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Problem Statement

• Diagnosis of complex engineered systems using model-based 
techniques is complicated by several challenges

– Hybrid system behavior 

– Model construction

– Real-time performance 

• Goal: Develop Bayesian methods for on-line diagnosis of complex 
engineered systems with real-time performance constraints

• Target: Demonstrate solutions to challenges using an electrical 
power system as an example of a complex hybrid system that is 
ubiquitous to aircraft, spacecraft, and industrial systems
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Background: Electrical Power Systems Accidents

• On January 28, 1968, a faulty electrical switch
created a spark which ignited the pure oxygen 
environment; the fire quickly killed the Apollo 1 
crew. 

• Swissair 111 crashed into the Atlantic Ocean on 
September 2, 1998, killing all 229 people 
onboard.  It was determined that wires short-
circuited and led to a fire. 

• On January 14, 2005, an Intelsat operated 
communications satellite suffered a total loss 
after a sudden and unexpected electrical power 
system anomaly, likely the result of high current 
in the battery circuitry triggered by an 
electrostatic discharge. 

• A battery failure occurred on the Mars Global 
Surveyor, which last communicated with Earth 
on November 2, 2006. A software error oriented 
the spacecraft to an angle that over-exposed it 
to sunlight, causing the battery to overheat. 

• On January 7, 2008, a Boeing 747 lost main 
power on its descent into Bangkok, and had to 
rely on battery backup. 
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The Modeling Challenge

• Uncertainty in EPSs

– Components and sensors may fail

– Sensor noise 

– Load-dependent noise

• Many possible modes
– Due to relays (switches), circuit breakers, 

certain failures 

• Need for high diagnostic accuracy
– Avoid single-fault assumption

• Large, complex systems are often 
– Difficult to model 

– Tedious to extend and update 
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The Hybrid Systems Challenge

• Hybrid systems: 

– Discrete:  Both healthy and faulty modes

– Continuous: Both healthy and faulty behavior

• Fault types in hybrid systems: 

1. abrupt discrete faults

2. abrupt continuous (parametric) faults

a) offset 

b) stuck

A sensor or 
component may, in 
general, get stuck 
at any continuous 

value.

A sensor or 
component may, in 

general, see an 
arbitrarily small and 

faulty drop or 
increase in its 

value 
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The Real-Time Reasoning Challenge

• Real-time operating system (RTOS) 
used in current avionics:

– Task has: period, deadline, and worst-case 
execution time (WCET) 

– Priority-based preemptive scheduling

• The challenge of embedding AI into 
hard real-time system:

– Hardness of the computational problems

– High expectation and/or variance of a 
search algorithm’s execution time 

• The real-time challenge:

– Diagnostic processes need to be designed 
within RTOS resource bounds 

– “Embedding AI into real-time systems” 
[Musliner et al., 1995]
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Electrical Power Systems at NASA

• Electrical power systems (EPSs) are 
critical in aerospace 

• EPS loads include: avionics, propulsion, 
life support, and thermal management 

– increased EPS use in air- and spacecraft

• ADAPT EPS testbed at NASA Ames: 
– a capability for controlled insertion of faults, 

giving repeatable failure scenarios; 

– a standard testbed for evaluating diagnostic 
algorithms & software; and

– a stepping stone for maturing diagnostic 
technologies. 

See also http://ti.arc.nasa.gov/projects/adapt/
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IVHM Milestone

• Milestone 1.2.2.2 – Bayesian Methods and Hybrid 
Reasoning Techniques: 

– ii) Investigate the modeling of at least three faults types such as 
continuous, intermittent (transient), cascading, and/or dynamic 
faults, using Bayesian networks. The selection of the fault types will 
be informed by the Adverse Events Table as well as the 
capabilities of the testbed in which the novel approach will be 
validated. Demonstrate, in experiments, better than 85% accuracy 
for diagnosing the selected fault types. (FY09Q4).

