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ABSTRACT

In this research, we propose a variant of the classical Matching Pursuit Decom-
position (MPD) algorithm with significantly improved scalability and computational
performance. MPD is a powerful iterative algorithm that decomposes a signal into
linear combinations of its dictionary elements or “atoms”. A best fit atom from an
arbitrarily defined dictionary is determined through cross-correlation. The selected
atom is subtracted from the signal and this procedure is repeated on the residual in
the subsequent iterations until a stopping criteria is met.

A sufficiently large dictionary is required for an accurate reconstruction; this in
return increases the computational burden of the algorithm, thus limiting its applica-
bility and level of adoption. Our main contribution lies in improving the computa-
tional efficiency of the algorithm to allow faster decomposition while maintaining a
similar level of accuracy. The Correlation Thresholding and Multiple Atom Extrac-
tions techniques are proposed to decrease the computational burden of the algorithm.
Correlation thresholds prune insignificant atoms from the dictionary. The ability to
extract multiple atoms within a single iteration enhances the effectiveness and effi-
ciency of each iteration. The proposed algorithm, entitled MPD++, is demonstrated
using real world data.

INTRODUCTION

The MPD algorithm has been extensively used to decompose signals for a wide
variety of applications. A special application is Structural Health Monitoring (SHM),
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the primary motivation behind this paper [1]. In terms of SHM, primary tasks fo-
cus on the detection, localization, classification, and prediction of remaining useful
life (RUL) of structures and materials. Numerous existing techniques, such as x-ray
scattering, Raman spectroscopy, nuclear magnetic resonance, gamma ray, eddy cur-
rents, thermography, mass spectrometry, elastic wave propagation, and spectrum of
surface waves are applicable for SHM. All these techniques may have different phys-
ical mechanisms governing their behavior; however, the same principle of analyzing
sensor data to detect changes in material properties or boundary conditions applies.

In a faulty (or damaged) state, changes in material properties or structural integrity
cause a deviance from the baseline, healthy-state system response. As a result, ex-
tracting the characteristic signatures regarding the quality of health of the structure
or material may reveal valuable information for the prognostics and diagnostics of
the system. Feature extraction detects the primary components of the signal while
neglecting much of the inherent noise. However, the necessity of precision in the de-
composition complicates the feature extraction algorithm. Failure to avoid mediocre
or inaccurate decompositions may result in the false classification of the system’s
health.

Numerous feature extraction algorithms exist, including the discrete Fourier Trans-
form, wavelet transform, MPD, and maximum entropy method. Each of these tech-
niques have their strengths and weaknesses and some are better adopted for specific
applications. It is important to note that the current research is not intended to make
any comparison between the above mentioned techniques, rather the key issue that
has been addressed is the “time-complexity” limitation of MPD which has drawn
considerable interest in recent times.

Although MPD tends to be computationally inefficient for many applications, the
dictionary elements may have fewer restrictions compared to other methods, espe-
cially regarding element orthogonality. This research is focused to improve the com-
putational efficiency and scalability of the MPD algorithm so that it may be applied
more effectively. Two unique techniques are proposed to accomplish this goal.

CLASSICAL MPD THEORY

The MPD algorithm is an iterative, nonlinear algorithm that decomposes a signal
into a linear expansion of function segments or “atoms” that belong to a redundant
dictionary [2]. A composite dictionary is comprised of arbitrarily defined atoms.
During each iteration, the cross-correlation is calculated for every atom in the dictio-
nary to quantify the degree of similarity between atoms and the signal. Each atom
is normalized to unit energy. As a result, the amplitude of a match is merely the
cross-correlation value of the matched atom with the specified portion of the signal.
The dictionary’s best match, the atom with the largest cross-correlation value, is ex-
tracted from the signal and stored for later reconstruction or classification. MPD is
an greedy algorithm that extracts the largest amount of energy possible per iteration.
Greedy algorithms conduct each iteration independently with no knowledge of previ-
ous iterations and with no concern for future iterations. The numerical procedure for
the MPD algorithm is shown in the following pseudocode.



Algorithm 1 Matching Pursuit Decomposition
1: Build Dictionary: D = {dγ1, dγ2 . . . , dγj . . . , dγn}, where dγn(t) =
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2: Initialize Kstop, δstop, k = 0, R0
x[n] = x[n], E0
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MPD routine
3: while k < Kstop or Ek

x > δstop do
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〈
Rk
x[n], d

k
γj

〉
5: Select dictionary element whose time correlation with the Rk

x[n] is maximum
6: Rk
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7: k = k + 1, Ek
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8: end while

