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Motivation

It has long been known that static-elastic deformation can significantly influence
 

Static Stability - Vehicle Trim Configuration - Control Power - Handling Qualities

But it is also apparent that dynamic-elastic effects can significantly influence

Vehicle “rigid-body” dynamics - coupled rigid-body/elastic DOFs - e.g., B2 Resid. Pitch Osc.
Vehicle dynamic stability - e.g., X-29 “body-freedom flutter”
Ride and handling qualities - e.g. B1, XB-70, HSCT
Achievable bandwidth and stability margins of the flight-control system 

- c.f., Schwanz, et al, AIAA 84-1057-CP
Complexity (cost) of the flight-control/structural-mode-control systems - many

XB-70 X-29
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Example Frequency Response
Large, High-Speed Aircraft

Waszak & Schmidt, 1988.

Flex Model

Rigid Model  
nZ CP ( j! ) / "E ( j! )

ωSP ωFlex

• “Rigid-body” dynamics (e.g., ωSP, ζSP) affected 
• Significant amplitude and phase differences above ωSP not captured simply 
  through static-elastic corrections to rigid-body aerodynamics

Cockpit Vertical-Acceleration Response Key in Both Handling and Ride Qualities

Flex Model -
First 4 sym. modes
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Effects on Vehicle Handling Qualities
Real-Time, Motion Simulation Results

Significant degradation not explained by only changes in rigid-body modal parameters
Dynamic-elastic effects significant

Clearly Acceptable

Clearly Unacceptable

Waszak, Davidson, and Schmidt, 1987.

Precision Pitch-Control Task



7

Prognosis

As the frequencies of the elastic modes are further reduced (e.g., HALE vehicles), and/or
increased performance of flight-control systems is required (e.g., reduced aerodynamic
stability), elastic effects likely to become even more significant in HQ and flight-control design.
(e.g., DARPA Vulture program)

Helios
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Disciplinary Morphology

Aerodynamics

  Structural
Dynamics

“Modern”
Flight

Dynamics

  Rigid-Body
Dynamics

Systems
Theory

Aeroelasticity

   Servoelasticity

Atmospheric
Flight Mechanics

Astrodynamics

A broad, integrated perspective is needed
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Two Disciplinary Cultures

       Flight Dynamics Culture

• Charge -Tailor the vehicle dynamics:

     Handling & performance
     Feedback stability augmentation
     Real-time, pilot-in-the loop simulation

• Key dynamics (e.g.):

  

!(s)
" (s)

=
K s +1 / T!1
( ) s +1 / T!2

( )
s2 + 2#P$ Ps +$ P

2( ) s2 + 2#SP$ SPs +$ SP
2( )

• Truncate elastic degrees of freedom

• RB modal characteristics are critical

         Aeroelasticity Culture

• Charge - Provide structural integrity:

    Mitigate against flutter, divergence
    Tailoring & active structural-mode control
    Fast-time simulation, tunnel tests

• Key dynamics:

    
M!" #$ !!q + K!" #$q = Faeroi

i=1

m

% (q)

• Truncate rigid-body degrees of freedom

• Extensive computational analysis

Cross-Disciplinary Challenge
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Modeling the Flight Dynamics of Elastic Aircraft

• Several overall approaches could be taken - but keep eye on the prize

           Want to apply models to real-time simulation, HQ, and flight-control design
               rather than flutter analysis, for example

• Desire model structure compatible with classical rigid-body models

            Want to be compatible with flight-dynamics/flight-simulation applications

• Time-domain (state-variable) format preferred

• Unsteady aerodynamics may or may not be critical - low reduced frequencies



11

Modeling Approach

Assume n in-vacuo, unrestrained vibration frequencies ωi, mode shapes νi, and
generalized masses Mi are available to describe the flexible structure.

   
dE (x, y, z,t) = !i

"=1

n

# (x, y, z)$i (t) (4.16)

The elastic deformation of the vehicle at (x,y,z) may then be described by

       where  ηi(t) = generalized modal displacement of the i’th vibration mode

                   νi(x,y,z) = mode shape (vector) of the i’th vibration mode



Require all mode shapes - rigid-body and vibration - to be mutually orthogonal 
w.r.t. the mass matrix.