• Milestone 1.2.2.2 flows into Milestone 2.1.2.1 – Validation 
Methodologies and Tools for the Diagnosis of Failures 

• Principal Investigator : Ole J. Mengshoel (Carnegie 
Mellon Silicon Valley/NASA ARC)

– Joint work with: S. Poll (NASA ARC), B. Ricks (University of Texas 
at Dallas), K. Cascio (UCLA), M. Chavira (UCLA/Google), A. 
Darwiche (UCLA), D. Garcia (SGT/NASA ARC), T. Kurtoglu 
(MCT/NASA ARC), D. Nishikawa (NASA ARC), S. Uckun (NASA 
ARC/PARC)
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Probabilistic Diagnosis Approach

Arithmetic 
Circuit 

(AC)

Offline 

Compilation

Online
Inference

Diagnosis: 
MLV, MPE, 

or MAP 

Bayesian 
Network (BN)

Sensor, 
Commands

System 
Specification

Offline

Generation

ON-LINE
PHASE

OFF-LINE
PHASE

Battery1      : battery              : 0.0005;
Wire1          : wire                  : 0.0000 : Battery1;             
Voltage1     : sensorVoltage  : 0.0005 : Wire1;
Current1      : sensorCurrent  : 0.0005 : Wire1;
Breaker1     : breaker            : 0.0005 : Wire1;
Status1       : sensorTouch     : 0.0005  : Breaker1;
Wire2          : wire                   : 0.0000 : Breaker1;
Relay1        : relay                  : 0.0005 : Wire2;
Feedback1 : sensorTouch      : 0.0005 : Relay1;
Load1         : load                   : 0.0005 : Relay1;
Temp1        : sensorCurrent   : 0.0005 : Load1 ;

Each health variable has 
at least two states 
(healthy and faulty), thus 
enabling the diagnoses 
of  zero, one, two, or 
more faults.  

The 
ProDiagnose

algorithm.

Bayesian network Arithmetic circuit

Specification language

Battery1

Voltage1

Current1

Breaker1 Relay1 Load1

Feed-
back1

Wire1 Wire2

Status1 Temp1

See [Mengshoel 
et al., 2008] and 
[Mengshoel et al., 
2009] for  BN 
auto-construction.
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Probabilistic On-Line Diagnosis

ProDiagnose/
ProADAPT

Commands

Health status

Sensor readings

• Probabilistic model for a vehicle’s subsystem(s): 

– It represents health of sensors and subsystem components explicitly

– It contains random variables for other parts of the subsystem 

• A probabilistic approach to: 

– Diagnosis: health status of system component nodes

– Sensor validation: health status of sensor nodes

INPUT: 
Observed 
Variables

OUTPUT: 
Query 

Variables
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Fault Types Investigated

• Independent faults

– Abrupt 

• Permanent

– Discrete 

– Continuous (parametric)

• Intermittent

– Incipient

• Dependent faults

– Common cause

– Cascading

These are the fault 
types considered in 

this talk. 

See [Kurtoglu et al., 2009a] and 
[Kurtoglu et al., 2009b] for 
discussion of fault types. 
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Related Research

• Using Bayesian networks

– hybrid (discrete + continuous) BNs:

• clique tree based [Spiegelhalter & Lauritzen, 1988] using linear 
Gaussians [Olesen, 1993]

• particle filtering [Koller & Lerner, 2000]

– discrete BNs: 

• fault diagnosis in terrestrial EPSs [Yongli et al., 2006], [Chien et al., 
2002],

• Not using Bayesian network

– hybrid bond graphs [Narasimhan & Biswas 2007], [Daigle et al., 
2008]

– general diagnostic engine [de Kleer & Williams, 1987], [Karin et 
al., 2006], [Bunus et al., 2009]

– convex optimization [Gorinevsky et al., 2009]
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Benchmarking Architecture

We emphasize 
the ProDiagnose

algorithm.

We emphasize 
frame-based 

metrics.

We consider these fault types: (1) abrupt 
discrete and (2) abrupt continuous. 

Multiple faults can take place, and they 
may be simultaneous or sequential. 

The ADAPT 
testbed is used for 
experimentation. 

