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Introduction

• Automated pre-launch diagnostics for 

launch vehicles offers the following 

potential benefits:

– Improved safety

– Reduced cost

– Reduced launch delays

• Can include data from vehicle assembly, 

and from assembled vehicle while it is on 

the launch pad (from pre-launch umbilical)
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What is Ares I-X?

Ares I-X was the first test 

flight of Ares I. It had a 

dummy second stage and a 

dummy capsule, and 

launched on 10/28/2009.
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Definitions

• Anomaly detection: detecting that something is unusual

• Failure: The unacceptable performance of intended function. 

• Failure Detection: Deciding that a failure exists. 

• Fault Diagnosis: Determining the possible causes of a failure. 

• Fault Isolation: Determining the possible locations of a 
hypothesized failure cause, within a defined level of granularity. 

• All are part of Integrated Systems Health Management (ISHM)

• All take as input sensor values and command stream.
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Scope of Ares I-X

Ground Diagnostic Prototype

• Anomaly detection, failure detection, fault isolation, and fault 

diagnosis for Ares I-X while it is in the Vehicle Assembly 

Building and while it is on the launch pad

• Focused on the first-stage thrust vector control (TVC) and the 

associated ground hydraulics

• Deployed diagnostic software to Hangar AE at NASA KSC

• Used near-real-time data from the VAB and the pad

• Integrated the diagnostic software with existing software at 

NASA KSC

• Assessed the difficulty of certifying the software for human 

spaceflight

• Intended to serve as a prototype of the ground diagnostic 

system for Ares I
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Tools used in GDP

• TEAMS-RT, a model-based tool for fault 

isolation and diagnosis

• IMS, a data-driven tool for anomaly 

detection

• SHINE, a rule-based tool that we are using 

for failure detection
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Simplified GDP Architecture
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Model-based Diagnostics

• Human experts build a hierarchical model of the system.

• The model describes how the components of the system should work, 

their interconnections, and their failure modes.

• The component models can be physics-based or finite state machines.

• An inference engine uses the model and the real-time data and 

command stream to determine the state of the system and to diagnose 

failures, including reasoning about multi-component failures.

• Ames’ Livingstone and HyDE, JPL’s MEXEC, and TEAMS RT 

(commercial product) use this approach.

Expert-built 

model Inference 

Engine

Sensor data and 

command stream

Alarms and 

diagnoses
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TEAMS RT

• Model-based tool for fault isolation and diagnosis

• Commercial product from QSI; developed using NASA ARC 
SBIR funding

• Uses a qualitative model of failure propagation

• Is being used by Honeywell to model the Orion CEV under 
subcontract to Lockheed Martin (will be certified and flown)

• Requires “wrapper” code to convert sensor values into 
“pass/fail” test results and to identify the system mode.
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Rule-based expert systems

• Human experts write rules in a special-purpose language.

• The rules map fault signatures to faults.

• An inference engine decides which rules are applicable and 

executes them.

• JPL’s SHINE uses this approach (TRL 9 heritage)

• G2 (commercial product) also uses this approach.

Expert-written 

rules Inference 

Engine

Sensor data and 

command stream

Alarms and 

diagnoses
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SHINE

• Rule-based expert system 

• Uses a data-flow representation to execute rules efficiently

• Basis for four of the nine BEAM components

• Very fast:  Over 300 million rules per second on current desktop 

computers

• Extremely small memory and storage footprint, suitable for 

embedded applications

• Applied to several mission ground ops including Voyager and 

EUVE

• Tested on flight hardware (X-33 AFE) and in flight (DFRC F/A-

18)

• We used SHINE to provide the “wrappers” for TEAMS-RT

– Mode and event identification

– “pass/fail” test results
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Unsupervised Anomaly 

Detection
• Unsupervised anomaly detections algorithms look for portions of the data that 

are different from the rest of the data (outliers).

• Unsupervised approach to fault detection uses only nominal training data, and 

learns a model of the nominal data. When new data doesn’t match the model, 

it signals an alarm.

