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Problem Statement

Diagnosis of complex engineered systems using model-based
techniques is complicated by several challenges

— Hybrid system behavior
— Model construction
— Real-time performance

Goal: Develop Bayesian methods for on-line diagnosis of complex
engineered systems with real-time performance constraints

Target: Demonstrate solutions to challenges using an electrical
power system as an example of a complex hybrid system that is
ubiquitous to aircraft, spacecraft, and industrial systems
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Background: Electrical Power Systems Accidents

On January 28, 1968, a faulty electrical switch
created a spark which ignited the pure oxygen
environment; the fire quickly killed the Apollo 1
crew.

Swissair 111 crashed into the Atlantic Ocean on
September 2, 1998, killing all 229 people
onboard. It was determined that wires short-
circuited and led to a fire.

On January 14, 2005, an Intelsat operated
communications satellite suffered a total loss
after a sudden and unexpected electrical power
system anomaly, likely the result of high current
in the battery circuitry triggered by an
electrostatic discharge.

A battery failure occurred on the Mars Global
Surveyor, which last communicated with Earth
on November 2, 2006. A software error oriented
the spacecraft to an angle that over-exposed it
to sunlight, causing the battery to overheat.

On January 7, 2008, a Boeing 747 lost main
power on its descent into Bangkok, and had to
rely on battery backup.
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The Modeling Challenge

Uncertainty in EPSs

— Components and sensors may fail St

— Sensor noise
— Load-dependent noise

Many possible modes

4 @il @1
S el ey

— Due to relays (switches), circuit breakers, |

certain failures e
Need for high diagnostic accuracy T T —
— Avoid single-fault assumption e mﬁmfﬁ";if“i’?-’ffifi?{:f’?’f?
Large, complex systems are often |~ =~ = = "~ © © ° °
— Difficult to model | T FE
— Tedious to extend and update |
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The Hybrid Systems Challenge

* Hybrid systems:
— Discrete: Both healthy and faulty modes
— Continuous: Both healthy and faulty behavior
 Fault types in hybrid systems:

1. abrupt discrete faults
2. abrupt continuous (parametric) faults

a) offset «.,,
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The Real-Time Reasoning Challenge

Real-time operating system (RTOS)
used in current avionics:

— Task has: period, deadline, and worst-case
execution time (WCET)

— Priority-based preemptive scheduling
The challenge of embedding Al into
hard real-time system:

— Hardness of the computational problems

— High expectation and/or variance of a
search algorithm’s execution time

The real-time challenge:

— Diagnostic processes need to be designed
within RTOS resource bounds

— “Embedding Al into real-time systems”
[Musliner et al., 1995]
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Electrical Power Systems at NASA

Electrical power systems (EPSs) are
critical in aerospace

EPS loads include: avionics, propulsion,
life support, and thermal management
— Increased EPS use In air- and spacecraft

ADAPT EPS testbed at NASA Ames:

— a capability for controlled insertion of faults,
giving repeatable failure scenarios;

— a standard testbed for evaluating diagnostic
algorithms & software; and

— a stepping stone for maturing diagnostic
technologies.

See also http://ti.arc.nasa.gov/projects/adapt
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IVHM Milestone

Milestone 1.2.2.2 — Bayesian Methods and Hybrid —
Reasoning Techniques: T o o

— i) Investigate the modeling of at least three faults types SUCh aS | s o2 s e
continuous, intermittent (transient), cascading, and/or dynamic
faults, using Bayesian networks. The selection of the fault types will
be informed by the Adverse Events Table as well as the
capabilities of the testbed in which the novel approach will be
validated. Demonstrate, in experiments, better than 85% accuracy
for diagnosing the selected fault types. (FY09Q4).

