HIRENASD

Thorsten Hansen ANSYS Germany GmbH

nNSYS Computational Domain

- Cref $_{\text {mean }}=0.3445 \mathrm{~m}$
- 100 * Cref in all directions

nNSYS Grid Information

- ANSYS ICEM CFD 14
- Hexahedral elements
- Scalable grids
- Consistent mesh quality upon grid refinement
- Multigrid
- levels = 3

nNSYS Grid Information

	Grid 1	Grid 2	Grid 3
Number of nodes	$3,158,849$	$10,025,769$	$28,458,329$
Number of elements	$3,088,384$	$9,872,384$	$28,149,248$
Minimum grid angle	23.3°	24.17°	24.33°
Maximum aspect ratio	149,529	125,250	134,515
First grid node @ Wall, m	4.4e-07 \mathbf{m} $\left(y^{+}=0.58\right)$	$2.94 \mathrm{e}-07 \mathrm{~m}$ $\left(\mathrm{y}^{+}=0.41\right)$	$1.96 \mathrm{e}-07 \mathrm{~m}$ $\left(\mathrm{y}^{+} \sim 4 / 9\right)$

nNSYS Grid Information

Grid 1
Grid 2
Grid 3

nNSYS Grid Information

Grid 1
Grid 2
Grid 3

nNSYS Grid Information

Grid 1
Grid 2

Grid 3

nNSYS Grid Information

FEM Grid

CFD Grid

Downloaded from the AePW website

NNSYS
 Grid Plane @ Eta = 0.145

nNsYs Grid Plane @ Eta = 0.145

Leading Edge

Trailing Edge

NNSYS
 Numerical Method

- ANSYS CFX 14
- Coupled (U,V,W,P) solver
- Pressure based
- Convective discretization
- High-resolution scheme
- Algebraic multigrid
- Vertex centred

NNSYS Mathematical Model

- Ensemble-averaged mass, momentum and energy conservation equations
- Turbulence model
- SST (Menter, 1994)
- Automatic choice of linear/logarithmic near wall profiles

Automatic Wall Treatment

nNSYS Solver Information

	\# of CPUs	Total Wall Clock Time,	Memory, GByte
Grid 1	12	3 h 19 min	8.05
Grid 2	36	3 h 11 min	25.58
Grid 3	96	4 h 2 min	72.06

nwsys CFX Solver Information, ETW 132

nNSYS CFX Solver Information, ETW 250

[^0]
NNSYS
 $C P \& M a, R e=7$ mio, $\mathrm{Ma}=0.8, \alpha=1.5^{\circ}$

Grid 1
Grid 2
Grid 3

NNSYS CP, $\mathrm{Re}=23.5 \mathrm{mio}, \mathrm{Ma}=0.8 \alpha=-1.34^{\circ}$

Grid 1
Grid 2
Grid 3

nNsYS ANSYS Solver Coupling

Solve CFD undeformed grid
CP
Contour 1
-1.000
0.800
0.600
0.400
0.200
0.000
-0.200
-0.400
-0.600
-0.800
-1.000

Transfer CFD loads to FEA and solve structural deformation

WNSYS

Solve CFD deformed grid

NWSYS
\pm

Transfer deformation to FEA and solve mesh deformation

NNSYS
 Load Transfer Algorithms

- Different grids on CFD \& FEM side
- Topology
- Grid width
- Load transfer
- Search
- Interpolation
- Interpolation algorithms
- Profile preserving or
- Globally conservative
- Profile preserving \& conservative \rightarrow GGI technology

NNSYS
 Generalised Grid Interface

NNSYS
 Generalised Grid Interface

nNsYs Total Deformation @ CFX

NNSYS
 Grid 2: Static Aeroelastic Equilibrium

$R e=7 \mathrm{mio}, \mathrm{Ma}=0.8, \mathrm{a}=1.5^{\circ}$

NNSYS
 Discretization Error

$R e=7 \mathrm{mio}, \mathrm{Ma}=0.8, \mathrm{a}=1.5^{\circ}$

nNSYS $\mathrm{Re}=7 \mathrm{mio}, \mathrm{Ma}=0.8, \mathrm{a}=1.5^{\circ}$

Plots created by Carol Wieseman, NASA

NNSYS ANSYS Modal Analysis, $2^{\text {nd }}$ Bending

nNSYS Unsteady-State Calculation

- Oscillations for the $2^{\text {nd }}$ bending mode
- Mesh displacement
- Harmonic wing motion
- A*sin(omega*t)
- Initial condition
- Converged steadystate solution

- Monitor frequencies
- FFT

NNSYS
 Numerical Information

- Transient scheme
- Second order backward Euler
- Convective discretization
- High Resolution
- Initial condition
- Steady-state solution
- Time steps per period - Run1: 32 > 3.125 ms
-Run2: $64>1.562 \mathrm{~ms}$
- Run3: 128 > 0.781 ms
- Total time $=5$ * period -32 * $5=160$ iterations
-64 * $5=320$ iterations
$-128 * 5=640$ iterations

NNSYS
 CFX Solver, Grid 1, MAX Residuals

Timestep $=$ Period/32

Run Hirenasd Grid1 7 mio Ma08 Urans 32 tt 002 Momentum and Mass

Timestep $=$ Period/64

Timestep $=$ Period/128

NNSYS
 RMS Residuals \& CL

NNSYS
 Temporal Error

NNSYS
 Frequency Response Function

- Fourier Series is written in form of sines and cosines

$$
x(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(n \omega_{0} t\right)+b_{n} \sin \left(n w_{0} t\right)
$$

- where for $\mathbf{n}>0$:

$$
a_{n}=\frac{2}{T} \int_{t_{0}}^{t_{0}+T} x(t) \cos \left(n w_{0} t\right) d t, b_{n} \frac{2}{T} \int_{t_{0}}^{t_{0}+T} x(t) \sin \left(n w_{0} t\right) d t
$$

- and where

$$
\omega_{0}=\frac{2 \pi}{T}, \quad a_{0}=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} x(t) d t
$$

NNSYS
 Frequency Response Function

- Fourier coefficients calculated in CFD solver
- Additional Variable @ ANSYS CFX
- CP Real, CP Imag
- Magnitude = sqrt(CP Real^2+CP Imag^2)
- Phase = atan2(CP Imag/CP Real)

NNsYS Imag Cp: $\mathrm{Re}=7 \mathrm{mio}, \mathrm{Ma}=0.8, \alpha=1.5^{\circ}$

Plots created by Carol Wieseman, NASA

NNSYS
 Real $\mathrm{Cp}: \mathrm{Re}=7 \mathrm{mio}, \mathrm{Ma}=0.8, \alpha=1.5^{\circ}$

Plots created by Carol Wieseman, NASA

nNSYS Magnitude: $\mathrm{Re}=7 \mathrm{mio}, \mathrm{Ma}=0.8, \alpha=1.5^{\circ}$

Plots created by Carol Wieseman, NASA

NNSYS
 Phase: $\mathrm{Re}=7 \mathrm{mio}, \mathrm{Ma}=0.8, \mathrm{a}=1.5^{\circ}$

Plots created by Carol Wieseman, NASA

nNSYS Summary \& Outlook

- ANSYS CFD calculation of a HIRENASD aeroelasticity case
- Detailed quality assurance of numerical errors
- Iteration error
- Discretization error (Spatial and temporal)
- Full Wind Tunnel model
- FEM Hex-mesh with real TE
- Dynamic coupling with ANSYS

Courtesy of RWTH Aachen

[^0]: Run Complete

