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Prognostics Performance Evaluation

Prognostics Performance Metrics

Motivation

Performance Evaluation Tool

• Develop standard procedures and metrics to evaluate and 
compare performance of prognostic algorithms

• Develop a taxonomy/framework to define and describe a 
prognostics problem in a standardized manner

Objective

• Performance evaluation methods customized to prognostics 
do not exist

• Researchers have loosely used ideas from diagnostics and 
other domains

• Prognostics performance evaluation is an “acausal” problem

• Requires inputs from a future event, i.e. End-of-Life (EoL)

• Classical methods are based on performance evaluation of 
casual systems, e.g. diagnostics

• A confusion exists between offline and online performance 
evaluation

• A standard methodology will help compare different 
approaches in a consistent manner

• A standardized performance evaluation will help in 
performance requirement specification

• Traditional metrics do not encapsulate how predictions 
improve over time

• In general predictions should improve as more data 
becomes available, but there is no provision to observe 
prediction evolution in time

• Prediction errors spaced in time should not be averaged 
as in diagnostic applications

• Predictions made at different times are based on different 
amount of information

• Traditional metrics do not address the notion of 
performance relative to a reference point in time (tλ) 

• Prognostics is time critical, a very accurate but late 
prediction may be useless as compared to somewhat 
approximate but an early prediction

• Predictions should get more accurate as EoL approaches, 
so errors should be penalized more as time passes by

• The reference point of interest (tλ) may be chosen based 
on logistics constraints, risk absorbing capacity, rate of 
change of a dynamical system, etc. therefore, this calls 
for a comprehensive picture of performance spaced in 
time.

Shortcomings of Traditional Methods

Approach

Develop new 
metrics

Apply to 
various 

applications

Assess and 
evaluate 

effectiveness

Refine 
metrics
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Performance Metrics
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Trajectory

Metrics Classification
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I. Prognostic Horizon
•Does the algorithm predict within desired accuracy around EoL and sufficiently in advance?

II. α-λ Performance
•Further does the algorithm stay within desired performance levels relative to RUL at a given 
time?

III. Relative Accuracy
•Quantify how well an algorithm does at a 
given time relative to RUL

IV. Convergence Rate
•If the performance converges (i.e. satisfies above 
metrics) quantify how fast does it converge
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where

ℓ is a set of all indexes when a prediction is made

l is the  index for lth unit under test

r* is the ground truth RUL

β is a preset probability threshold

α (±) are the lower & upper bounds of the error 
band s.t. α- = r*(j) - α·EoL and α+= r*(j) + α·EoL

II. α-λ Performance

- Does the algorithm stay within desired performance levels relative to RUL at a given time?

I. Prognostic Horizon

- Does the algorithm predict within desired accuracy around EoL sufficiently ahead of failure?
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Evaluate whether the following condition is met 

π is total probability mass of RUL pdf within α-
bounds

r* is the ground truth RUL

β is a preset probability threshold

α (±) are the lower & upper bounds of the error 
band  s.t. α- = r*(λ)(1- α) and α+= r*(λ)(1+ α) 

tλ is time window modifier s.t. tλ = tP + λ(EoL- tP)

where

III. Relative Accuracy

- Quantify how accurate an algorithm is  at a given time relative it’s distance from EoL

IV. Convergence

- If the performance converges (satisfies above criteria), quantify how fast does it converge?
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π is total probability mass of RUL pdf within α-
bounds

tλ is time window modifier s.t. tλ = tP + λ(EoL- tP)

where

l is the  index for lth unit under test
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It can be shown that  the magnitude of center of mass for the 
area below prediction trajectory  represents convergence
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• A software tool has been developed to allow researchers evaluate their 
algorithms

• Tool is freely available for download from DaSHLink

• Search on the web  “DashLink + Performance Evaluator”

• Performance Evaluation helps researchers develop and improve their 
algorithms and methods

• This also helps in defining the requirements for prognostics

• A thorough survey was conducted 
to collect and classify performance 
metrics being used in a variety of 
domains like aerospace, finance, 
medicine, weather, etc.