Require the origin of the vehicle-fixed frame to be at the vehicle’s instantaneous cm

MFD Chap. 4

 Assume elastic displacements sufficiently small such that inertias are constant.
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Example Structural Description -
Large Flexible Aircraft

Wing 

Geometry 

SW = 1950 ft2 

  cW = 15.3 ft  

bW = 70 ft 

LE = 65 deg 

Inertias 

IXX = 9.5x105 sl-ft2 

IYY = 6.4x106 sl-ft2 

IZZ = 7.1x106 sl-ft2 

Ixz = -52,700 sl-ft2 

Weight W = 288,000 lb Vehicle Length 143 ft 

Modal 

Generalized Masses 

M1 = 184 sl-ft2 

M2 = 9587 sl-ft2 

M3 = 1334 sl-ft2 

M4 = 436,000 sl-ft2 

Modal  

Frequencies 

1 = 12.6 rad/sec 

2 = 14.1 rad/sec 

3 = 21.2 rad/sec 

4 = 22.1 rad/sec 

 

Vehicle Geometry

Relevant Data

NAA Modal Data Package, 1971.
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Example Vibration Mode Shapes

centerline

a.c.

(Wing Twist Not Shown)
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Coordinate Frames and Generalized Coordinates

And select generalized coordinates     
q = X I YI ZI ! " # $i , i = 1,2,!{ }

We’ll apply Lagrange’s equation, using generalized forces

    

d
dt

!T
! !q

"
#$

%
&'
(
!T
!q

+
!U
!q

= QT =
! )W( )
! )q( )

(4.1)

For rigid vehicle
Frame F = fixed fuselage axis

With deformation

Frame F is fixed only in the
undeformed vehicle

External (e.g., aero) forces
expressed in Frame F

Frame F

Frame I

OI

XF

YF

ZF

pV

pRB

•
cm

p'

dV

dE

--- Undeformed Vehicle
     Elastic Vehicle

V∞
α
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Resulting Equations of Motion
(See MFD for Details)

Letting the forces and moments (Frame F) arise from aerodynamic and propulsive effects

Translational Equations
(same as rigid vehicle)

   

m !U !VR +WQ( ) = !mg sin" + FAX
+ FPX

m !V +UR !WP( ) = mg cos" sin# + FAY
+ FPY

m !W !UQ +VP( ) = mg cos" cos# + FAZ
+ FPZ

(4.65)

Rotational Equations

   

Ixx
!P ! I yy ! Izz( )QR ! Ixy

!Q ! PR( ) ! I yz Q2 ! R2( ) ! Ixz
!R + PQ( ) = LA + LP

I yy
!Q + Ixx ! Izz( )PR ! Ixy

!P + QR( ) ! I yz
!R ! PQ( ) + Ixz P2 ! R2( ) = M A + M P

Izz
!R + I yy ! Ixx( )PQ + Ixy Q2 ! P2( ) ! I yz

!Q + PR( ) ! Ixz
!P ! QR( ) = N A + N P

(4.82)

(4.88)Aeroelastic Equations
(new) P = pressure
distribution      

!!!i +" i
2!i =

Qi

Mi

=
1

Mi

P x, y, z( )
Area
# i$i x, y, z( )dS i = 1"n

We have the inertial position 
of any point on the vehicle 
(e.g., a sensor)                                   (4.89)

Also, note that
   
!p  = pV  + pRB + "i

i=1

n

# (x, y, z)$i (t)

(same as rigid
vehicle)



16

Aerodynamic Coefficients - Rigid and Elastic

And for example, let the aero
pitching moment be expressed as

where

and

Likewise, let the generalized 
force on the i’th elastic DOF be

where

and

  

FAX
= FAX R

+ FAX E

,      LA = LAR
+ LAE

FAY
= FAYR

+ FAYE

,       M A = M AR
+ M AE

FAZ
= FAZR

+ FAZE

,       N A = N AR
+ N AE

Now the aero forces and moments
are affected by both “rigid-body” 
and elastic motion, so let

   

M A = q!SW cW CMRigid
+ CMElastic( )

CMRigid
= CM0

+ CM"
" + CMq

q + CM !"
!" + CM#

#

CMElastic
= CM$i

$i + CM !$i

!$i( )
i=1

n

%

   

Qi = q!SW cW CQi Rigid
+ CQi Elastic( )

CQi Rigid
= CQi 0

+ CQi "
" + CL !"

