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Overview
 Motivation

e Approach
* |nitial result for solar-panel assembly mission

o Current work
e Mission taxonomy

« Application to multirobot task allocation

e Conclusions
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Motivation

e Statements about superior robustness of a greater
number of robots are qualitative

« Minimal prior work [Bererton02] on reliability
modeling for multirobot missions

e Cost, time, and reliability are interdependent:
« Team size increase =» time reduced & cost higher
» Time reduced = reliability requirement lower

» Reliability lower =» cost lower

 Be able to answer questions such as:
 How does team size affect mission cost, duration, and
reliability?
* |s it better to use a larger team of less reliable (cheaper), or a
smaller team of more reliable (costlier) robots?
 How is task allocation affected by considering reliability?
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Approach

e Robots in remote or harsh environments
* Robots considered in terms of subsystems:

e Hardware failures
\ i; R(O =e -At
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Approach

e EXxplicit enumeration for a simple mission:
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- Combinatorial explosion for missions of any
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Approach

e Stochastic simulation for more complex missions:
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Solar Panel Mission

e Solar panel array installation

 Three subtasks 1. Transit
» Carry the panel to the assembly area

 Assemble the panel
» Return to the base

* Mission-design variables

* Mission duration (number of panels to
install)

* Number of robots
 Component reliabilities
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Solar Panel Mission - Results

 What's better, more robots with low reliability or fewer
robots with high reliability?

2R (100%)
AR (50%) +
AR (40%)  x
AR (30%)  *
4R (20%)
4R (10%)

- Lower-reliability 4-robot
team has higher PoMC
than 2-robot team for
mission duration <
crossover w/ 2-robot
(red) line

POMC (%)
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Mission Taxonomy

“Basic Activities”
Different proportions

Missions with different
characteristics

Subsurface

Communication Access

Different mission

Instrument class

Deployment

Not a fixed boundary

Based on analysis of missions in:
m q Solar System Exploration Roadmap
(SSER) Mars Exploration Program (MEP)
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3 Mission Classes

Search Sample Construction
& Acquisition
Exploration &
Composition
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Construction Mission Scenario
 An example:

Recharge

Station

« Communicate with other robots after every task
e Return and replenish battery when needed
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Stability of Construction Mission

Idling Traverse

#Sites 1-10
#Mods/site 1-10
#Robots 2
#Spare 0-10
robots

YWMTTF 10% — 100%
#Mods/robot 1-10
d(RS — depot) 0 — 500

d(depot — site) 25 —_ 150
% of Mission Time (iZ%)

e 4
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Mission Planning

Multirobot Task Allocation
&

R1

(d) Example area coverage task.

« Hypothesis - improve plan selection by considering probability of
failure a priori

* Related work focuses on failure detection and replanning

m q Image from Zlot (2006) @
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Mission Planning

Task Allocation Example

* Find the plan with the shortest mission duration:

« Homogeneous robots with uniform speed (duration = distance)

Plan DR, | D(R,) | Dpyax
A R, T, +RT, 15.9 0 15.9 Plan B
14 |} |} ) |} | ] |} 1) | )
B R,T, +R,T 11.4 11.2 | 11.4 ROBOTS V¥
- 2 2 12 F le TARGETS m
C R,T, +R,T, 7.1 13.2 | 13.2
10 P -
D R,T, +R,T, 0 176 | 17.6
S F -
E R,T,+RT, 11.5 0 115
6P -
F T2

R, T, + R, T, 0 15.7 15.7 - \
4k -
Y R2
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Mission Planning

Expected Value
« Comparison of expected duration

- 1 - 11 . .
with "naive" duration: PD
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Mission Planning
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When Failure Occurs
Backup plans for (naive) plan B (R, T; + R,T,):
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ROBOTS

T
v

« Backup plans for (expected value) plan E (R, T, + R;T,):
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Mission Planning

Simulation

* Implement this process in software
« Randomize robot and target locations

« Compare chosen (naive) plan against best (expected
value) plan and evaluate average differences over
large number of runs

* Investigate effect of mission parameters (task count,
team size, robot reliability, world size) on results
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Mission Planning

Planner error rate (%)

Increase in duration (%)
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Simulation

Robots = 2; Pt=0.99; World = 100x100

3 4
Number of tasks
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Robots = 2; Pt=0.99; World = 100x100
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Mission Planning

Robots = 2; Targets = 4; World = 50x50

Increase in duration (%)
Increase in duration (%)

0.99 098 097 096 095 094 0.93
Robot reliability (Pt)

JRL @

Simulation

e Similar results with respect to other mission
parameters:
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Robots = 2; Targets = 4; Pt = 0.99

World size (NxN)
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Mission Planning

Heuristic planners

e So... If we have complete knowledge of all plans and
backup plans, using reliability improves plan selection

e But... complete planners not useful for many (most?)
real-world problems

e Can reliability information also improve incomplete
planners?

e 4
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Mission Planning

Heuristic planner

 Greedy planner:
« Consider one task ordering at a time, N total task orderings

« Assign robots greedily

 EX: Fortwo robots (R1,R2) and two tasks (T1,T2)

o Evaluate:
e T1R1
e TIR?
 |f TLR1 was chosen, then evaluate:
e T1IR1 + T2R1
e T1IR1 + T2R2

» Repeat for each task ordering, choose best overall
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Mission Planning

Heuristic planner
 Incorporating reliability:
» Use expected value when evaluating complete plans. e.g.:

e Evaluate:
e val(T1R1)
e val(T1R2)

« If T1IR1 was chosen, then evaluate:
o expval(T1R1 + T2R1)
o expval(T1R1 + T2R2)

. 4
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Heuristic Planner Results
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Robots = 4; Targets = 8; World = 200x200

Using N=1k (out of 40k possible orderings)
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Robot Reliability (Pt)
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Mission Planning

Heuristic planners
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« Effect of N on effectiveness of reliability information,
and on computational time:

e 4

Increase in Mission Duration (%)

Robots = 4; Targets = 8; P_t = 0.99; World = 200x200
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Conclusions

* Analytical method developed for trading off
reliablility, cost, and time in configuring
multirobot teams

e Three mission classes identified based on

“basic activities” analysis of NASA mission
docs

 Ignoring robot failure in multirobot task
allocation plans - suboptimal plans for
complete and heuristic planners
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Future Work

 Comparison of cost-reliability tradeoff
characteristics over the three mission classes

 Incorporation of different failure models &
modalities

e Consider model for performance degradation
rather than binary failure for components and
robots
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