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Tree Models
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Construction
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Find Best Split
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Trees at Google

• Large Datasets
Iterating through a large dataset (10s, 100s, or 1000s of GB) is slow

Computing values based on the records in a large dataset is really slow

• Parallelism!
Break up dataset across many processing units and then combine resultsBreak up dataset across many processing units and then combine results

Super computers with specialized parallel hardware to support high throughput 
are expensive

Computers made from commodity hardware are cheapp y p

• Enter MapReduce
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MapReduce*
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Can use a secondary key to control ordering 
in which reducers see key-value pairs

7*http://labs.google.com/papers/mapreduce.html
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PLANET

• Parallel Learner for Assembling Numerous Ensemble Trees

• PLANET is a learner for training decision trees that is built on MapReduce
Regression models (or classification using logistic regression) 

Supports boosting, bagging and combinations thereof

Scales to very large datasetsScales to very large datasets
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System Components

• Master
Monitors and controls everything

• MapReduce Initialization Task
Identifies all the attribute values which need to be considered for splits

• MapReduce FindBestSplit Task• MapReduce FindBestSplit Task
MapReduce job to find best split when there is too much data to fit in memory

• MapReduce InMemoryGrow Task
Task to grow an entire subtree once the data for it fits in memory

• Model File
A file describing the state of the modelg
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Architecture
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Master

• Controls the entire process

• Determines the state of the tree and grows it
Decides if nodes should be leaves

If there is relatively little data entering a node; launch an InMemory MapReduce 
job to grow the entire subtree

For larger nodes, launches a MapReduce job to find candidate best splits

Collects results from MapReduce jobs and chooses the best split for a node

Updates Modelp

• Periodically checkpoints system

• Maintains status page for monitoring
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Status page
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Initialization MapReduce

• Identifies all the attribute values which need to be considered for splits

• Continuous attributes
Compute an approximate equi-depth histogram*

Boundary points of histogram used for potential splits

• Categorical attributes• Categorical attributes
Identify attribute's domain

• Generates an “attribute file” to be loaded in memory by other tasks

13*G. S. Manku, S. Rajagopalan, and B. G. Lindsay, SIGMOD, 1999.



FindBestSplit MapReduce

• MapReduce job to find best split when there is too much data to fit in memory

• Mapper
Initialize by loading attribute file from Initialization task and current model file

For each record run the Map algorithm

For each node output to all reducers
<Node.Id, <Sum Result, Sum Squared Result, Count>>

For each split output <Split.Id, <Sum Result, Sum Squared Result, Count>>

Map(data):
Node = TraverseTree(data, Model) 
if Node to be grown:

Node.stats.AddData(data) 
for feature in data:

Split = FindSplitForValue(Node.Id, feature) 
Split.stats.AddData(data) 
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FindBestSplit MapReduce

• MapReduce job to find best split when there is too much data to fit in memory

• Reducer (Continuous Attributes) 
Load in all the <Node_Id, List<Sum Result, Sum Squared Result, Count>> pairs 
and aggregate the per_node statistics.

For each <Split_Id, List<Sum Result, Sum Squared Result, Count>> run the 
Reduce algorithm

For each Node_Id, output the best split found

Reduce(Split Id, values):( p _ , )
Split = NewSplit(Split_Id) 
best = FindBestSplitSoFar(Split.Node.Id) 
for stats in values

split.stats.AddStats(stats)p ( )
left = ComputeImpurity(split.stats) 
right = ComputeImpurity(split.node.stats – split.stats) 
split.impurity = left + right
if split.impurity < best.impurity:
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FindBestSplit MapReduce

• MapReduce job to find best split when there is too much data to fit in memory
Reducer (Categorical Attributes) 

• Modification to reduce algorithm:
Compute the aggregate stats for each individual value
Sort values by average target value
Iterate through list and find optimal subsequence in list*

16*L. Breiman, J. H. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. 1984.



InMemoryGrow MapReduce

• Task to grow an entire subtree once the data for it fits in memory

• Mapper
Initialize by loading current model file

For each record identify the node it falls under and if that node is to be grown, 
output <Node_Id, Record>

• Reducer
Initialize by loading attribute file from Initialization task

For each <Node Id List<Record>> run the basic tree growing algorithm on theFor each <Node_Id, List<Record>> run the basic tree growing algorithm on the 
records

Output the best splits for each node in the subtree
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Ensembles

• Bagging
Construct multiple trees in parallel, each on a sample of the data

Sampling without replacement is easy to implement on the Mapper side for both 
types of MapReduce tasks

• Compute a hash of <Tree_Id, Record_Id> and if it's below a threshold then sample it

Get results by combining the output of the treesGet results by combining the output of the trees

• Boosting
Construct multiple trees in a series, each on a sample of the data*

Modify the target of each record to be the residual of the target and the model's 
prediction for the record

• For regression, the residual z is the target y minus the model prediction F(x) 
• For classification z = y – 1 / (1 + exp(-F(x)))For classification, z  y 1 / (1 + exp( F(x)))

Get results by combining output from each tree

18*J. H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 2001.



Performance Issues

• Set up and Tear down
Per-MapReduce overhead is significant for large forests or deep trees

Reduce tear-down cost by polling for output instead of waiting for a task to return

Reduce start-up cost through forward scheduling
• Maintain a set of live MapReduce jobs and assign them tasks instead of starting new 

jobs from scratchjobs from scratch

• Categorical Attributes
Basic implementation stored and tracked these as strings

Thi d t i th t i• This made traversing the tree expensive

Improved latency by instead considering fingerprints of these values

• Very high dimensional data
If the number of splits is too large the Mapper might run out of memory

Instead of defining split tasks as a set of nodes to grow, define them as a set of 
nodes to grow and a set of attributes to explore.

19



Results
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Conclusions

• Large-scale learning is increasingly important

• Computing infrastructures like MapReduce can be leveraged for large-scale 
learning

• PLANET scales efficiently with larger datasets and complex models

• Future work• Future work
Adding support for sampling with replacement

Categorical attributes with large domains
• Might run out of memory• Might run out of memory

Only support splitting on single values
Area for future exploration

• Algorithm details and References to related work: In our VLDB’09 paper
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