The residual after k iterations is represented by Rk
x[n], where the signal is notated

by x[n]. In Algorithm 1 (step 2), R0
x[n] represents the initialized state prior to the first

iteration. The best fit atom from dictionaryD is determined through cross-correlation
with the residual as shown in Eqn. 1. The selected atom is subtracted from the signal
(step 6) and the procedure is repeated on the residual in the subsequent iteration. The
ith matched atom is represented by dγi and its corresponding cross-correlation with
aγi, where the parameters for a particular atom are notated by γ.

aγi = argmaxdγi∈D
∣∣〈Rk

x[n], dγi
〉∣∣ (1)

The algorithm is repeated until a stopping criteria is reached: a specified number
of matches are removed from the signal or a designated amount of energy is extracted
from the signal. These criterions establish a definition for the completion of the de-
composition and their values are typically determined by the nature of the application.
Once decomposed, the modeled signal x̂ may be reconstructed using Equation 2.

x̂ =
k∑
i=1

aγidγi. (2)

PROPOSED ALGORITHM: MPD++

Related research has been conducted to improve the computational performance
of MPD including: coarse-fine grids, interpolation, and particle filters [1] [3]. Several
other research efforts in this area may be found in the following literatures: [4] [5] [6] [7].
A common approach involves the implementation of an intelligent, self-adaptive, or
reduced-in-size dictionary to assuage the complications caused by over-complete dic-
tionaries. However, none of the above techniques implement a feedback loop between
the iterations and the dictionary. This concept has been advanced to dynamically re-
duce the size of the dictionary based on the results of the previous iteration. Our
second effort deals with the extraction of multiple atoms per iteration. To the best of
the authors’ knowledge, no prior research discussing multiple atom extractions has
been published.



Sparser Dictionary with Correlation Thresholding

The MPD algorithm’s bottleneck lies in the computation of the atoms’ cross-
correlation values. The operations required to compute the cross-correlations for L
atoms with a signal of dimensionM have a high complexity ofO(LMN), whereN is
the length of the reference signal. The complexity may be reduced by decreasing the
size of the dictionary. While a sufficiently large dictionary is required for accurate
decomposition, a majority of the atoms may not be used throughout the decompo-
sition process. The removal of these unused atoms from the dictionary potentially
offers significant increases in performance with no cost in accuracy.

Correlation Thresholding (CT) begins by calculating the correlation values for
every atom in the dictionary through a standard MPD iteration. Next, the correlation
ratio for each atom is calculated. The correlation ratio, CR, for a particular atom is
defined as that atom’s maximum correlation value divided by the largest correlation
in the dictionary (Eqn. 3).

CRn =

〈
Rk
x[n], dγi

〉
argmaxdγi∈D |〈Rk

x[n], dγi〉|
(3)

CT applies a threshold to the correlation ratio for each atom in the dictionary.
Atoms with correlation ratios above the threshold form the reduced dictionary while
the rest are rejected. This reduced dictionary is used in the subsequent iterations in-
stead of the full, base dictionary. With fewer atoms to analyze, the algorithm requires
less time per iteration. After a repruning criteria is met, the reduced dictionary will
be revoked and regenerated from the base dictionary. The performance of the CT
modification is governed by three thresholds:
• Reduction Threshold: This threshold specifies the minimum correlation ratio ad-

mitted into the reduced dictionary. The following two thresholds are determined
relative to but operate independently of the reduction threshold. After the con-
struction of the reduced dictionary, the reduction threshold plays no role in the
algorithm until the next repruning.
• Ultimate Threshold: The ultimate threshold dictates the absolute minimum cor-

relation ratio value accepted as a match in the decomposition. To ensure an up-
to-date reduced dictionary, it must be repruned occasionally from the base dictio-
nary. If the current match’s correlation ratio violates the ultimate threshold, the
match will be discarded, the dictionary will be repruned, and the iteration will be
repeated. Otherwise, the algorithm will extract the match and continue onto the
next iteration. A violation of this threshold wastes computational time, but helps
to maintain the integrity of the reconstruction.
• Reprune Threshold: This threshold is the second factor in the repruning of the dic-

tionary and helps to ensure smooth flow of the MPD++ algorithm. This threshold
is typically set slightly above the ultimate threshold. As a result, the dictionary
may be repruned before the ultimate threshold is violated, thus conserving com-
putational resources. If the current match’s correlation ratio is below the reprune
threshold and above the ultimate threshold, it will be subtracted from the signal
and the dictionary will be repruned at the beginning of the following iteration.



The interactions of the thresholds and the matched atom’s correlation ratio de-
termine: the action taken by the algorithm, the gains in computational performance,
and the accuracy of the reconstruction. As long as the correlation ratio is above the
ultimate threshold, the atom will be extracted. The optimal thresholds are depen-
dent on the signal being decomposed. However, the thresholds may be approximated
to produce significant increases in performance while maintaining the desired ac-
curacy/performance emphasis. Figure 1 shows a flowchart for the CT technique.
Dashed arrows and boxes indicate steps that differ from classical MPD.