Milestone 1.2.2.2 flows into Milestone 2.1.2.1 — Validation
Methodologies and Tools for the Diagnosis of Failures

Principal Investigator : Ole J. Mengshoel (Carnegie
Mellon Silicon Valley/NASA ARC)

— Joint work with: S. Poll (NASA ARC), B. Ricks (University of Texas
at Dallas), K. Cascio (UCLA), M. Chavira (UCLA/Google), A.
Darwiche (UCLA), D. Garcia (SGT/NASA ARC), T. Kurtoglu
(MCT/NASA ARC), D. Nishikawa (NASA ARC), S. Uckun (NASA
ARC/PARC)
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Probabilistic Diagnosis Approach
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Probabilistic On-Line Diagnhosis
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Probabilistic model for a vehicle’s subsystem(s):
— It represents health of sensors and subsystem components explicitly

— It contains random variables for other parts of the subsystem

A probabilistic approach to:
— Diagnosis: health status of system component nodes

Sensor validation: health status of sensor nodes
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Fault Types Investigated

— Abrupt

« Permanent
— Discrete

Independent faults

These are the fault
types considered in
this talk.

— Continuous (parametric)

* Intermittent

Incipient

Dependent faults

Common cause
Cascading

Component Fault Description
Battery Degraded
Boolean Sensor Stuck at Value
Tripped
Circuit Breaker Failed Open
Stuck Closed
Inverter Failed Off
Stuck Open
Relay Stuck Closed
Sensor Stuck %1} Value
Offset
Flow Blocked
Pump(Load) Failed Off
Over Speed
Fan(Load) Under Speed
Failed Off
Light Bulb(Load) Failed Off

See [Kurtoglu et al., 2009a] and
[Kurtoglu et al., 2009b] for
discussion of fault types
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Related Research

« Using Bayesian networks

— hybrid (discrete + continuous) BNSs:

« cligue tree based [Spiegelhalter & Lauritzen, 1988] using linear
Gaussians [Olesen, 1993]

« particle filtering [Koller & Lerner, 2000]

— discrete BNs:

« fault diagnosis in terrestrial EPSs [Yongli et al., 2006], [Chien et al.,
2002],

* Not using Bayesian network

— hybrid bond graphs [Narasimhan & Biswas 2007], [Daigle et al.,
2008]

— general diagnostic engine [de Kleer & Williams, 1987], [Karin et
al., 2006], [Bunus et al., 2009]

— convex optimization [Gorinevsky et al., 2009]
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Benchmarking Architecture
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See also [Kurtoglu et al.,
2008] [Kurtoglu et al.,
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algorithm.
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metrics.
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ADAPT Experimental Testbed
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Figure from [Kurtoglu et al., 2009b].

Tier 1 experiments were
substantially easier than Tier 2

experiments:
* a subset of ADAPT was used
relays were closed at all times
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Bayesian Network Model of ADAPT Tier 2

ADAPT EPS
;{_Qj%ga R;I z 7 ADAPT| Bayesian
_‘/EE - Network

-

T —E T.T T ﬁ& =| Name Sym | Description | Qty per | Qty per semsor
s =L TP :
1 ﬁ—s Nodes | Evidence
nodes
- DC Current it Measures DC 7 3 2
E& Sensor current in amps
AC Current it Measures AC 2 3 2
Sensor % | current in amps
E DC Voltage Measures DC 12 3 2
Sensor € voltage m volts
=4 AC Voltage Measures AC R 3 ,
,; , - Sensor € voltage in volts
K = Circuit Senses whether
J - Breaker a circuit
Position ish | breakeris 9 2 1
Sensor opened or
closed
T Relay Senses whether
u Position arelayis
_ FI o o | e U 2 1
T _Eb T T =l =§F closed
o ﬁ«= Temperature Measures
N o Sensor temperature in
Fahrenheit of
te batteries, 15 5 3
T/ battery cabinet,
and light bulbs
Speed Measures EPM
Transmitter | st |of the large 2 5 3
fans
Phase Angle Measures the
m; " Transducer phasze shift in
f degrees
A xt |between the 2 6 2
sine waves of
AC current and

voltage
AC Measures the
2 3 2

Frequency st | AC frequency
. Transmitter in Hertz
The Bayesian o .
network model of Tnmiter | | flow ein
. gallons per 2 3 3
ADAPT Tler 2 :oule;hmugha
Light Sensor Measures the
ntensity
| milivons of 23 2
incoming light
TOTAL 83 43 25
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Metrics for Diagnostics

. Detection Accuracy: The ratio of correctly classified experiments
(scenarios) to the total number of experiments.

. Classification errors: The Hamming distance between the true component
mode vector and the diagnostic algorithm's component mode vector.

