Distributed Convex Optimization for Large Scale Statistical Modeling and Data Analysis

Stephen Boyd

Joint work with Neal Parikh, Eric Chu, Borja Peleato, Dimitry Gorinevsky

Stanford University

Outline

• convex optimization

- ℓ_1 heuristic for sparsity
- some (simple) examples
- distributed convex optimization
 - consensus optimization
 - arbitrary scale data fitting

Optimization

- form mathematical model of real (design, analysis, synthesis, estimation, control, . . .) problem
- use computational algorithm to solve
- standard formulation:

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in \mathcal{C} \end{array}$

- x is the (decision) variable; f is the objective; C is the constraint set
- other formulations: multi-criterion optimization, trade-off analysis,

The good news

• everything¹ is an optimization problem

¹i.e., much of engineering design and analysis, data analysis

NASA Conference on Intelligent Data Understanding, October 2010

The bad news

- you can't (really) solve most optimization problems
- even simple looking problems are often intractable

Except for some special cases

- least-squares and variations (*e.g.*, optimal control, filtering)
- linear and quadratic programming
- convex optimization

well, OK, there are some other special cases

Convex optimization problem

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in \mathcal{C} \end{array}$

• C is convex (closed under averaging):

$$x, y \in \mathcal{C}, \ \theta \in [0, 1] \implies \theta x + (1 - \theta)y \in C$$

• *f* is convex (graph of *f* curves upward):

$$\theta \in [0,1] \implies f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y)$$

not always easy to recognize/validate convexity

Convex optimization

- (no analytical solutions, but) can solve convex optimization problems **extremely well** (in theory and practice)
 - get global solutions, with optimality certificate
 - problems with 10^3 - 10^5 variables, constraints solved by generic methods on generic processor
 - (much) larger problems solved by iterative methods and/or on multiple processors
 - differentiability plays a minor role
- beautiful (and fairly complete) theory

Applications of convex optimization

- convex problems come up much more often than was once thought
- many applications recently discovered in
 - control
 - combinatorial optimization
 - signal & image processing
 - communications, networking
 - analog and digital circuit design
 - statistics, machine learning, data modeling
 - finance

How convex optimization is used in applications

- direct/exact solution of problem
 - *e.g.*, ML logistic model fitting, linearly constrained regression

approximation/relaxation

- *e.g.*, compressed sensing, SVM, fault estimation

• subroutine

- *e.g.*, nonnegative matrix factorization (solve sequence of QPs)

How convex optimization problems are solved

- medium size problems easily solved by generic interior-point methods
- parser-solvers make prototyping fast & easy
- for large scale problems: custom codes for specific problems
- for arbitrary scale: distributed optimization

Parser/solvers for convex optimization

- specify convex problem in natural form
 - declare optimization variables
 - form convex objective and constraints using a specific set of atoms and calculus rules
- problem is convex-by-construction
- easy to parse, automatically transform to standard form, solve, and transform back
- implemented using object-oriented methods and/or compiler-compilers
- huge gain in productivity (rapid prototyping, teaching, research ideas)

Example (cvx)

convex problem, with variable $x \in \mathbf{R}^n$:

minimize $||Ax - b||_2 + \lambda ||x||_1$ subject to $Fx \leq g$

cvx specification:

```
cvx_begin
    variable x(n)    % declare vector variable
    minimize (norm(A*x-b,2) + lambda*norm(x,1))
    subject to F*x <= g
cvx_end
```

when cvx processes this specification, it

- verifies convexity of problem
- generates equivalent IPM-compatible problem
- solves it using SDPT3 or SeDuMi
- transforms solution back to original problem

the cvx code is easy to read, understand, modify

ℓ_1 heuristic for sparsity

- adding $\lambda \|z\|_1$ to objective, or adding constraint $\|z\|_1 \leq \gamma$
 - preserves convexity (hence, tractability) of problem
 - tends to give a solution with z sparse (few nonzero entries)
- an old idea (Claerbout early 1980s, . . .)
- basis of many well known methods: compressed sensing, basis pursuit, LASSO, SVM, total variation de-noising, . . .
- some new theorerical results (Donoho, Candes, . . .): special cases in which more can be said than 'tends to'