• Can catch unknown faults

• Does fault detection only, not diagnosis

• Useful when few examples of faults are available

• Can detect interactions among hundreds of variables

• Ames’ IMS and Orca and JPL’s BEAM use this approach. (BEAM can also 

use a physics-based model and/or supervised learning)
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IMS

• Data-driven unsupervised learning algorithm

• Inductive Monitoring System (IMS)

– clusters the training data

– uses distance to nearest cluster as anomaly 
measure

• Developed by Dave Iverson of ARC

• Is currently running on a console at JSC MCC to 
find anomalies in live ISS CMG data and has 
been certified as Class C software for that 
application.

• Also used to find anomalies in historical SSME 
data

• Runner-Up in the 2008 NASA Software of the 
Year Competition

• Generic C++ code
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Data used for testing our software

• Before the Ares I-X data became 

available, we used historical Shuttle TVC 

and HSS data to train and test our 

software.

• We inserted simulated failures into the 

historical Shuttle data.

• The prototype ran on live Ares I-X data 

from the VAB and from the pad.
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Simulated failure modes

in Shuttle data

• FSM (Fuel Supply Module) pressure drop 

due to N2H4 (Hydrazine) leak

• Hydraulic pumping unit over-temperature 

failure

• Hydraulic fluid reservoir level drop due to 

hydraulic fluid leak

• Actuator stuck during actuator positioning 

test



TEAMS/SHINE results on 

Shuttle data
• Tested the prototype on data from 7 

Shuttle flights with simulated failures

• Testing revealed some bugs, which we 

fixed

– Some bugs caused by incorrect assumptions 

about TVC testing procedures

• After fixing bugs, prototype ran on all 7 

flights with all simulated failures correctly 

detected and no false alarms.
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TEAMS/SHINE results on Ares I-X 

data
• First test on Ares I-X data after initial VAB power-up

– Some false alarms caused by differences between Shuttle and Ares I-X 
TVC test procedures

– SHINE rules fixed

• Shortly before launch, some false alarms caused by data 
dropouts
– We had expected dropouts during ascent, but not before launch

– After launch, we modified our code to detect data dropouts

– Ran modified code on launch data with no false alarms

• Ares I-X had no failures in the systems we modeled.
– Prototype had no missed detections and no correct detections.
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IMS results for Ares I-X VAB data



IMS Contributing scores for 

Ares I-X VAB False Alarm 1
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GDP Console in Hangar AE

Java display of 

TEAMS-RT outputs

Winplot display of 

IMS outputs

Ares I-X Iris 

displays
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GDP Screen Shot



Computational Performance

Process CPU DRAM

TEAMS (includes TEAMS-RT, the SHINE rules, the C 

test logic, and the data interface code) 8% 12 MB

IMS (including its data interface code) 1% 11 MB

Java display (including JVM) 1% 29 MB

Data playback software 18% 56 MB

Plotting tool 1% 12 MB

Windows XP Operating System 5%
410 

MB

Total 34%
530 

MB
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• Dell Precision M4400 laptop with an Intel Core 2 Quad Q9300 CPU running 

at 2.53 GHz and 4 GB of DRAM

• 655 components, 893 failure modes, 263 tests, 281 measurements



Lesson Learned: Appropriate Roles for 

Model-Based and Data-Driven Tools

• Model-based tools should be used to detect 

failure modes that are well understood.

• Data-driven tools should be used to detect 

unknown failure modes.
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Conclusions

• Automated pre-launch diagnostics can help increase 
safety, reduce cost, and reduce launch delays.

• The Ares I-X Ground Diagnostic Prototype helped to 
demonstrate and mature automated fault detection and 
diagnostic software that can be used in future missions.

• GDP demonstrated the feasibility of integrating 3 
methods and of integrating the vehicle with the ground 
systems.

• IMS had some false alarms, as expected, since not all 
anomalies are failures.

• We believe that the number of false alarms in IMS will 
decrease over time as more data becomes available.

• We believe the TEAMS false alarms could have been 
avoided with better V&V.