. False Negatives Rate: The ratio of experiments where a fault is missed
while the system was actually faulty.

. False Positives Rate: The ratio of experiments where a fault is announced
by the DA while the system was actually non-faulty, or where a fault is
announced too early.

. Mean CPU Time: Average CPU load during an experiment, averaged over
all experiments.

. Mean Time To Detect: The period of time from the beginning of a fault
injection to the moment of the first “high” detection signal.

. Mean Time To Isolate: The period of time from the beginning of a fault
injection to the start of the last persistent “high” isolation signal.

. Mean Peak Memory Usage: The maximum memory size at every step in
an experiment, averaged over all experiments.
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Experiments, ADAPT Data (1)

« Two types of scenarios:
« Tier 1 scenarios: nominal or contained one fault
« Tier 2 scenarios: nominal or contained single, double, or triple faults

« The ADAPT EPS was used to generate fault and nominal scenarios:

« Faults were injected simultaneously or sequentially

« Fault types were additive parametric (abrupt changes in parameter values) and
discrete (unexpected changes in system mode)

« Faults were permanent and included both component faults and sensor faults

ADAPT DXC Tier 1

ADAPT DXC Tier 2

Metric 1l ProADAPT : RODON | HyDE-S ; ProADAPT : Stanford | RODON
False positives (FP) rate 1 0.0333 ; 0.0645 0.2000 1 0.0732 : 0.3256 0.5417
False negatives (FN) rate | 0.0313 |, 0.0968 0.0741 1 0.1392 |, 0.0519 0.0972
Detection accuracy I 0.9677 || 09194 0.8548 1 0.8833 |} 0.8500 0.7250
Classification errors : 2.0 ) 10.0 26.0 ! 76.0 || 110.5 84.1
Mean time to detect T'; (ms) : 1,392 I 218 130 : 5981 | 3946 3490
Mean time to isolate I'; (ms) | 4,084 |l 7.205 633 | 12,486 |I 14,103 36.331
Mean CPU time T'. (ms) I 1,601 |V 11.766 513, 3,416 | 963 8.0261
Mean peak memory usage (kb) | 1,680 ! 26.679 5.795 6,539 ! 5912 29878
Score 1 72.80 ; 59.85 59.501 83.20 ; 81.50 70.50
Rank | 1 | 2 31 1 2 3

9 competitors in Tier 1.

6 competitors in Tier 2.
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Experiments, ADAPT Data (2)

ProADAPT1: The May DXC-09 ADAPT Industrial Track Tier 2
2009 version of
ProADAPT. ProDiagnose FaultBuster HyDE RODON Stanford Wizards Of
(ProADAPT1) 0Oz

L

False Positives H 7.32% : 81.43% 0.00% 54.17% 32.16% 51.06%
S T

False Negatives : 13.92% : 24.00% 30.00% 9.72% 5.19% 9.59%

Classification Errors : 76 : 130 121.57 84.01 110.55 159.25
Ll

Detection Accuracy H 88.33% : 42.50% 80.00% 72.50% 85.00% 74.17%
- i

Mean Time to Detect : 5973 ms : 14099 ms 17610 ms 3490 ms 3946 ms 30742 ms

Mean Time to Isolate : 11988 ms : 37808 ms 21982 ms 36331 ms 14103 ms 47625 ms
Ll

Mean CPU Time : 2922 ms : 5798 ms 29612 ms 80261 ms 963 ms 23387 ms
B L]

Mean Peak RAM : 6539 KB |1 10261 KB 20515 KB 29878 KB 5912 KB 7498 KB

Usage 1 :
Py p——————— 3

ProDiagnose: Latest ADAPT Tier 2 Results ProADAPT2:

Using DXC-09 Industrial Track Tier 2 Scenarios

The September
2009 version of

ProADAPT1 | ProADAPT2 ‘\I ProADAPT .
False Positives 7.32% 0.00 %
False Negatives 13.92% 1.25%
Classification Errors 76 20
Detection Accuracy 88.33% 99.17 %
Mean Time to Detect 5973 ms 2096 ms
Mean Time to Isolate 11988 ms 10961 ms
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Experiments, Simulated Data