!" + CQi #
#

+ CQi p
p + CQi q

q + CQi r
r + CQi $ j

$ j
j=1

m

%

CQi Elastic
= CQi & j

& j + CQi !& j

!& j
'
(

)
*

j=1

n

%
MFD Chap. 7
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Sample Expressions for Elastic Coefficients

Using strip theory we may gain some gain insight regarding coefficients.

Considering a vehicle with conventional geometry we have, for example

  
CQi!

=
"1

SW cW

cl!W

( y)#ZiW

( y)cW ( y)dy
"bW / 2

bW / 2

$ +
qH

q%

cl!H

( y) 1"
d&H

d!W

'

()
*

+,
#ZiH

( y)cH ( y)dy
"bH / 2

bH / 2

$
'

(
))

*

+
,,

  

CQi! j

=
"1

SW cW

cl#W

( y) $%Z jW

( y)%ZiW

( y)cW ( y)dy
"bW / 2

bW / 2

& "
qH

q'

cl#V

(z) $%YjV

(z)%YiV

(z)cV (z)dz
0

bV

&

         +
qH

q'

cl#H

( y) $%Z jH

( y) "
d(H

d#W

$%Z jW

( y)
)

*+
,

-.
%ZiH

( y)cH ( y)dy
"bH / 2

bH / 2

&

)

*

+
+
+
+
+

,

-

.

.

.

.

.

Where

  

!Zi
( y)

"!Zi
( y)

= z displacement mode shape of mode i evaluated along wing or tail span y

= slope of z displacement mode shape of mode i evaluated along wing or 
   tail span y

(7.94)

(7.95)
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Example - Large, High Speed Study Vehicle

   

FAZE

= q!SW  "0.029#1 + 0.306#2 + 0.015#3 " 0.014#4 "
0.658

V!

!#1 +
7.896

V!

!#2 +
0.461
V!

!#3 "
0.132

V!

!#4

$

%&
'

()

M AE
= q!SW cW "0.032#1 " 0.025#2 + 0.041#3 " 0.018#4 "

1.184
V!

!#1 +
9.409

V!

!#2 +
1.316

V!

!#3 "
0.395

V!

!#4

$

%&
'

()

Additional force
and moment 
acting on RB
DOF’s

MFD Sec. 7.9

Generalized 
forces acting 
on elastic
DOF’s

   

Q1 = q!SW cW

"0.0149# "
0.726

V!

Q " 0.0128$E + 5.85% 10"5&1 + 4.21% 10"3&2 + 2.91% 10"4&3

+2.21% 10"5&4 "
0.0032

V!

!&1 +
0.0665

V!

!&2 "
0.0048

V!

!&3 "
0.0004

V!

!&4

'

(

)
)
)
)

*

+

,
,
,
,

Q2 = q!SW cW

0.0258# +
0.089

V!

Q " 0.0642$E " 9.0 % 10"5&1 " 9.22 % 10"2&2 + 1.44 % 10"3&3

"1.32 % 10"4&4 "
0.0015

V!

!&1 "
2.277

V!

!&2 +
0.1494

V!

!&3 +
0.0031

V!

!&4

'

(

)
)
)
)

*

+

,
,
,
,

Q3 = q!SW cW

0.0149# +
0.304

V!

Q + 0.0256$E + 3.55% 10"4&1 + 1.97 % 10"3&2 " 3.46 % 10"4&3

+9.68 % 10"6&4 +
0.0050

V!

!&1 +
0.0320

V!

!&2 "
0.0001

V!

!&3 "
0.0004

V!

!&4

'

(

)
)
)
)

*

+

,
,
,
,

Q4 = q!SW cW

3.35% 10"5# + 0.0Q + 1.5% 10"4$E + 1.20 % 10"4&1 + 3.37 % 10"3&2 + 1.44 % 10"4&3

+1.77 % 10"3&4 "
0.0011

V!

!&1 +
0.0317

V!

!&2 "
0.0100

V!

!&3 +
0.6112

V!

