

NLR contribution to Aeroelastic Prediction Workshop

NLR Team

Nationaal Lucht- en Ruimtevaartlaboratorium – National Aerospace Laboratory NLR

Outline

Jaap van Muijden aerodynamic grid CFD simulations

Bart Eussen aeroelasticity

Bimo Prananta FEM data pre-post processing

Introduction

NLR team tools, contribution

Aerodynamic grid

NLR modified grid

FEM model available data pre-processing

Results HIRENASD

NLR tools and contributions

ENFLOW CFD system

- components: ENDOMO domain modeller, ENGRID grid generator, ENSOLV flow solver
- structured multiblock grids, 2nd of 4th accurate space discretisation, 2nd order dual-time stepping, multigrid acceleration

NLR contributions

- forced oscillation of 2nd mode, 4 periods, 32 time-steps/cycle; starting from statically deformed grid
- using AePW specified amplitudes, dynamic pressure derived from q/E data
- solver setting: 2nd order space and 2nd order time integration, 60 multigrid (4W)
- \Box *k*- ω TNT (turbulent-non-turbulent) + EARSM (explicit algebraic Reynolds Stress Model)

Aerodynamic grid

NLR grid

- started from ICEM topology available on repository
- modifications:
 - blocks subdivided for improved parallelisation (now 352 blocks)
 - blocks rearranged for improved boundary layer resolution
 - block dimensions set suitable for NLR multigrid acceleration (now 9,632,768 cells and 4 multigrid levels)

uploaded to repository

FEM model and pre-processing steps

FEM date

AePW reduced-set (144 nodes)

FEM data in repository

- NASTRAN source (bdf)
 g-set modal data (f06)
 - □ reduced-set modal data (f06)

Pre-processing steps

- rerun the bdf, for check
 select different reduced-set, since the available data not
 enough for volume spline
- generate FLEX matrix for NLR reduced-set for staticaeroelastic runs; using SOL101 with unit loads

FEM model and pre-processing steps, conc'd

Pre-processing step, conc'd

- extract mode shape data for NLR reduced-set from AePW gset modal data (f06), consists of upper and lower surface nodes
- introduce zero displacement nodes at wing-body junction
- map mode shape data to aerodynamic surface grid (volume spline)

Test 155, steady

Test 155, magnitude

Test 155, phase angle

Test 271 steady, low C_L

Experimental data Test 271, magnitude AePW vs RWTH

Test 271 magnitude

Test 271, phase angle

Test 271 magnitude upper surface RWTH experimental data

Test 271 magnitude lower surface RWTH experimental data

Test 159, steady high C_L

Test 159, magnitude upper-side

Test 159, magnitude lower-side

Test 159, phase angle

Remarks

NLR

- nice test case, frequency relatively high
- amplitude variation shows linear behaviour
- NLR optimised the presented structured multiblock grid
- to use the same FEM for all cases, dynamic pressure derived from q/E values. NLR used the E value of wing part (material ID 58).
- q/E influences static deformation as well as dynamic pressure. should be explicitly defined?
- remaining uncertainties w.r.t. test 271 data; derived from identical time-trace?
- compared using TECPLOT; why not submission in TECPLOT format?

www.nlr.nl - info@nlr.nl