparison with existing LCS algorithms.
The first dataset consisted of sequences drawn from
a uniform distribution with σ = 8, to simulate se-
quences found in the bioinformatics domain. The
second dataset was drawn from a Zipf distribution
with σ = 256, to simulate other common domains
where LCS is in use. While [6] tested only with se-
quences of length 4000, we tested over a much larger
range of sequence lengths, between 500 and 40,000.
The results of the comparison are presented in Ta-
bles 1 and 2. Figures 2 and 3 provide plots of the
same data, to facilitate comparison. As the results
clearly show, the new hybrid algorithm outperforms
the other two algorithm by many times.

The clustering and outlier analysis algorithms were
used over a dataset consisting of the landing phase
sensor information for 6400 flights. The data was re-
duced to a sequence by recording, at any given time,
only sensors that changed their state. After this re-
duction, the sequence dataset consisted of 6400 dis-
tinct sequences, varying in length from 600 to over

11

9000. The number of distinct symbols(σ) was around
700. The average sequence length was approximately
1500.

The number of distinct clusters in the data was em-
pirically estimated to be three, which was the value
passed to the k-medoids algorithm. We expect the
clustering step to not take more than 10 minutes in
a C implementation.

Our outlier analysis algorithms output the follow-
ing information: A graphical representation of the
anomalous areas inside an outlier sequence. A sam-
ple graph for an atypical flight is presented in Fig-
ure 4. The horizontal axis, read from left to right,
represents the time remaining until the plane’s tires
touched the runway. The positive direction of the
vertical axis represents the suggested insertion, that
is, switches the algorithm thinks the pilot should have
pressed at that stage. The negative direction repre-
sents the suggested deletions, that is, the switches the
algorithm believes the pilot should not have pressed
at that stage. The height of the columns indicates
the confidence the algorithm has in its prediction,
which is measured as proportional to the improve-
ment in the score of the objective function F, if the
insertion/deletion suggested was actually made. A
graph with no bars would be representative of a com-
pletely normal flight, as perceived by the sequence
algorithm. The graph provides a simple visual inter-
face that allows the analyst to focus his interest on
the areas which are suspected to be most anomalous,
and saving him the trouble of analyzing the entire
sequence. A detailed report describing these anoma-
lous areas. A report is generated in parallel by the
system, which gives a list of switches that the algo-
rithm believes should have been pressed/not pressed
at that stage.

6 Conclusions

The paper describes a system designed with the aim
of detecting anomalies in discrete flight data. It does
so by clustering flight data sequences using the nor-
malized longest common subsequence(nLCS) as the
similarity measure. As the nLCS is an expensive
measure to compute, we discussed algorithms, such
as the Hunt-Szymanski algorithm, which have lesser
runtime complexity. We also discussed why they do
not work so well in actual practice, and presented
a new hybrid algorithm,which is many orders faster
than the Hunt-Szymanski algorithm. This is an im-
portant contribution as the LCS is a commonly used

algorithm in many areas and the running time of LCS
algorithms is a frequent bottleneck. Following this,
we presented algorithms, based on simple models of
sequence clusters, that detect anomalies inside se-
quences. In doing this, we step beyond what most
current anomaly detection systems do, in not only
predicting which sequences are anomalous, but by
providing explanations as to why these particular se-
quences were chosen as anomalous. Our approach is
general and not restricted in any way to the aerospace
domain, and we feel these algorithms can be of in-
terest in areas such as anomaly detection and event
mining.

References

[1] L. Kaufman and P.J. Rousseeuw, Finding
Groups in Data: An Introduction to Cluster
Analysis, John Wiley and Sons, Inc., New York
(1990)

[2] T. Cormen, C. Leiserson, R. Rivest and C. Stein,
Introduction to algorithms, The MIT Press; 2nd
edition.

[3] James W. Hunt and Thomas G. Szymanski, A
Fast Algorithm for computing Longest Common
Subsequences, Communications of the ACM,
Volume 20, Issue 5 (May 1977),Pages: 350 - 353.

[4] D. S. Hirschberg, Algorithms for the Longest
Common Subsequence Problem, Journal of the
ACM, Volume 24, Issue 4 (October 1977),Pages:
664 - 675.

[5] D. S. Hirschberg, A Linear Space Algorithm
for computing Maximal Common Subsequences,
Communications of the ACM, Volume 18, Issue
6 (June 1975),Pages: 341 - 343.

[6] L. Bergroth, H. Hakonen and T. Raita, A Survey
of Longest Common Subsequence Algorithms,
Proceedings of the Seventh International Sym-
posium on String Processing Information Re-
trieval(SPIRE), 2000.

[7] K. Sequeira and M. Zaki, ADMIT: Anomaly
based Data Mining for Intrusions, Proceedings
of the Eighth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Min-
ing(SIGKDD), 2002.

12

[8] Scott Coull, Joel Branch and Boleslaw Szy-
manski, Intrusion Detection: A Bioinformat-
ics Approach, Proceedings of the 19th An-
nual Computer Security Applications Confer-
ence(ACSAC), 2003.

[9] A. Banerjee and J. Ghosh, Clickstream Clus-
tering using Weighted Longest Common Subse-
quence, Proceedings of the 1st SIAM Interna-
tional Conference on Data Mining (SDM): Work-
shop on WebMining, 2001.

[10] T. Lane and C. Brodley, Temporal sequence
learning and data reduction for anomaly detec-
tion, ACM Transactions on Information and Sys-
tem Security (TISSEC), Volume 2, Issue 3 (Au-
gust 1999), Pages: 295 - 331.

[11] A. N. Srivastava, Discovering System Health
Anomalies using Data Mining Techniques, Pro-
ceedings of the 2005 Joint Army Navy NASA
Airforce Conference on Propulsion, 2005.

13