!&4

'

(

)
)
)

*

+

,
,
,
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Dynamic Model of the Elastic Aircraft

    

m !U !VR +WQ( ) = !mg sin" + FAX R

+ FAX E
( ) + FPX

m !V +UR !WP( ) = mg cos"sin# + FAYR

+ FAYE
( ) + FPY

m !W !UQ +VP( ) = mg cos"cos# + FAZR

+ FAZE
( ) + FPZ

Ixx
!P ! I yy ! Izz( )QR ! Ixz

!R + PQ( ) = LAR
+ LAE

( ) + LP

I yy
!Q + Ixx ! Izz( )PR + Ixz P2 ! R2( ) = M AR

+ M AE
( ) + M P

Izz
!R + I yy ! Ixx( )PQ ! Ixz

!P ! QR( ) = N AR
+ N AE

( ) + N P

!!$i + 2% i& i
!$i +& i

2$i =
1

Mi

QiR
+ QiE( ) , i = 1"n

Rigid-Body
Translation
of cm

Rigid-Body
Rotation of
Frame F

Elastic 
Deformation

• Identical form to that of the rigid vehicle, with added elastic components
• Applicable to real-time simulation

(7.98)

(7.100)

(7.102)

Elastic Effects
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On Static-Elastic Corrections - Residualization
 Ref. Sec. 7.11

    

M!x R = fR x R ,T( ) + ARx R + AR! AR !!
"# $%x E + BRu

!x E =
0

AER

"

#
&

$

%
'x R +

0 I
A! A !!

"

#
&
&

$

%
'
'
x E +

0
BE

"

#
&

$

%
'u

x R
T = U ( Q ) P R"# $% ,     x E

T = !1 " !n
!!1 " !!n"# $% ,      uT = *E * A *R"# $%

Assuming locally-linear aero, the previous non-linear equations of motion may be written as

where,

(7.126)
Aero model of forces and moments

Again using the example of the large flexible aircraft,

These are static-elastic corrections to the rigid-body stability derivatives - destabilizing

(Example 7.3)

  

CM!
= "1.5+ #CM!

,   #CM!
= 0.23 /rad,   CMq

= "0.4 + #CMq
,  #CMq

= 0.02 sec

                         CM$E

= "2.58 + #CM$E

,   #CM$E

= 0.22 /rad

Residualizing the elastic states               , yields the static-elastic constraint and 
reduced-order model.

Only the rigid-body degrees of freedom are included in the reduced-order dynamic model here.
Static-elastic aero model

    ( !x E = 0)

    
!0 = "A!

"1 AERx R + BEu( )    #    M!x R = fR x R ,T( ) + AR " AR!A!
"1AER( )x R + BR " AR!A!

"1BE( )u
(7.127)
(7.128)
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Structure of the Linearized Model
Longitudinal Dynamics

Defining appropriate elastic dimensional stability derivatives, we have a dynamic model of the 
following form (assumes                                        for simplicity)

    

A =

Xu X! "g Xq X#1
X !#1

" X#n
X !#n

Zu

U0

Z!

U0

0 1
Z#1

U0

Z !#1

U0

"
Z#n

U0

Z !#n

U0

0 0 0 1 0 0 " 0 0
Mu M! 0 Mq M#1

M !#1
" M#n

M !#n

0 0 0 0 0 1 " 0 0
$1u

$1!
0 $1q

$1#
"%1

2 $1 !#
" 2&1%1 " $1#

$1 !#

# # # # # # # # #
0 0 0 0 0 0 " 0 1
$n u

$n!
0 $nq

$n#
$n !#

" $n#
"% n

2 $n !#
" 2&n% n

'

(

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

*

+

,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

B =

X-E
XT

Z-E

U0

ZT

U0

0 0
M-E

MT

0 0
$1-E

$1T

# #
0 0

$n-E

$nT

'

(

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

*

+

,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

   X !! = Z !! = M !! = " 0 = 0

MFD Sec. 8.1.5

    

!x = Ax + Bu

xT = u ! " q #1
!#1 " #n

!#n$% &' ,         uT = (E (T$% &'

Model structure exposes subsystems, aero coupling effects and vib. freq. & damping
Applicable to dynamic analysis and control-system design
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Comparison of Rigid vs Flexible Models
Vertical Acceleration Responses - Example Vehicle

ωSP ωFlex

Rigid Model

Flex Model

Step Responses
     nZ CP (g’s)
     δE = 1 deg

Frequency Responses
     nZ CP (ft/s2)
     δE (rad)

Note: Rigid & Resid,
          very similar
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Model Comparisons - Continued
Pitch-Attitude Response - Example Vehicle

