

HIRENASD: Validations

Solution Time 0.2256 (s)

Alan Mueller & Sergey Zhelzov

1st Aeroelastic Prediction Workshop Honolulu, April 2012

CFD and CSM Geometry Correspondence

adapco STAR-CCM+ coupled to Abaqus

CFD Polyhedral Mesh

Mesh size: 2.4M, 8.5 M and 13.9 M Top surface grid density: 1.4 mm Bottom surface grid density: 20 mm Prism layer thickness: 1.5 mm # of prism layers: 18 Mesher type: Polyhedral Wall Thickness: 1e-3 mm Leading edge grid density: 288 Pts/circle

CFD Mesh Details

CFD + CSM Numerics and Physics

- CFD:Navier Stokes, Finite Volume, Roe FDS or AUSM+, SA & K-ω SST Turbulence, Least Square Gradients
- CSM:C3D8I hex, elastic, minimal damping, n-I geom
- Steady-state, Static Equilibrium
 - Steady state rigid + 3 exchanges with static CSM
 - Transient 1st order, 100 subiterations after exchanges
- Transient Free and Forced
 - 2nd order time, 85 to 170 steps/cycle,
 - 20 to 60 subiterations, convergence criteria Cl
- Morphed Mesh (Multiquadric, Radial Basis Function)
- S2S Mapping (least square, shape functions)

Turbulence and slip wall

- SA & K-ω SST
- Only for rigid wing, none for aeroelastic

m17	Slp_kw	Nsl_kw	Nsl_SA	Slp_kw	Nsl_kw	Nsl_SA
alpha, deg	CL	CL	CL	CD	CD	CD
-2	-0.055	-0.031	-0.032	0.0142	0.0140	0.0139
0	0.171	0.166	0.179	0.0122	0.0127	0.0123
2	0.375	0.379	0.402	0.0177	0.0183	0.0186
4	0.579	0.573	0.611	0.0322	0.0324	0.0350
6	0.698	0.693	0.686	0.0629	0.0621	0.0609

Simulation Parameters

Test medium	-	-	Nitrogen
Mach number	М	-	0.8
Reynolds number (based on ref chord)	Re _c	-	2.35E+07
Static temperature	Tstat	deg K	204.0
Static pressure	Р	kPa	201
Dynamic viscosity	μ	Pa-s	1.12E-05
Load factor	q/E	-	4.80E-07

Aerodynamic Equilibrium Wing at different AOA

- Static Structure, Steady airflow at deformed shape
- Ma=0.8, Re=23.5x10⁶, q/E=0.48x10⁻⁶

Lift Coefficient

Wing Tip Displacement

Spanwise Wing Deformation at AOA 0,1,2,3°

Pressure Sections

Cp: AOA 0°, Station 1

Reference:

J.Heeg, J.Florance, P.Chwalowski, B. Perry, C.Wieseman. Information Package: Workshop on Aeroelastic Prediction. Aeroelasticity Branch, NASA Hampton, Virginia. October 2010

Cp: AOA 0°, Station 4

Reference:

J.Heeg, J.Florance, P.Chwalowski, B. Perry, C.Wieseman. Information Package: Workshop on Aeroelastic Prediction. Aeroelasticity Branch, NASA Hampton, Virginia. October 2010

Cp: AOA 0°, Station 7

Reference:

J.Heeg, J.Florance, P.Chwalowski, B. Perry, C.Wieseman. Information Package: Workshop on Aeroelastic Prediction. Aeroelasticity Branch, NASA Hampton, Virginia. October 2010

Cp: AOA 0°

Reference:

J.Heeg, J.Florance, P.Chwalowski, B. Perry, C.Wieseman. Information Package: Workshop on Aeroelastic Prediction. Aeroelasticity Branch, NASA Hampton, Virginia. October 2010

Cp: AOA 2°, Station 1

Reference:

J.Heeg, J.Florance, P.Chwalowski, B. Perry, C.Wieseman. Information Package: Workshop on Aeroelastic Prediction. Aeroelasticity Branch, NASA Hampton, Virginia. October 2010

Cp: AOA 2°, Station 4

Reference:

J.Heeg, J.Florance, P.Chwalowski, B. Perry, C.Wieseman. Information Package: Workshop on Aeroelastic Prediction. Aeroelasticity Branch, NASA Hampton, Virginia. October 2010

Cp: AOA 2°, Station 7

Reference:

J.Heeg, J.Florance, P.Chwalowski, B. Perry, C.Wieseman. Information Package: Workshop on Aeroelastic Prediction. Aeroelasticity Branch, NASA Hampton, Virginia. October 2010

Cp: AOA 2°

Reference:

J.Heeg, J.Florance, P.Chwalowski, B. Perry, C.Wieseman. Information Package: Workshop on Aeroelastic Prediction. Aeroelasticity Branch, NASA Hampton, Virginia. October 2010

Cp: AOA -2°, Station 1

Reference:

J.Heeg, J.Florance, P.Chwalowski, B. Perry, C.Wieseman. Information Package: Workshop on Aeroelastic Prediction. Aeroelasticity Branch, NASA Hampton, Virginia. October 2010

Cp: AOA -2°, Station 4

Reference:

J.Heeg, J.Florance, P.Chwalowski, B. Perry, C.Wieseman. Information Package: Workshop on Aeroelastic Prediction. Aeroelasticity Branch, NASA Hampton, Virginia. October 2010

Cp: AOA -2°, Station 7

Reference:

J.Heeg, J.Florance, P.Chwalowski, B. Perry, C.Wieseman. Information Package: Workshop on Aeroelastic Prediction. Aeroelasticity Branch, NASA Hampton, Virginia. October 2010

Cp: AOA -2°

Reference:

J.Heeg, J.Florance, P.Chwalowski, B. Perry, C.Wieseman. Information Package: Workshop on Aeroelastic Prediction. Aeroelasticity Branch, NASA Hampton, Virginia. October 2010

Wind-off Free Vibration

• Comparisons

Mode	Eigenshape	Experiment, Hz	Base FEA, Hz	Abaqus, Hz	Error to exp., %	Error to Base, %
1	1. flap-bending	25.75	26.54	26.545	3.09	0.02
2	2. flap-bending	71.75	86.05	86.034	19.91	-0.02
5	1. torsion	262.90	272.9	273.35	3.97	0.16

Wind-On Free Vibration

q/E = 0.48e-6, M = 0.8, Re = 23.5e6, AoA = -1.34°, weight impulse

Modium	Frequency, Hz			Error, %		
Medium	Experiment	Base	Result	to Exp.	to Base	
Vacuum	25.75	26.54	26.55	3.09	0.02	
Nitrogen	29.1	29.55	29.54	1.52	-0.03	

Wind-On Vibration 1st Flap-bending exp #270

Conclusions

- Aeroelastic equilibrium
 - Reasonable comparisons to other codes and experiments in lift, drag and displacements
 - Overprediction of shock strength and slightly downstream
 - Aero Analyst is now previewing results (Deryl Snyder)
- Wind-off Vibration Structural model
 - Slight errors in frequencies to experiments
 - Closer to published numerical models
- Wind-on Free Vibration
 - Reasonable comparisons to experiments and other codes
 - Need data for damping coefficients to access structure damping
- Wind-on Forced Vibration 1st flap-bending mode
 - Uncertainty where to apply moment, need experimental details

- Contradiction between published displacement and acceleration