Accuracy is often of primary importance. Unfortunately, standard MPD is of-
ten too computationally expensive to employ. Modifications that reduce the com-
putational burden of the algorithm are desirable; however, reconstructions with an
improved algorithm are often required be identical to those produced by classical
MPD. When identical values are selected for the ultimate and reduction thresholds,
the algorithm will discard any matches with a correlation ratio smaller than atoms
previously rejected from the reduced dictionary. This prevents the extraction of any
matches when an atom that was removed from the reduced dictionary may offer a
better match.

If rapid decomposition is the primary focus, the ultimate threshold may be set at a
value below the reduction threshold. This enables the improved algorithm to extract
more atoms before having to reprune the base dictionary. However, it is possible for
the algorithm to select an atom that normally would not have been picked or miss the
true best match for that iteration because it was not present in the reduced dictionary.
Significant gains in computational performance may be obtained at a decrease in
accuracy that is acceptable for many applications.

Figure 1: MPD++ Flowchart for Correlation Thresholding



Multiple Atom Extractions

With even the most effective, abridged dictionary, MPD is fundamentally limited
by its iterative nature. The extraction of multiple atoms per iteration is proposed to
reduce the computational burden of the algorithm. The Multiple Atom Extractions
(MAE) modification alters the flow and organization of the MPD algorithm instead of
merely addressing the encumbering effects caused by excessively large dictionaries.

Classical MPD determines and extracts the single best-correlated atom. How-
ever, MPD++ determines a specified number of atoms with the largest correlation
values, referred to as the “top atoms”. Next, the algorithm subtracts the absolute
best-correlated atom from the dictionary, referred to as the “primary atom”. All other
top atoms are called “secondary atoms”. Then, the algorithm determines whether the
next best correlated secondary atom overlaps the footprint of a previously removed
match. If no overlap exists, the atom will also be subtracted from the signal. The
process is repeated until all of the stored top atoms are either extracted or rejected.
When this condition is reached, the algorithm will proceed onto the next iteration.

ATTEMPTED NUMBER OF ATOMS TO EXTRACT PER ITERATION

As the algorithm attempts to extract more atoms per iteration, the elasped time and
amount of extracted energy tend to decrease. For conservative, accurate reconstruc-
tions, extraction should only be attempted on a small number of atoms per iteration.
For maximum performance, numerous atoms may be extracted in each iteration. In
fact, if an excessively large number of top atoms are stored, the modification offers
incredible performance increases with only a minor loss in reconstruction accuracy.

TOP ATOM TRACKING

Sometimes the algorithm will uncover atoms that overlap but model different parts
of the signal, such as different frequency components. The “Top Atom Tracking”
(TAT) mode offers previously rejected secondary atoms an additional chance to be
extracted. If TAT is active, the algorithm will store an extra top atom to use as a
reference; extraction will never be attempted on this extra stored atom. After the
first pass through the list of the top atoms and the extraction of as many atoms as
possible, the algorithm will recompute the correlation values for the top atoms that
were rejected in the previous pass due to a footprint overlap. If these atoms have a
correlation value larger than the extra top atom stored, the atoms will be extracted;
otherwise these atoms will be permanently rejected from the current iteration.

RESULTS AND DISCUSSIONS

The results for the MPD++ algorithm with various combinations of the modifica-
tions are shown in Table I. The reconstruction accuracy is evaluated using normalized
mean squared error (NMSE) as a metric. For the CT modification, the emphases of
accuracy (“Acc”) and performance (“Perf”) are designated. The number of attempted
atoms extractions is indicated by the column “AAE”. The reference and reconstructed
signals are represented by x and x̂ respectively.



Table I: Observed reconstruction accuracies (NMSE) and run times of the MPD++ algorithm
Algorithm Modifications Accuracy Run time

CT MAE AAE TAT
∑N

i=1
(x̂−x)2
Nσ2

x
(sec)

MPD - - - - .0881 2078.4
MPD++ Acc - - - .0881 1092.3
MPD++ Perf - - - .0881 1044.2
MPD++ - 4 5 - .0882 1495.7
MPD++ - 4 20 - .0887 1162.2
MPD++ - 4 50 - .0887 970.9
MPD++ - 4 140 - .0889 808.1
MPD++ - 4 5 4 .0881 1216.0
MPD++ - 4 20 4 .0882 725.8
MPD++ - 4 50 4 .0884 454.0
MPD++ Acc 4 5 4 .0881 571.0
MPD++ Perf 4 20 4 .0882 348.9
MPD++ Perf 4 140 4 .0887 235.4

During the accurate and performance CT tests, time complexity reductions of
1.9 and 2 times, respectively, were observed. During the accuracy test, the integrity
of the decomposition was guaranteed at a cost of performance; coincidentally, the
performance mode was able to match the NMSE of accurate CT test.