     Key HQ Parameters

Model    ωSP (rad/s)   ζSP

Rigid        1.972          0.348

Resid.      1.838          0.355

Flex          1.838          0.346

Model    ωP (rad/s)   ΤP(s)

Rigid        0.066       -0.0002

Resid.      0.066       -0.0002

Flex          0.066       -0.0002

  !CP ( j" ) / #E ( j" )

• Residualized Model Improved Over Rigid
• But Clearly Inadequate Above ~ 5 rad/s
• Well Within Bandwidth of Pilot and Flight-Control System

Flex Model

Rigid ModelResidualized Model

5 rad/s
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Natural Linear-System Modes - Review
Ref. Sec. 10.1.1

    

!x(t) = Ax(t) + Bu(t)             
y(t) = Cx(t) + Du(t),         x = M!,        M"1AM = #

M = $1 $2 " $n%& '(      M-1 =

µ1

µ2

#
µn

%

&

)
)
)
)
)

'

(

*
*
*
*
*

Given the linear system
(Physical inputs u and 
physical responses y)

Right and left
eigenvectors

(10.1)

(10.4)

   
y(t) = !i"i (t)

i=1

n

# y = !1"1(t) + !2"2 (t) + ...+ !n"n(t) (10.15)

Eigenvectors determine how each mode contributes to each physical response. 
And note that the j’th element of νi will have the units of the physical response yj.

Each eigenvector therefore constitutes a mode shape, similar to the vibration case.

Now let C = I, D = 0  

Then the dynamics of the
natural modes are given
by the decoupled eqns.     

!!(t) = "!(t) + M#1Bu(t),    $     !!i (t) = %i!i (t) + µ iBu(t)
y(t) = CM!(t) + Du(t) (Do not confuse w. vibration modal

coordinates and mode shapes)
(10.8)
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Eigenvectors, Phasor Diagrams and
Modal Responses Ref. Sec. 10.1.1

   

!i =

m1e
j"1

m2e
j"2

!

mne
j"n

#

$

%
%

&

%
%

'

(

%
%

)

%
%

Phasor Diagram

The generation of the pure modal time
responses may be visualized as shown.

• Rate of decay determined by σi
• Frequency determined by ωi
• Relative phasing determined by φj

’s
• Relative magnitudes determined by mj’s

 !i = " i ± j# i

Eigenvector in
Polar Form
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Eigenvectors and Impulse Residues
Ref. Sec. 10.1.2

   
y(s) = g(s) =

R1

s ! "1( ) +!+
Rn

s ! "n( ) , Rk = s ! "k( )g(s)( ) |s="k

So the residue Rk also determines the contribution of mode i to the physical response.

Next, consider an impulse response (transfer function), expanded in partial-fractions

(10.21)

• Therefore, the left and right eigenvectors determine the residues.
• Pole-zero cancellation  that pole’s residue will be zero.
• Residue magnitudes indicate significance of modes in that response.

Now recall the
modal matrix M

And write the 
transfer-function matrix

So each transfer
function may be
expressed as 

Right and left eigenvectors

    

M = !1 ! !n"# $% ,       M&1 =
µ1

"
µ1

"

#

'
'
'

$

%

(
(
(

TF(s) = CM diag 1
s & )i

*

+,
-

./
"

#
'
'

$

%
(
(
M&1B

"

#
'
'

$

%
(
(
= C

!kµ k"# $%
s & )0( )k=1

n

1 B

gi, j (s) =
ci!k( ) µ kb j( )

s & )0( )k=1

n

1 =
Rk

s & )0( )k=1

n

1

(10.22)
(10.24)

(10.25)
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Modal Analysis - Longitudinal Axis
Large, High Speed Aircraft - Rigid Model

  

!1,2 = 0.0002 ±   j0.066 /sec

!3,4 = "0.686 ±   j1.849 /sec

   

!1 =

0.993e j22.8!  (fps)

0.002e" j153.9!  (deg)

0.116e" j68.2!  (deg)

0.008e j21.7!  (deg)

#

$

%
%

&

%
%

'

(

%
%

)

%
%

!3 =

0.037e j71.5!  (fps)

0.439e j19.9!  (deg)

0.406e j7.4!  (deg)

0.800e j117.8!  (deg)

#

$

%
%

&

%
%

'

(

%
%

)

%
%

Eigenvalues     Eigenvectors   Mode Shapes

θ (deg)

