Mitigation of Crack Damage in Metallic Materials

J.A. Newman, S.W. Smith, and E.H. Glaessgen
NASA Langley Research Center

Aviation Safety Program Technical Conference
November 17-19, 2009
Washington D.C.
Outline

• Problem Statement
• Background
• IVHM milestones being addressed
• Approach
• Experimental Results
• Significance of Results
• Summary
• Future Plans
Problem Statement

- Problem
 - Portion of service life manageable by damage tolerance is too small
 - Frequent inspections are costly

- Potential Solutions
 - Improve crack inspection
 - Greater sensitivity
 - Structural health monitoring
 - Damage mitigation
 - “Healing” of cracks
Background – Crack closure

- Fatigue crack closure
 - Crack-face contact during cyclic loading
- Studied since 1960s
- Significance greatest near the FCG threshold
- Multiple crack closure mechanisms operate near ΔK_{th}
• Near-threshold fatigue crack closure mechanisms
 – Plasticity
 – Roughness
 – Oxide debris

• Can crack closure be exploited?
IVHM milestones being worked

• IVHM Project Milestones Supported
 – 2.2.4.1 – Demonstrate integrated self-healing material system concepts for in-situ mitigation of fatigue crack damage in structural elements
 – 1.1.4.1 – Engineered materials for structural health management and mitigation of structural fatigue crack damage

• How this work fits into the IVHM project
 – Damage/fatigue crack mitigation
 • Mitigate further airframe damage through in-situ application of self-healing materials
 • Materials with self-healing capability of great benefit where fatigue crack inspection access is limited or damage is difficult to detect
 • New design and analysis methodologies will be developed to fully-exploit self-healing material systems concepts.
Approach

- Metallic specimen coated with healing agent
- Crack healing process
 - Cracked specimen + Energy
 - Healing agent fills crack mouth
 - Solidification
- Benefits
 - Adheres to crack faces (bridging)
 - Fills crack mouth (crack closure)
 - Reusable
Results

Crack Arrest Example (Titanium)

- Steady-state FCG
 - $\Delta K = 6.6$ ksi$\sqrt{\text{in}}$; $R = 0.1$
- Reduction in “crack length” after healing is a result of in-situ crack monitoring
- Some damage of healing material, but crack fails to propagate (never returns to original value)
Results (continued)

Crack Retardation Example (Titanium)

- Initially steady-state FCG
 - $\Delta K = 13.2 \text{ ksi}\sqrt{\text{in}}; R = 0.1$
- Reduction in “crack length” after healing is a result of in-situ crack monitoring
- Crack length returns to pre-healing value after approximately 8,000 cycles
- After healing agent is cracked, crack growth rate still slower
- Approximately 250,000 cycle delay, followed by 55% reduction in crack growth rate

\Delta K = 13.2 \text{ ksi}\sqrt{\text{in}}, R = 0.1

Cycles (x 1,000)

Effective Crack Length, a (inches)

- 2.0x10^{-6} inch/cycle
- 8.9x10^{-7} inch/cycle

Damage state without healing

Before healing
- 8.9x10^{-7} inch/cycle

After healing
- 2.0x10^{-6} inch/cycle
• Results from multiple experiments plotted similar to fatigue-life curves
 – Breakdown of bridging mechanism as function of crack-driving force
 – Closure mechanism still active
• Similar result obtained for aluminum
• $\Delta K = 6.6 \text{ ksi} \sqrt{\text{in}}$ likely near “endurance limit”
• Analytical model needed to correlate healing agent properties to performance
 – Revisit selection of materials
• More results are needed to “populate” curve
Experimental Results (continued)

Titanium Healing Results (Crack Growth Rate Reduction)

- Results after breakdown of bridging
- Plotted as crack growth rate ratio
 - Ratio of steady state da/dN before and after healing
- Better performance at lower crack driving forces
- In all cases tested, IVHM milestone 1.1.4.1 was more than met
 - Greater than a factor of 2 reduction in driving force
 - Significant crack growth delay
 - In one case, crack arrest occurred
- Healing process is repeatable
 - After cracking healing agent can be reactivated

Exceeded IVHM milestone 1.1.4.1
Significance of Results (Background)

• Service cracks
 – Grow from initial to critical size
• Constant-load conditions
 – da/dN increases with crack size
• Healing extends fatigue life, N_f
 – Reduction in crack growth rate
• Critical initial flaw size*, a_{CIFS}
 – Largest crack that will survive four service lives

* References: (1) NASA-STD-5001, “Structural Design and Test Factors of Safety for Spaceflight Hardware”
(2) NASA-STD-5019, “Fracture Control Requirements for Spaceflight Hardware”
(3) Federal Aviation Administration FAR 25.571
Significance of Results
(Example #1 – Center-cracked plate)

- Cracking of aircraft skin
 - Majority of fatigue life initiating/propagating small crack (low ΔK)
 - Minimal interaction with surrounding structure
- Modeled as a center-cracked plate
 - Crack growth analysis done using NASGRO

* Reference: NASGRO Version 5.21
Significance of Results
(Example #1 – Center-cracked plate)

• Model geometry
 – Panel width, \(W = 36 \) inches
 – Panel thickness, \(t = 0.1 \) inches
 – Tensile stress, \(S_o = 12 \) ksi
 – Service life, \(N_f = 100,000 \) cycles

• Increase in CIFS by factor of 4.9
 – No healing, \(a_{CIFS} = 0.168 \) inches
 – Healing, \(a_{CIFS} = 0.822 \) inches

![Graph depicting Crack length vs. Cycle Count](image)
Significance of Results
(Example #2 – Riveted joint cracking)

• Cracking of aircraft skin at riveted joint
 – Crack initiation at fastener hole
 – Propagate toward other fastener holes

• Modeled as a center-cracked plate
 – Crack growth analysis done using NASGRO
 – Failure: Hole-to-hole cracking or first fracture event

** Reference: NASGRO Version 5.21
Significance of Results
(Example #2 – Riveted joint cracking)

- **Model geometry**
 - Skin thickness, $t = 0.1$ inches
 - Hole diameter, $D = 0.25$ inches
 - Hole spacing, $H = 3$ inches
 - Tensile stress, $S_o = 15$ ksi
 - Service life, $N_f = 100,000$ cycles

- **Increase in CIFS by factor of 2.6**
 - No healing, $a_{CIFS} = 0.338$ inches
 - Healing $a_{CIFS} = 0.881$ inches
Summary

• Experiment
 – Proof-of-concept testing results indicate that crack mitigation is possible
 – Crack arrest at low ΔK
 • Bridging and closure mechanisms active
 – Crack retardation at higher ΔK
 • Bridging capability damaged, but closure still operative

• Analysis
 – Results suggest significant improvement in critical initial flaw size
 – Reduces the crack inspection burden
 • Fewer inspections (decreased costs)
 • Probability of failure reduced (improved safety)
Next Steps

• Continue crack growth experiments
 – Populate data curves
• Consider different healing materials
• Potential to improve mechanical performance of healed materials
• Development of healing system
 – Robust protection
 – Integrated healing activation
 – SBIR call (additional manufacturing skills required)
• Develop analytical models to predict crack healing performance