Parsimonious model fitting

- parameter fitting problem:
 - $x \in \mathbf{R}^n$: model parameters to be chosen
 - $y \in \mathbf{R}^m$: set of measurements, observations
 - f(x, y): implausibility of x, given observations y
 - goal: find sparse x (parsimonious model) with f(x, y) small
- ℓ_1 -regularized method: choose x to minimize $f(x, y) + \lambda \|x\|_1$
 - parameter $\lambda \geq 0$ trades off fit and sparsity
 - in many interesting cases, f is convex in x, so problem is convex
 - often works really well
- gives method for modeling with $n \gg m$ (!!) (*i.e.*, way more parameters than data samples)

Support vector machine

• data (x_i,y_i) , $i=1,\ldots,m$

- $x_i \in \mathbf{R}^n$ feature vectors;

- $y_i \in \{-1, 1\}$ Boolean outcomes
- find $a \in \mathbf{R}^n$, $b \in \mathbf{R}$ with

-
$$y_i(a^T x_i - b) \ge 1$$
 for most x_i

- $||a||_2$ small $(2/||a||_2$ is width of separating slab $|a^T z b| \le 1$)
- SVM: minimize $||a||_2 + \lambda \sum_{i=1}^m (1 y_i(a^T x_i b))_+$
 - convex problem, can be converted to QP
 - λ trades off slab width and (roughly) number of misclassifications

 $a^{T}z - b = 0$ (solid); $|a^{T}z - b| = 1$ (dashed)

Robust Kalman filtering

- estimate state of a linear dynamical system driven by IID noise
- sensor measurements have occasional outliers (failures, jamming, ...)
- model: $x_{t+1} = Ax_t + w_t$, $y_t = Cx_t + v_t + z_t$

-
$$w_t \sim \mathcal{N}(0, W)$$
, $v_t \sim \mathcal{N}(0, V)$

 $- z_t$ is **sparse**; represents outliers, failures, . . .

- (steady-state) Kalman filter (for case $z_t = 0$):
 - time update: $\hat{x}_{t+1|t} = A\hat{x}_{t|t}$
 - measurement update: $\hat{x}_{t|t} = \hat{x}_{t|t-1} + L(y_t C\hat{x}_{t|t-1})$
- we'll replace measurement update with robust version to handle outliers

Measurement update via optimization

• standard KF: $\hat{x}_{t|t}$ is solution of quadratic problem

minimize
$$v^T V^{-1} v + (x - \hat{x}_{t|t-1})^T \Sigma^{-1} (x - \hat{x}_{t|t-1})$$

subject to $y_t = Cx + v$

with variables x, v (simple analytic solution)

• robust KF: choose $\hat{x}_{t|t}$ as solution of convex problem

minimize $v^T V^{-1} v + (x - \hat{x}_{t|t-1})^T \Sigma^{-1} (x - \hat{x}_{t|t-1}) + \lambda \|z\|_1$ subject to $y_t = Cx + v + z$

with variables x, v, z (requires solving a QP)

Example

- 50 states, 15 measurements
- with prob. 5%, measurement components replaced with $(y_t)_i = (v_t)_i$
- so, get a flawed measurement (*i.e.*, $z_t \neq 0$) every other step (or so)

State estimation error

 $||x - \hat{x}_{t|t}||_2$ for KF (red); robust KF (blue); KF with z = 0 (gray)

Outline

- convex optimization
 - ℓ_1 heuristic for sparsity
 - some (simple) examples
- distributed convex optimization
 - consensus optimization
 - arbitrary scale data fitting

Distributed convex optimization

- variables, constraints, data distributed across multiple processors
- processors solve whole problem by iteratively
 - solving subproblems
 - exchanging (relatively small) messages
- (some) methods:
 - primal, dual decomposition (1950s)
 - proximal decomposition (1980s; trace to 1960s)
 - Peaceman-Rachford, Douglas-Rachford splitting (1960s; for PDEs)
 - alternating directions method of multipliers (1976–now)

Alternating direction method of multipliers

• ADMM problem form (with f, g convex)

 $\begin{array}{ll} \mbox{minimize} & f(x) + g(z) \\ \mbox{subject to} & Ax + Bz = c \end{array}$

