STEADY AND UNSTEADY AEROELASTIC COMPUTATIONS OF HIRENASD WING FOR LOW AND HIGH REYNOLDS NUMBERS

Melike Nikbay Pınar Acar Çağrı Kılıç

Istanbul Technical University
Faculty of Aeronautics and Astronautics

Zhichao Zhang ZONA Technology Inc.

AIAA 1st Aeroelastic Prediction Workshop 22 April 2012, Honolulu, HI

Outline

- 1. Test Cases for HIRENASD Wing
- 2. ZEUS Software
- 3. Computational Model Information
- 4. Unsteady Computation Data
- 5. Analysis Set-(1)
- 6. Analysis Set-(2)
- 7. Conclusions and Future Work

Test Cases for HIRENASD Wing

- $M=0.80$ and test medium: nitrogen
- Steady (Static) Cases:
- a) $\operatorname{Re}_{\mathrm{c}}=7.0$ million, $\alpha=1.5^{\circ}$, (exp. 132)
b) $\mathrm{Re}_{\mathrm{c}}=23.5$ million, $\alpha=-1.34^{\circ}$, (exp. 250)
- Unsteady (Dynamic) Cases: Forced oscillations in 2nd bending mode
- a) $R e_{c}=7.0$ million, $\alpha=1.5^{\circ}, f=78.9 \mathrm{~Hz}(\exp .159)$
-b) $R e_{c}=23.5$ million, $a=-1.34^{\circ}, f=80.4 \mathrm{~Hz}(\exp .271)$
- Analyses are performed by using ZEUS Software developed by ZONA Technology.

ZEUS Software

- ZEUS is ZONA's Euler unsteady aeroelastic solver to provide solutions for complex configurations. It uses Cartesian grid and employs boundary layer coupling.
- Uses modal data importer and ZAERO 3D spline module.
- Constructs structured grids.
- Turbulence Model: Green's Integral Boundary Layer Method
- Flux Construction: Central difference with JST (Jameson-SchmidtTurkel) Artificial Dissipation Scheme

Program Architecture of ZEUS

Computational Model Information

- Modal analysis is performed in Nastran and then imported to ZEUS for steady and unsteady calculations.
- Two sets of analyses are performed based on two different FEM models and compared to experimental data.
- 1) HIRENASD FEM Structured Wing (with hollow wing body)
- This model was used by ETW in 2008.
- Steady results will be presented.
- Unsteady results were not comparable.
- 2) HIRENASD Nov2011 FEM ModeI
- Current coarse FEM model provided AEPW committee.
- Steady and unsteady results will be presented.

Unsteady Computation Data

- For HIRENASD Nov2011 FEM Model
, 1st Case (Low Re Case for Exp.159) (Processing Freq: 78.9 Hz)
, Time record: 0.0253485 sec
, Time step-size: 0.0001 sec
- Number of sub-iteration per global time step: 30
- Nsteps/cycle: 256
, 2nd Case (High Re Case for Exp.271) (Processing Freq: 80.4 Hz)
, Time record: 0.00248756 sec
, Time step-size: 0.00009717 sec
- Number of sub-iteration per global time step: 30
, Nsteps/cycle: 128

Analysis Set-(1)

- FEM Model: HIRENASD FEM Structured Wing (with hollow wing body)
- Set-1 is analyzed by ITU.

Aerodynamic Model Information Set-1

- Aerodynamic Model is generated in ZEUS.
- Grid Type: Structured
- Element Type: Quadrilateral
- Computational Mesh: ($135 \times 71 \times 55$)
- Solver: Cell Based
- Platform: Intel Core 2 CPU Processor ~ 1.5 hours (for steady analysis)
- Fluid-Structure Interaction (FSI) is provided by ZEUS.
- Splines between structural and aerodynamic grids are generated by ZEUS.
- After constructing surface mesh, ZEUS automatically generated block elements.

Results of Steady Analyses Set-1

Low Re Case (for exp.132)

Quantity	Calculated
C_{L}	0.35704
C_{M}	-0.59870
C_{D}	0.01784

High Re Case (for exp.250)

Quantity	Calculated
C_{L}	0.05370
C_{M}	-0.23513
C_{D}	0.01283

Convergence for Steady AnalysesLow Re Case (for exp 132)

Convergence for Steady AnalysesHigh Re Case (for $\exp 250$)

Results for exp. 132 Set-1

Results for exp. 132 Set-1

Results for exp. 250 Set-1

Results for exp. 250 Set-1

Analysis Set-(2)

- FEM Model: HIRENASD Nov2011 FEM Model
- Set-2 is analyzed by ZONA.

Aerodynamic Model Information Set-2

- Aerodynamic Model is generated in ZEUS.
- Grid Type: Structured
- Element Type: Quadrilateral
- Computational Mesh: (164 x 62×55)
, Solver: Cell Based
- Platform: Intel Xeon 8 CPU Cores ~ 10 minutes (for steady analysis), 35 minutes (for unsteady analysis)
- Fluid-Structure Interaction (FSI) is provided by ZEUS.

Results of Steady Analyses Set-2

Low Re Case (for exp.132)

Quantity	Calculated
C_{L}	0.3533
C_{M}	-0.3076
C_{D}	0.026

High Re Case (for exp.250)

Quantity	Calculated
C_{L}	0.0355
C_{M}	-0.09585
C_{D}	0.02268

Steady Results for exp. 132 Set-2

Steady Results for exp. 132 Set-2

Steady Results for exp. 132 Set-2

Steady Results for exp. 132 Set-2

Steady Results for exp. 250 Set-2

Steady Results for exp. 250 Set-2

Steady Results for exp. 250 Set-2

Steady Results for exp. 250 Set-2

Unsteady Results for exp. 159 (C C_{p} Magnitude) Set-2

Unsteady Results for exp. 159 (C_{P} Magnitude) Set-2

Unsteady Results for exp. 159 (C_{P} Magnitude) Set-2

Unsteady Results for exp. 159 (C C_{p} Magnitude)

 Set-2

Unsteady Results for exp. 159 (C_{P} Phase) Set-2

Unsteady Results for exp. 159 (C_{P} Phase) Set-2

Unsteady Results for exp. 159 (C_{P} Phase) Set-2

Unsteady Results for exp. 159 (C_{P} Phase) Set-2

Unsteady Results for exp. 271 (C_{p} Magnitude) Set-2

Unsteady Results for exp. 271 (C_{p} Magnitude) Set-2

Unsteady Results for exp. 271 (C_{p} Magnitude) Set-2

Unsteady Results for exp. 271 (C_{p} Magnitude)

 Set-2

Unsteady Results for exp. 271 (C_{P} Phase) Set-2

Unsteady Results for exp. 271 (C_{P} Phase) Set-2

Unsteady Results for exp. 271 (C_{P} Phase) Set-2

Unsteady Results for exp. 271 (C_{P} Phase) Set-2

Conclusions and Future Work

- Steady and unsteady aeroelastic analyses of HIRENASD wing are performed by using ZEUS software.
- Analyses are performed by utilizing two different FEM models (both were coarse).
- Steady results of old model (structured wing with hollow wing body) are comparable.
- The results for new model (Nov2011) give comparable data in both steady and unsteady analyses.

As future work:

- Time histories of Cp values (missing data) should be provided.
- Mesh quality will be improved to reach more accurate results.

Thank You!

nikbay@itu.edu.tr acarpin@itu.edu.tr