See also [Kurtoglu et al., 
2008] [Kurtoglu et al., 
2009a] [Kurtoglu et al., 
2009b] for discussion of 
benchmarking and metrics. 
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ADAPT Experimental Testbed

Tier 1 

Tier 2 

Figure from [Kurtoglu et al., 2009b]. 

Tier 1 experiments were 
substantially easier than Tier 2 

experiments: 
• a subset of ADAPT was used 
•relays were closed at all times
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Bayesian Network Model of ADAPT Tier 2

The Bayesian 
network model of 

ADAPT Tier 2. 
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Metrics for Diagnostics 

1. Detection Accuracy: The ratio of correctly classified experiments 
(scenarios) to the total number of experiments.

2. Classification errors: The Hamming distance between the true component 
mode vector and the diagnostic algorithm's component mode vector.  

3. False Negatives Rate:  The ratio of experiments where a fault is missed 
while the system was actually faulty.

4. False Positives Rate: The ratio of experiments where a fault is announced 
by the DA while the system was actually non-faulty, or where a fault is 
announced too early. 

5. Mean CPU Time: Average CPU load during an experiment, averaged over 
all experiments. 

6. Mean Time To Detect: The period of time from the beginning of a fault 
injection to the moment of the first “high” detection signal. 

7. Mean Time To Isolate: The period of time from the beginning of a fault 
injection to the start of the last persistent “high” isolation signal.

8. Mean Peak Memory Usage: The maximum memory size at every step in 
an experiment, averaged over all experiments.
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Experiments, ADAPT Data (1)

• Two types of scenarios: 
• Tier 1 scenarios: nominal or contained one fault 

• Tier 2 scenarios: nominal or contained single, double, or triple faults

• The ADAPT EPS was used to generate fault and nominal scenarios: 
• Faults were injected simultaneously or sequentially

• Fault types were additive parametric (abrupt changes in parameter values) and 
discrete (unexpected changes in system mode)

• Faults were permanent and included both component faults and sensor faults

9 competitors in Tier 1. 6 competitors in Tier 2.
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ADAPT scenarios with zero to 
three  abrupt discrete and 

abrupt continuous faults were 
generated. Faults, if any, 

were inserted simultaneously 
or sequentially. 

ProADAPT1: The May 
2009 version of 

ProADAPT. 

Experiments, ADAPT Data (2)

ProADAPT2: 
The September 
2009 version of 

ProADAPT . 
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Experiments, Simulated Data 

• Comparison between Arithmetic Circuit Evaluation (ACE), 
Variable Elimination (VE) and Clique Tree Propagation (CTP) 

• Main conclusions: 

– All three inference algorithms are quite efficient, thanks to auto-
generation algorithm 

– ACE outperforms VE (for MPE) and CTP (for marginals), both in 
Mean and St. Dev. 

ACE is the 
approach used 
in ProADAPT. 
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Next Steps in Research

• FY10: Using the Bayesian modeling approach, and reflecting the 
fault types and test bed(s) investigated in FY09, the team plans to 
develop Bayesian methods and/or models for varying operating 
conditions and:  

– demonstrate fault detection/diagnosis on at least three faults types 
such as discrete, continuous, abrupt, transient, or cascading faults

– examine tradeoff between accuracy and diagnosis time

• We aim to demonstrate, in experiments, better than 95% accuracy 
for diagnosing faults in sub-scale experiments in real-time 
(FY10Q4). 

• Beyond FY10: Demonstration on vehicle of interest to NASA; 
Consideration of both learning and reasoning; Integration of 
diagnosis and reconfiguration; Integration with other (and multiple) 
sub-systems; Integration into control loop; …
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Summary

22

• Diagnostic challenges at NASA: 

– Modeling of large, complex systems 

– Hybrid systems – discrete and continuous 
behavior

– Hard diagnostic problems, real time 
requirements

• Probabilistic diagnosis approach, 
ProDiagnose, with application to ADAPT 
electrical power system:

– Auto-generation of Bayesian network

– Compilation of Bayesian networks to real-
time arithmetic circuits

– Handling of abrupt discrete and 
continuous (parametric) faults using 
discrete and static Bayesian networks

– Strong performance on electrical power 
system data from ADAPT testbed

Bayesian Reasoning for 
Diagnostics: Operates in 
a state space of size > 

2500 in time < 1 ms. 
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Web and Publications

• Further details: 
– DASHlink - Health management technologies in aeronautics: https://dashlink.arc.nasa.gov/

– ADAPT testbed: http://ti.arc.nasa.gov/projects/adapt/

– Probabilistic diagnostics: http://ti.arc.nasa.gov/project/pca/

– Personal: http://ti.arc.nasa.gov/people/omengshoel

• Publications: 
– O. J. Mengshoel, M. Chavira, K. Cascio, S. Poll, A. Darwiche, and S. Uckun, “Probabilistic Model-

Based Diagnosis: An Electrical Power System Case Study.” Accepted, IEEE Trans. on Systems, 
Man and Cybernetics, Part A, 2009.

– O. J. Mengshoel, S. Poll, and T. Kurtoglu. “Developing Large-Scale Bayesian Networks by 
Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft.” In Proc. of the 
IJCAI-09 Workshop on Self-* and Autonomous Systems (SAS): Reasoning and Integration 
Challenges, 2009. 

– B. W. Ricks and O. J. Mengshoel.  “Methods for Probabilistic Fault Diagnosis: An Electrical Power 
System Case Study.” In Proc. of Annual Conference of the Prognostics and Health Management 
Society, 2009

– O. J. Mengshoel, A. Darwiche, K. Cascio, M. Chavira, S. Poll, and S. Uckun, “Diagnosing Faults in 
Electrical Power Systems of Spacecraft and Aircraft.” In Proc. of the Twentieth Innovative 
Applications of Artificial Intelligence Conference (IAAI-08), Chicago, IL, 2008. 

– O. J. Mengshoel, “Macroscopic Models of Clique Tree Growth for Bayesian Networks”. In Proc. of 
the 22nd National Conference on Artificial Intelligence (AAAI-07). July 2007, Vancouver, Canada, 
pp. 1256-1262. 

– O. J. Mengshoel, “Designing Resource-Bounded Reasoners using Bayesian Networks: System 
Health Monitoring and Diagnosis.” In Proc. of the 18th International Workshop on Principles of 
Diagnosis (DX-07), Nashville, TN, May 2007. 

https://dashlink.arc.nasa.gov/
http://ti.arc.nasa.gov/projects/adapt/
http://ti.arc.nasa.gov/project/pca/
http://ti.arc.nasa.gov/people/omengshoel
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Background Material
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Bayesian Network Node Types

• A command node C ∈ C , derived from C(t), represents a command given to a 
component. An example is a command to open or close a relay. 

• A sensor node S∈ S represents the current reading of a sensor. The state of S is

– discretized from a real-valued sensor reading S(t), or 

– the actual state of 0 or 1 for a boolean position sensor S(t).

• A health node H∈ H represents the current health state, normal or abnormal, of a 
component or sensor. 

– The states of H are computed using an exact or approximate (i) marginal, (ii) most probable explanation 
(MPE), or (iii) maximum aposteriori probability (MAP) query. 

– Abnormal states are output as one candidate in the candidate set D(t)

• A stuck node ST ∈ ST represents the stuck state of a sensor. A sensor becomes 
stuck when its reading is the same over a period of time, regardless of what the 
underlying process state is.

• A delta node D ∈ D represents the discretized difference (delta) between the current 
sensor reading S(t) and its previous reading S(t – 1). 

• A change node CH ∈ CH represents overall trends in sensor readings (long term 
behavior), computed CUSUMs. 

ProDiagnose/
ProADAPT

Commands

Health status

Sensor readingsINPUT: 
Observed 
Variables

OUTPUT: 
Query 

Variables
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CUSUM – Continuous Faults (1)

Health node 

Sensor 
node 

Stuck 
node 

Change 
node 
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CUSUM – Continuous Faults (2) 
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