- two sets of variables, with separable objective

• $L_{\rho}(x, z, y) = f(x) + g(z) + y^T (Ax + Bz - c) + (\rho/2) ||Ax + Bz - c||_2^2$ • ADMM:

$$\begin{aligned} x^{k+1} &:= \operatorname{argmin}_{x} L_{\rho}(x, z^{k}, y^{k}) & //x \text{-minimization} \\ z^{k+1} &:= \operatorname{argmin}_{z} L_{\rho}(x^{k+1}, z, y^{k}) & //z \text{-minimization} \\ y^{k+1} &:= y^{k} + \rho(Ax^{k+1} + Bz^{k+1} - c) & // \text{ dual update} \end{aligned}$$

Lasso

• lasso problem:

minimize
$$(1/2) ||Ax - b||_2^2 + \lambda ||x||_1$$

• ADMM form:

minimize
$$(1/2) ||Ax - b||_2^2 + \lambda ||z||_1$$

subject to $x - z = 0$

• ADMM:

$$\begin{aligned} x^{k+1} &:= (A^T A + \rho I)^{-1} (A^T b + \rho z^k - y^k) \\ z^{k+1} &:= S_{\lambda/\rho} (x^{k+1} + y^k/\rho) \\ y^{k+1} &:= y^k + \rho (x^{k+1} - z^{k+1}) \end{aligned}$$

Lasso example

• example with dense $A \in \mathbb{R}^{1500 \times 5000}$ (1500 measurements; 5000 regressors)

• computation times

factorization (same as ridge regression)	1.3s
subsequent ADMM iterations	0.03s
lasso solve (about 50 ADMM iterations)	2.9s
full regularization path (30 λ 's)	4.4s

(competitive with specialized, highly tuned solvers)

Consensus optimization

• want to solve problem with N objective terms

minimize $\sum_{i=1}^{N} f_i(x)$

- e.g., f_i is the loss function for *i*th block of training data

• ADMM form:

minimize
$$\sum_{i=1}^{N} f_i(x_i)$$

subject to $x_i - z = 0$

- x_i are local variables
- z is the **global variable**
- $x_i z = 0$ are **consistency** or **consensus** constraints
- can add regularization using a g(z) term

Consensus optimization via ADMM

•
$$L_{\rho}(x, z, y) = \sum_{i=1}^{N} \left(f_i(x_i) + y_i^T(x_i - z) + (\rho/2) \|x_i - z\|_2^2 \right)$$

• ADMM:

$$\begin{aligned} x_i^{k+1} &:= \arg \min_{x_i} \left(f_i(x_i) + y_i^{kT}(x_i - z^k) + (\rho/2) \|x_i - z^k\|_2^2 \right) \\ z^{k+1} &:= \frac{1}{N} \sum_{i=1}^N \left(x_i^{k+1} + (1/\rho) y_i^k \right) \\ y_i^{k+1} &:= y_i^k + \rho(x_i^{k+1} - z^{k+1}) \end{aligned}$$

• with regularization, averaging in z update is followed by $\mathbf{prox}_{g,\rho}$

Consensus optimization via ADMM

• using $\sum_{i=1}^{N} y_i^k = 0$, algorithm simplifies to

$$x_{i}^{k+1} := \underset{x_{i}}{\operatorname{argmin}} \left(f_{i}(x_{i}) + y_{i}^{kT}(x_{i} - \overline{x}^{k}) + (\rho/2) \|x_{i} - \overline{x}^{k}\|_{2}^{2} \right)$$
$$y_{i}^{k+1} := y_{i}^{k} + \rho(x_{i}^{k+1} - \overline{x}^{k+1})$$

where $\overline{x}^k = (1/N) \sum_{i=1}^N x_i^k$

- in each iteration
 - gather x_i^k and average to get \overline{x}^k
 - scatter the average \overline{x}^k to processors
 - update y_i^k locally (in each processor, in parallel)
 - update x_i locally

Statistical interpretation

- f_i is negative log-likelihood for parameter x given *i*th data block
- x_i^{k+1} is MAP estimate under prior $\mathcal{N}(\overline{x}^k + (1/\rho)y_i^k, \rho I)$
- prior mean is previous iteration's consensus shifted by 'price' of processor i disagreeing with previous consensus
- processors only need to support a Gaussian MAP method
 - type or number of data in each block not relevant
 - consensus protocol yields global maximum-likelihood estimate

