
Ares I-X Ground

Diagnostic Prototype
Mark Schwabacher and Rodney Martin

NASA Ames Research Center, Moffett Field, CA

Robert Waterman

NASA John F. Kennedy Space Center, Cape Canaveral, FL

Rebecca Oostdyk

ASRC Aerospace Corporation, Cape Canaveral, FL

John Ossenfort and Bryan Matthews

Stinger Ghaffarian Technologies, Inc., Moffett Field, CA

April 27, 2010

2

Introduction

• Automated pre-launch diagnostics for

launch vehicles offers the following

potential benefits:

– Improved safety

– Reduced cost

– Reduced launch delays

• Can include data from vehicle assembly,

and from assembled vehicle while it is on

the launch pad (from pre-launch umbilical)

3

What is Ares I-X?

Ares I-X was the first test

flight of Ares I. It had a

dummy second stage and a

dummy capsule, and

launched on 10/28/2009.

4

Definitions

• Anomaly detection: detecting that something is unusual

• Failure: The unacceptable performance of intended function.

• Failure Detection: Deciding that a failure exists.

• Fault Diagnosis: Determining the possible causes of a failure.

• Fault Isolation: Determining the possible locations of a
hypothesized failure cause, within a defined level of granularity.

• All are part of Integrated Systems Health Management (ISHM)

• All take as input sensor values and command stream.

5

Scope of Ares I-X

Ground Diagnostic Prototype

• Anomaly detection, failure detection, fault isolation, and fault

diagnosis for Ares I-X while it is in the Vehicle Assembly

Building and while it is on the launch pad

• Focused on the first-stage thrust vector control (TVC) and the

associated ground hydraulics

• Deployed diagnostic software to Hangar AE at NASA KSC

• Used near-real-time data from the VAB and the pad

• Integrated the diagnostic software with existing software at

NASA KSC

• Assessed the difficulty of certifying the software for human

spaceflight

• Intended to serve as a prototype of the ground diagnostic

system for Ares I

6

Tools used in GDP

• TEAMS-RT, a model-based tool for fault

isolation and diagnosis

• IMS, a data-driven tool for anomaly

detection

• SHINE, a rule-based tool that we are using

for failure detection

7

Simplified GDP Architecture

Winplot Archive

Server

IMS TEAMS RT

SHINE & C implementation

of TEAMS tests

Winplot Java display

Ares I-X vehicle sensor data

& commands

Ground Support Equipment

sensor data & commands

Sensor data & commands

Pass/fail test results

Anomaly scores Diagnoses

Display tools in

Hangar AE at KSC

SHINE mode

identification

System mode

8

Model-based Diagnostics

• Human experts build a hierarchical model of the system.

• The model describes how the components of the system should work,

their interconnections, and their failure modes.

• The component models can be physics-based or finite state machines.

• An inference engine uses the model and the real-time data and

command stream to determine the state of the system and to diagnose

failures, including reasoning about multi-component failures.

• Ames’ Livingstone and HyDE, JPL’s MEXEC, and TEAMS RT

(commercial product) use this approach.

Expert-built

model Inference

Engine

Sensor data and

command stream

Alarms and

diagnoses

9

TEAMS RT

• Model-based tool for fault isolation and diagnosis

• Commercial product from QSI; developed using NASA ARC
SBIR funding

• Uses a qualitative model of failure propagation

• Is being used by Honeywell to model the Orion CEV under
subcontract to Lockheed Martin (will be certified and flown)

• Requires “wrapper” code to convert sensor values into
“pass/fail” test results and to identify the system mode.

10

Rule-based expert systems

• Human experts write rules in a special-purpose language.

• The rules map fault signatures to faults.

• An inference engine decides which rules are applicable and

executes them.

• JPL’s SHINE uses this approach (TRL 9 heritage)

• G2 (commercial product) also uses this approach.

Expert-written

rules Inference

Engine

Sensor data and

command stream

Alarms and

diagnoses

11

SHINE

• Rule-based expert system

• Uses a data-flow representation to execute rules efficiently

• Basis for four of the nine BEAM components

• Very fast: Over 300 million rules per second on current desktop

computers

• Extremely small memory and storage footprint, suitable for

embedded applications

• Applied to several mission ground ops including Voyager and

EUVE

• Tested on flight hardware (X-33 AFE) and in flight (DFRC F/A-

18)

• We used SHINE to provide the “wrappers” for TEAMS-RT

– Mode and event identification

– “pass/fail” test results

12

Unsupervised Anomaly

Detection
• Unsupervised anomaly detections algorithms look for portions of the data that

are different from the rest of the data (outliers).

