

Flow Solver Overview - PMBv1.5

- Parallel Multiblock (PMB) structured solver developed since 1996
- Solving 2D/3D steady/unsteady compressible Euler/Navier-Stokes equations
- Various turbulence models (SAE, k- ω, etc.)
- Cell-centred finite-volume scheme
- Euler fluxes via Riemann solver (Roe, Osher)
- Higher-order spatial accuracy using MUSCL
- Viscous fluxes using Green-Gauss theorem
- Two halo layers to impose boundary conditions
- Fully-implicit time marching
- 2nd-order dual-time stepping for unsteady simulations
- Krylov subspace sparse iterative solver with BILU preconditioning for solving linear systems

RSW Grids Overview

UNIVERSITY OF LIVERPOOL

- Inflow boundary location is 1000 inch ahead of LE
- 55 inch span
- no splitter plate
- viscous wind tunnel wall

	Grid points	Grid cells
Coarse	$2,321,200$	$2,028,800$
Medium	$6,597,984$	$6,003,264$
Fine	$18,632,712$	$17,432,544$

Geometry and blocking files provided by Thorsten Hansen (ANSYS).

RSW Grids Overview

- Surface mesh and typical surface pressure distribution for fine grid

176 blocks overall

Simulated Cases

Steady

- cases 6E23 and 6E24
- coarse, medium and fine grids (SAE model)
- coarse and medium grids (SST model)

Unsteady

- cases 6E54 and 6E56
- coarse and medium grids (SAE model)

Steady Simulations Overview

- Osher's Riemann solver for Euler fluxes
- Turbulence model used is compressible form of Spalart-Allmaras model with Edwards' modifications (SAE), also SST model for comparison
- Run fully turbulent
- Moment centre at $\mathrm{x} / \mathrm{c}=0.46$
- Reference area for integrated loads is 24 inch x 48 inch
- CL,CD,CM include pressure and friction contributions

Steady Results

LIVERPOOL

Steady Results

Steady Results

- Integrated forces and moment (CL,CM,CD)

6E23	Lift	Drag	Moment
Coarse	0.549797	0.047004	0.033167
Medium	0.540689	0.046688	0.035106
Fine	0.534424	0.046488	0.035346

6E24	Lift	Drag	Moment
Coarse	0.688156	0.075762	-0.000897
Medium	0.684095	0.075505	0.001103
Fine	0.679196	0.075321	0.001602

Steady Results - SA vs. SST

- Boundary layer velocity profile
6E23 (pnt. 626) $\quad X=11.04$ inch

Unsteady Simulations Overview

- Unsteady runs started from converged steady case 6E23
- Forced pitching motion about $\mathrm{x} / \mathrm{c}=0.46$ at 10 Hz (6E54) and 20 Hz (6E56) with 2 degrees mean incidence and pitching amplitude of 1 degree
- Pitching motion applied via a rigid rotation of computational domain
-influence on wind tunnel wall boundary layer?
- Simulation of 8 cycles with 64 steps per cycle
- max. 50 pseudo steps per real time step
-target convergence in pseudo time is 3 orders of magnitude
-criterion: update in pseudo time scaled by change in real time
- Signal used for Fourier analysis starting from $3^{\text {rd }}$ cycle (remove transients!)

Unsteady Results

- Magnitude and phase of CP vs. x / c at excitation frequency $(10 \mathrm{~Hz})$

Unsteady Results

- Magnitude and phase of CP vs. x / c at excitation frequency $(10 \mathrm{~Hz})$

Unsteady Results

- Magnitude and phase of CP vs. x / c at excitation frequency $(10 \mathrm{~Hz})$

Unsteady Results

- Magnitude and phase of CP vs. x / c at excitation frequency $(10 \mathrm{~Hz})$

Unsteady Results

- Magnitude and phase of CP vs. x/c at excitation frequency (20 Hz)

Unsteady Results

- Magnitude and phase of CP vs. x / c at excitation frequency $(20 \mathrm{~Hz})$

Unsteady Results

- Magnitude and phase of CP vs. x/c at excitation frequency (20 Hz)

Unsteady Results

- Magnitude and phase of CP vs. x / c at excitation frequency $(20 \mathrm{~Hz})$

Unsteady Results

- Time history of lift coefficient

Unsteady Results

- Real and imaginary parts of CD,CM,CD

6E54 (10 Hz)	Lift		Drag		Moment	
	Real	Imag	Real	Imag	Real	Imag
Coarse	6.1936	-1.3162	0.7310	0.0176	-0.9866	0.7812
Medium	6.3108	-1.2777	0.7269	0.0098	-1.0097	0.7789
Fine	--			--		

6E56 (20 Hz)	Lift		Drag		Moment	
	Real	Imag	Real	Imag	Real	Imag
Coarse	4.4496	-0.9961	0.7401	-0.1056	-0.5701	0.7957
Medium	4.4607	-0.9918	0.7306	-0.1033	-0.5816	0.8258
Fine	--		--		--	

Future Work

- Understand differences between SAE and SST turbulence models when simulating boundary layer on wind tunnel wall.
\rightarrow Does a more similar boundary layer "correct" steady shock location differences?
- For temporal convergence, double number of real time steps per cycle.