Inference MPE Marginals Aproach Used
Time (ms) VE | ACE CTP ACE < inProADAPT.
Mimimum | 17.25 | 0.1967 | 8.527 | 0.4934
Maximum | 38.45 | 2.779 | 5451 | 5.605
Median 172,634 04295 | 9.20d4 05024
Mean 1779 | 02370 } 7.10.02 | 0.6981
St. Dev. | 1513 { 0.2137 | 445T T 0.6660

« Comparison between Arithmetic Circuit Evaluation (ACE),
Variable Elimination (VE) and Cliqgue Tree Propagation (CTP)

« Main conclusions:

— All three inference algorithms are quite efficient, thanks to auto-
generation algorithm

— ACE outperforms VE (for MPE) and CTP (for marginals), both in
Mean and St. Dev.
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Next Steps in Research

FY10: Using the Bayesian modeling approach, and reflecting the
fault types and test bed(s) investigated in FYQ09, the team plans to
develop Bayesian methods and/or models for varying operating
conditions and:

— demonstrate fault detection/diagnosis on at least three faults types
such as discrete, continuous, abrupt, transient, or cascading faults

— examine tradeoff between accuracy and diagnosis time

We aim to demonstrate, in experiments, better than 95% accuracy
for diagnosing faults in sub-scale experiments in real-time
(FY10Q4).

Beyond FY10: Demonstration on vehicle of interest to NASA,
Consideration of both learning and reasoning; Integration of
diagnosis and reconfiguration; Integration with other (and multiple)
sub-systems; Integration into control loop; ...
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Summary

Diagnostic challenges at NASA:
— Modeling of large, complex systems

Hybrid systems — discrete and continuous
behavior

Hard diagnostic problems, real time
requirements

Probabilistic diagnosis approach,
ProDiagnose, with application to ADAPT
electrical power system:

Auto-generation of Bayesian network

Compilation of Bayesian networks to real-
time arithmetic circuits

Handling of abrupt discrete and
continuous (parametric) faults using
discrete and static Bayesian networks

Strong performance on electrical power
system data from ADAPT testbed

Bayesian Reasoning for
Diagnostics: Operates in
a state space of size >
2°00 in time < 1 ms.
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Background Material
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Bayesian Network Node Types

INPUT: : OUTPUT:
Observed ProDiagnose/ Health status Query
. ProADAPT )
Variables Commands Variables

A command node C €C , derived from C(t), represents a command given to a
component. An example is a command to open or close a relay.

A sensor node S€ S represents the current reading of a sensor. The state of S is
— discretized from a real-valued sensor reading S(t), or

— the actual state of O or 1 for a boolean position sensor S(t).

A health node He H represents the current health state, normal or abnormal, of a
component or sensor.

— The states of H are computed using an exact or approximate (i) marginal, (i) most probable explanation
(MPE), or (iii) maximum aposteriori probability (MAP) query.

— Abnormal states are output as one candidate in the candidate set D(t)

A stuck node ST € ST represents the stuck state of a sensor. A sensor becomes
stuck when its reading is the same over a period of time, regardless of what the
underlying process state is.

A delta node D €D represents the discretized difference (delta) between the current
sensor reading S(t) and its previous reading S(t — 1).

A change node CH & CH represents overall trends in sensor readings (long term
behavior), computed CUSUMS.
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CUSUM - Continuous Faults (1)
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CUSUM - Continuous Faults (2)

Voltage CUSUM oo -
I health_battery
I ':353% ki
25 0.2
- 0.15
24.5 %
- 0.1
24
- 0.05 — E235
235 43 0 — E435
3 —*— CUSUM235
L .0.05 CUSuUM435
23 — — = Threshold
)",;‘ - -0.1 v ‘ 10.00% - voltageNO
Ve \\ : B 75.02% - voltageLow
225 | 3
- -0.15
22 . , ; . . T -0.2 }
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CUSUM (t) = S(t) — (W, S (t) + W, S (t —1) + W, S (t — 2) + W, S (t —3) )+ CUSUM (t —1)
CUSUM (t) = S(t) — (0.45x S(t) +0.25x S(t —1) +0.24 x S (t —2) + 0.06 x S (t —3) )+ CUSUM (t —1)
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