Consensus classification

- data (examples) (a_i, b_i) , i = 1, ..., N, $a_i \in \mathbf{R}^n$, $b_i \in \{-1, +1\}$
- linear classifier $sign(a^Tw + v)$, with weight w, offset v
- margin for *i*th example is $b_i(a_i^Tw + v)$; want margin to be positive
- loss for *i*th example is $l(b_i(a_i^Tw + v))$
 - l is loss function (hinge, logistic, probit, exponential, . . .)
- choose w, v to minimize $\frac{1}{N} \sum_{i=1}^{N} l(b_i(a_i^T w + v)) + r(w)$
 - r(w) is regularization term (ℓ_2 , ℓ_1 , . . .)
- split data and use ADMM consensus to solve

Consensus SVM example

- hinge loss $l(u) = (1 u)_+$ with ℓ_2 regularization
- baby problem with n = 2, N = 400 to illustrate
- examples split into 20 groups, in worst possible way: each group contains only positive or negative examples

Iteration 1

NASA Conference on Intelligent Data Understanding, October 2010

Iteration 5

Iteration 40

NASA Conference on Intelligent Data Understanding, October 2010

ℓ_1 regularized logistic regression example

- logistic loss, $l(u) = \log (1 + e^{-u})$, with ℓ_1 regularization
- $n = 10^4$, $N = 10^6$, sparse with ≈ 10 nonzero regressors in each example
- split data into 100 blocks with $N = 10^4$ examples each
- x_i updates involve ℓ_2 regularized logistic loss, done with stock L-BFGS, default parameters
- time for all x_i updates is maximum over x_i update times

Distributed logistic regression example

Fleet-wide input-output model

$$y_t^i = Ax_t^i + v_t^i, \quad i = 1, \dots, N, \quad t = 1, \dots, T$$

- i indexes unit in fleet of N units
- t is time period
- $x_t^i \in \mathbf{R}^n$ is (measured) input
- $y_t^i \in \mathbf{R}^m$ is (measured) output
- $A_t^i \in \mathbf{R}^{m \times n}$ is unit- and time-varying (input-output) model
- v_t^i is noise

Anomaly detection

- most units exhibit nominal behavior: $A_t^i \approx A^{\text{nom}}$
- anomalous unit: $A^i_t \approx A^{\text{anom}} \neq A^{\text{nom}}$

• anomalous change at time
$$t_0$$
: $A_t^i \approx \begin{cases} A^{\text{nom}} & t \leq t_0 \\ A^{\text{anom}} & t > t_0 \end{cases}$

• goal: find anomalous units, changes, from measured fleet-wide data

$$(x_t^i, y_t^i), \quad i = 1, \dots, N, \quad t = 1, \dots, T$$

Regularized regression fit

$$\begin{array}{ll} \text{minimize} & \sum_{i,t} \|y_t^i - A_t^i x_t^i\|_2^2 & // \text{ squared residual} \\ & +\lambda \sum_{i,t} \|A_t^i - A^{\mathsf{nom}}\| & // \text{ sum of norms (offset)} \\ & +\mu \sum_{i,t}^{i,t} \|A_{t+1}^i - A_t^i\| & // \text{ sum of norms (jumps)} \end{array}$$

- λ , μ : positive parameters
- number of variables: mn(NT+1)
- split with $x \sim A^i_t$, $z \sim A^{\rm nom}$; do consensus ADMM
- *x*-update separates across units

Small example

•
$$m = n = 2$$
, $T = 100$, $N = 20$

• one anomalous unit, one anomalous change

NASA Conference on Intelligent Data Understanding, October 2010

Larger example

- m = 6, n = 9, T = 1000, N = 1000
 - 54 million variables
- each unit's data handled on separate processor
 - subproblem solved in ≈ 10 seconds, exploiting (banded) structure
- with 30 ADMM iterations, takes a few minutes
- these are (good) estimates, from our experience so far

Arbitrary-scale distributed statistical estimation

- **scaling**: scale algorithms to datasets of arbitrary size
- cloud computing: run algorithms in the cloud
 - each node handles a modest convex problem
 - decentralized data storage
- **coordination**: ADMM is meta-algorithm that coordinates existing solvers to solve problems of arbitrary size
 - (c.f. designing specialized large-scale algorithms for specific problems)
- rough draft at Boyd website, papers section