Aerospace Engineering Department POLITECNICO DI MILANO Milan, Italy

Preliminary results of multi-fidelity analysis of HiReNASD wing

April 2012, Honolulu, Hawaii, USA

Andrea Parrinello

Sergio Ricci

Giulio Romanelli

Analysis tools

Non Linear Full Potential **NLFP**

Euler and RANS AeroFoam

- Unstructured, node-based, finite volume approximation, with linear/quadratic shape functions
- 1st/2nd order implicit integration schemes
- Unsteady entropy correction and embedded wake generation

- First density-based ALE RANS solver in OpenFOAM
- Coupled formulation in conservative variables
- 2nd order accurate limited Roe's Approximate Riemann Solver (ARS)
- Multi-Grid (MG) and parallel acceleration

HiReNASD wing

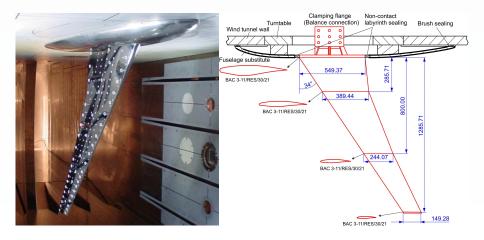
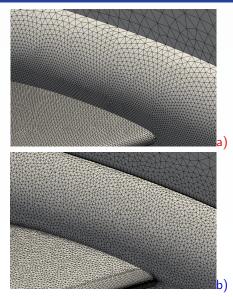
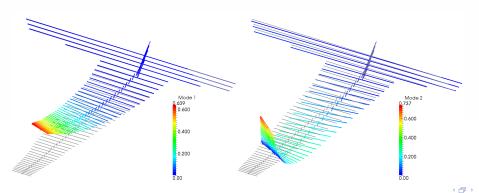



Figure: Experimental set-up for the HiReNASD project

HiReNASD wing — Aerodynamic model

Multi-fidelity simulations:

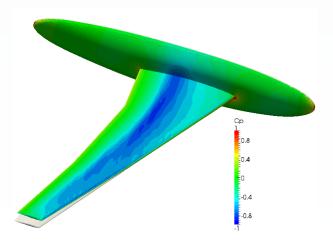

- a) NLFP and Euler
 - 1M volume nodes
 - 80K boundary nodes on wing

b) RANS + SA + WF

- 2M volume nodes
- 200K boundary nodes on wing

HiReNASD wing – Structural model

Mode	$\boldsymbol{f} \; [\mathrm{Hz}]$	Description	Mode	$\boldsymbol{f} \; [\mathrm{Hz}]$	Description
1	25.95	1^{st} bending	5	258.38	$3^{\rm rd}$ bending
2	82.42	2^{nd} bending	6	273.20	$4^{ m h}$ bending
3	117.58	$1^{\rm st}$ in-plane bending	7	275.29	2^{nd} in-plane bending
4	168.42	$1^{\rm st}$ bending-torsion	8	275.29	$2^{\rm nd}$ bending-torsion



Analysis tools

Aerodynamic loads

Structural displacements

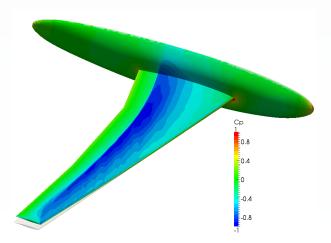
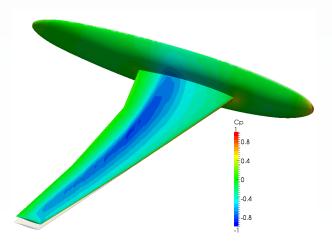

$M_{\infty}=0.8$, $\alpha=1.5^{\circ}$ – NLFP results

Figure: Pressure coefficient distribution C_p for NLFP model

Structural displacements

$M_{\infty}=0.8$, $lpha=1.5^{\circ}$ – Euler results

Figure: Pressure coefficient distribution C_p for Euler model


< 🗗 >

Analysis tools

Aerodynamic loads

Structural displacements

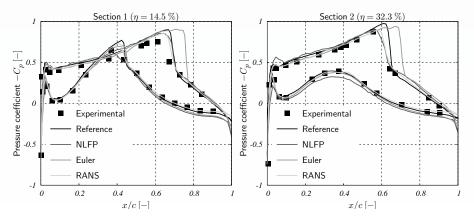
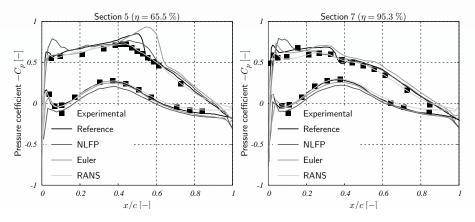

$M_{\infty}=0.8$, $\alpha=1.5^{\circ}$ – RANS results

Figure: Pressure coefficient distribution C_p for RANS model


< 🗗 >

$M_{\infty}=0.8$, $\alpha=1.5^{\circ}$ – Pressure coefficient

Figure: Pressure coefficient distribution C_p at Section #1 (left) and #2 (right)

$M_{\infty}=0.8$, $\alpha=1.5^{\circ}$ – Pressure coefficient

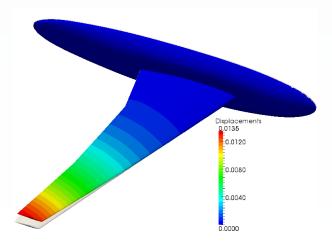


Figure: Pressure coefficient distribution C_p at Section #5 (left) and #7 (right)

Aerodynamic loads

Structural displacements

$M_{\infty}=0.8$, $\alpha=1.5^{\circ}$ – NLFP results

Figure: Structural displacements |s| for NLFP model

Structural displacements

$M_{\infty}=0.8$, $lpha=1.5^{\circ}$ – Euler results

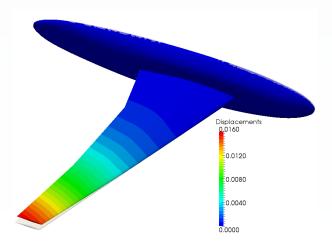


Figure: Structural displacements |s| for Euler model

Structural displacements

$M_{\infty}=0.8$, $\alpha=1.5^{\circ}$ – RANS results

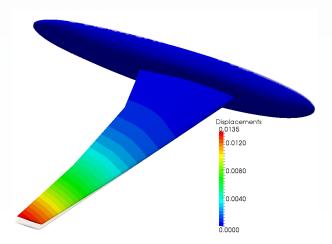


Figure: Structural displacements |s| for RANS model

Angle-of-attack sweep

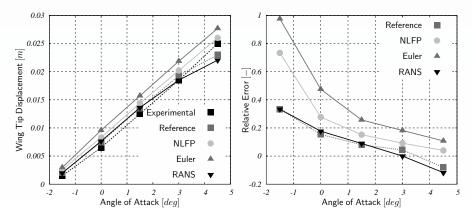


Figure: Wing tip displacement (left) and relative error with experimental data (right)