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Data-Driven Algorithms

• Evaluate different algorithms for their 
suitability for various applications

• Assess trade-offs that arise from

• Amount of data needed

• Computational complexity

• Robustness towards input space 
perturbations

• Ability to support uncertainty 
management

• Accuracy and usability of predictions 
(prediction horizon)

• Develop performance evaluation 
metrics for prognostics

Motivation Software Demonstration

Artificial Neural Networks

•Universal function approximators

•Widely used for data-driven 
learning, i.e. provide a well 
represented prognostic technique, 
e.g. DWNN, CPNN

•Do not incorporate uncertainty 
management inherently

• Interactive software environment allows visual 
assessment in addition to numerical performance 
tracking.

•Supervised learning algorithm using 
expectation maximization

•Stochastic sparse kernel method similar to 
Support Vector Machines

•Allows probabilistic outputs in a Bayesian 
framework

–Data

–Likelihood of the data set

–Predictions for the new observations x*

Relevance Vector Machines
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Gaussian Process Regression

•Supervised learning belonging to the 
family of least squares estimation 
algorithms 

•Bayesian framework to derive posteriors 
from priors (history data)

•Provides mean and variance estimates 
for the predictions

–Prior

–Posterior
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Algorithms should be developed to cater to specific 
prediction tasks

Features

• Runs multiple prediction algorithms

• Tracks and compares prediction 
performance simultaneously

• Computes performance metrics

Develop data-driven algorithms for 
prognostics and demonstrate their 
applicability on diverse applications to 
benchmark prognostic performance.

Polynomial Regression

A simple regression approach, here used 
as baseline for comparisons
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Algorithms for Prognostics
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•State-of-the-art for nonlinear non-Gaussian 
state estimation

•Uses model to predict and data to correct 
prediction

•Performs model adaptation in addition to state 
estimation, tracking and prediction

•Nice trade-off between the convergence 
guarantees of Monte-Carlo methods and the 
computational simplicity of Kalman filters

•Allows explicit representation and 
management of the uncertainties in the model, 
the measurements and expected usage

• If only part of the state is non-deterministic, 
the other part can be treated deterministically 
in a Rao-Blackwellized Particle Filter, thus 
improving the precision of the prognosis
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