α (deg)

q (deg/s)

u (fps)

θ (deg)

Classical Short-Period Mode

Classical Phugoid Mode

State definition: xT = [u (fps), α (deg), θ (deg), q (deg/s)]
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Modal Analysis of Flex Model
Large, High Speed Aircraft

  
!11,12 = "0.427 ± j22.045 /sec

State definition: xT = [u (fps), α (deg), θ (deg), q (deg/s), θCP Ei (deg),         (deg/s), i = 1…4]

uθν1

q

θ α
ν3

   
!!E1

   
!!E1  !E1

ν5
q

   
!!E3

   
!!E1

   
!!E 2

  !E3

ν9
ν11

   
!!E 4  !E 4

   
!!E1

   
!!E 2

ν7
  !E 2

  
!!CP Ei

  
!1,2 = 0.0002 ± j0.066 /sec

  
!3,4 = "0.637 ± j1.725 /sec

  
!5,6 = "0.469 ± j12.389 /sec

  
!7,8 = "2.664 ± j17.847 /sec

  
!9,10 = "0.440 ± j21.242 /sec

       Phugoid                                         “Short Period” “First Aeroelastic”
   Note Elastic DOF Coupling          (1st Fuselage Bending)

         Note RB DOF Coupling

“Second Aeroelastic”                   “Third Aeroelastic”            “Fourth Aeroelastic”
  (1st Wing Bending) (2nd Fuselage Bending)          (3rd Fuselage Bending)
Note Elastic DOF Coupling  Note Elastic DOF Coupling

RB/Elastic Coupled Modes Now Exist (e.g., B2 Residual Pitch Oscillation)
Such Modes Are Not Consistent With Assumptions in HQ Database
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Example - Impulse Residues
Large, High-Speed Aircraft

• First aeroelastic mode at least as significant as SP in these impulse responses

Vertical Acceleration and Pitch Attitude (Cockpit)
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Components of a Piloted Real-Time Simulation

Non-Linear Math Model
Real-Time Numerical integration

Cockpit Control Effectors 
(e.g., stick, pedals)

Visual Display System
Cockpit instrumentation

Virtual external scene

Motion System
Actuation, wash-out logic

Pilot

Component specs compatible with simulated system dynamics

Simulation Facility
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Simulation Considerations

Real-time requirement on
    numerical integration

Motion-system limits
     Displacement limits
     Dynamic response limits

Simulation of Flex Dynamics Challenging

Time Delay:
Approx 1/4 cycle

Amplitude Ratio:
approx 0.85

Comm. vs Resp., Nz (g)

Normalized Time Scale frequency, rad/sec
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NASA TN D-7349, 1973
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Example Flight-Control Issue
Effect of Notch Filter in Generic Control Loop

Required frequency separation

ωelastic

Without
notch filter

With filter 2

With filter 1

ωc

kgn(jω)

ωc high for
performance

Phase Margin

• Elastic Mode Limits Achievable Control-System Performance
• Notch Filter Must Be Properly Tuned to Aeroelastic Mode Frequency

 !c
(s) 

-
k(s) g(s)

N(s)

   !Sensed (s)

Filter 2 perfectly tunedGM
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Flight Control Issues Due to Flex Effects

• Flex dynamics can destabilize the flight-control system

• Flex dynamics introduces phase loss well below lowest frequency flex mode frequency
(with notch or low-pass filtering)

• Flex effects limit achievable bandwidth (crossover frequencies) of flight-control system

• Sensor placement extremely important - depends on vibration mode shapes

• Flex effects increase complexity (cost) of flight-control systems (e.g., filters)

• Active structural-mode-control system may be required (e.g., B1, XB-70)
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Summary & Conclusions

• Effects of flexibility on aircraft flight dynamics can be significant

Handling and ride qualities
Flight-control synthesis

• New vehicle configurations/requirements may amplify these effects

• Vibration-modal data and flex models required to support flight-control design

• Real-time simulation of elastic vehicles encounters new issues - sim limitations

• Renewed emphasis on cross-disciplinary modeling/analysis efforts needed

• Require math-model structure and methodology to be compatible with
  flight-dynamics applications

• Such an approach was outlined - many extensions possible

• Working across disciplines in new areas:

Requires extra effort - must work hard to understand the other guy’s problems
Requires clarity in terminology, definitions, etc.