• Unsupervised approach to fault detection uses only nominal training data, and

learns a model of the nominal data. When new data doesn’t match the model,

it signals an alarm.

• Can catch unknown faults

• Does fault detection only, not diagnosis

• Useful when few examples of faults are available

• Can detect interactions among hundreds of variables

• Ames’ IMS and Orca and JPL’s BEAM use this approach. (BEAM can also

use a physics-based model and/or supervised learning)

Historical

nominal data

Unsupervised

learning

algorithm

Model

New data from

sensors

Alarms

13

IMS

• Data-driven unsupervised learning algorithm

• Inductive Monitoring System (IMS)

– clusters the training data

– uses distance to nearest cluster as anomaly
measure

• Developed by Dave Iverson of ARC

• Is currently running on a console at JSC MCC to
find anomalies in live ISS CMG data and has
been certified as Class C software for that
application.

• Also used to find anomalies in historical SSME
data

• Runner-Up in the 2008 NASA Software of the
Year Competition

• Generic C++ code

14

Data used for testing our software

• Before the Ares I-X data became

available, we used historical Shuttle TVC

and HSS data to train and test our

software.

• We inserted simulated failures into the

historical Shuttle data.

• The prototype ran on live Ares I-X data

from the VAB and from the pad.

15

Simulated failure modes

in Shuttle data

• FSM (Fuel Supply Module) pressure drop

due to N2H4 (Hydrazine) leak

• Hydraulic pumping unit over-temperature

failure

• Hydraulic fluid reservoir level drop due to

hydraulic fluid leak

• Actuator stuck during actuator positioning

test

TEAMS/SHINE results on

Shuttle data
• Tested the prototype on data from 7

Shuttle flights with simulated failures

• Testing revealed some bugs, which we

fixed

– Some bugs caused by incorrect assumptions

about TVC testing procedures

• After fixing bugs, prototype ran on all 7

flights with all simulated failures correctly

detected and no false alarms.

16

17

TEAMS/SHINE results on Ares I-X

data
• First test on Ares I-X data after initial VAB power-up

– Some false alarms caused by differences between Shuttle and Ares I-X
TVC test procedures

– SHINE rules fixed

• Shortly before launch, some false alarms caused by data
dropouts
– We had expected dropouts during ascent, but not before launch

– After launch, we modified our code to detect data dropouts

– Ran modified code on launch data with no false alarms

• Ares I-X had no failures in the systems we modeled.
– Prototype had no missed detections and no correct detections.

18

IMS results for Ares I-X VAB data

IMS Contributing scores for

Ares I-X VAB False Alarm 1

19

20

GDP Console in Hangar AE

Java display of

TEAMS-RT outputs

Winplot display of

IMS outputs

Ares I-X Iris

displays

21

GDP Screen Shot

Computational Performance

Process CPU DRAM

TEAMS (includes TEAMS-RT, the SHINE rules, the C

test logic, and the data interface code) 8% 12 MB

IMS (including its data interface code) 1% 11 MB

Java display (including JVM) 1% 29 MB

Data playback software 18% 56 MB

Plotting tool 1% 12 MB

Windows XP Operating System 5%
410

MB

Total 34%
530

MB

22

• Dell Precision M4400 laptop with an Intel Core 2 Quad Q9300 CPU running

at 2.53 GHz and 4 GB of DRAM

• 655 components, 893 failure modes, 263 tests, 281 measurements

Lesson Learned: Appropriate Roles for

Model-Based and Data-Driven Tools

• Model-based tools should be used to detect

failure modes that are well understood.

• Data-driven tools should be used to detect

unknown failure modes.

23

24

Conclusions

• Automated pre-launch diagnostics can help increase
safety, reduce cost, and reduce launch delays.

• The Ares I-X Ground Diagnostic Prototype helped to
demonstrate and mature automated fault detection and
diagnostic software that can be used in future missions.

• GDP demonstrated the feasibility of integrating 3
methods and of integrating the vehicle with the ground
systems.

• IMS had some false alarms, as expected, since not all
anomalies are failures.

• We believe that the number of false alarms in IMS will
decrease over time as more data becomes available.

• We believe the TEAMS false alarms could have been
avoided with better V&V.