The performance increases for the Multiple Atom Extractions technique depend
on the number of attempted atom extractions per iteration. With five attempted atom
extractions per iteration, a performance gain of 28 percent was observed. When de-
composition was attempted on twenty and fifty atoms per iteration, performance gains
of 44 and 53 percent were accompanied by subtle cost in reconstruction accuracy. As
the extraction of more atoms per iteration is attempted, the performance gains tends
to increase until an upper limit is reached. This boundary was determined, a test with
140 top atoms resulted in a 2.6 times reduction in the time complexity. Additional
accuracy was sacrificed while producing no further performance gains when higher
numbers were used. Top Atom Tracking significantly reduced the time complexity
and appeared to slightly improve the accuracy of the reconstruction.

The MPD++ algorithm was tested with both modifications active. When these
modifications emphasized accuracy, the algorithm extracted a similar amount of en-
ergy as classical MPD while requiring only 27.5% of the elapsed time. In the performance-
centric tests, the MPD++ algorithm decomposed the signal 6 times faster than the
standard algorithm. When the modified algorithm was pushed to its limits to de-
termine the absolute maximum performance gains possible, the elapsed time was
reduced by a factor of 8.8.

The tested signal consisted of 10,000 data points with features of interest stretch-
ing across a substantial portion of the signal. Due to its nature, the tested signal
is particularly susceptible to experience dramatic performance gains with Multiple
Atom Extractions and Correlation Thresholding. While most signals will experience
significant performance gains, the degree of performance or accuracy enhancement
is highly dependent on the signal.



CONCLUSION

The paper presents a variant of the MPD algorithm with dual emphases on ac-
curacy and performance considered. The results confirm that the two modifications
successfully improved the scalability and computational efficiency of the MPD al-
gorithm. Correlation Thresholding decreased the time complexity by reducing the
dictionary size. Multiple Atom Extractions also reduced the time complexity by de-
creasing the number of iterations required for a stopping criterion to be reached. Due
to the nature of these modifications, they are capable of being stacked and have cu-
mulative effects. The MPD++ algorithm was demonstrated using an over-complete
dictionary on real life data. Reductions in computational time of 3.6 and 6 were
observed for the emphases of accuracy and performance, respectively. Substantial
performance increases, such as a 8.8 times improvement in time complexity, may be
achieved at a slight cost in accuracy when knowledge of the signal is applied. The
MPD++ algorithm was programmed using Matlab; the files are available on NASA’s
Discovery in Aeronautics System Health website (https://dashlink.arc.nasa.gov).

ACKNOWLEDGEMENTS

This research was conducted as part of an internship through NASA Undergrad-
uate Student Research Program. The improved algorithm was tested on a signal cour-
tesy of the Air Force Research Laboratory. This work was supported through funding
from the NASA Aeronautics Research Mission Directorate, Aviation Safety Program,
and Integrated Vehicle Health Management project. The authors thank Drs. Kanishka
Bhaduri and Nikunj Oza for valuable discussions and suggestions.

BIBLIOGRAPHY

[1] Das, S., I. Kyriakides, A. Chattopadhyay, and A. Papandreou-Suppappola. 2009. “Particle Fil-
ter Based Matching Pursuit Decomposition for Damage Quantification in Composite Structures,”
Journal of Intelligent Material Systems and Structures, 20(6):647–658.

[2] Mallat, S. and Z. Zhang. 1993. “Matching Pursuits with Time-Frequency Dictionaries,” IEEE
Transactions on Signal Processing, 41(12):3397–3415.

[3] Kristekova, M. and M. Kovacova. 2002. “New Version of Matching Pursuit Decomposition with
Correct Representation of Linear Chirps,” Conference on Scientific Computing, 33–41.

[4] Imamura, K., Y. Koba, and H. Hashimoto. 2006. “A Fast Matching Pursuits Algorithm Using Sub-
band Decomposition of Video Signals,” IEEE International Conference on Multimedia and Expo,
729–732.

[5] Schniter, P., L. C. Potter, and J. Ziniel. 2008. “Fast Bayesian Matching Pursuit: Model Uncertainty
and Parameter Estimation for Sparse Linear Models,” IEEE Transactions on Signal Processing.

[6] Moschetti, F., L. Granai, P. Vandergheynst, and P. Frossard. 2002. “New Dictionary and Fast
Atom Searching Method for Matching Pursuit Representation of Displaced Frame Difference,”
Proceedings of the IEEE ICIP 3:685–688.

[7] Gribonval, R. 2001. “Fast Ridge Pursuit with a Multiscale Dictionary of Gaussian Chirps,” IEEE
Transactions on Signal Processing, 49(5):994–1001.


