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Abstract. This paper presents recent results of steady fluid-structure-interaction simulations 
as well as results of unsteady elastic motion simulations of the HIRENASD (High Reynolds 
Number Aero-Structural Dynamics) wind tunnel model that were carried out at the Institute of 
Aeroelasticity in Göttingen. The main objectives of these investigations were the validation of 
our in-house computational aeroelasticity software for the simulation of fluid structure 
interaction on the one hand and the computational fluid dynamics solver TAU (development 
of the DLR) on the other hand against experimental results obtained from the HIRENASD 
project. With respect to this validation, particular attention was paid to check whether the 
static deformations of the wing as well as the pressure distribution on the surface of the wing 
could be predicted correctly. Furthermore, the results of the unsteady simulations were 
analyzed and validated additionally with respect to the position, the movement and the 
intensity of the shock evolved on the wing oscillating at high frequencies. 

Subsequent to a brief description of the applied numerical methods the simulation models will 
be presented in detail. The results of the steady aeroelastic simulations at various parameters 
(angle of attack, flow properties) that were used to validate the coupling algorithms and to 
show the capability of the correct prediction of deformations and changes in the flow field are 
presented. Finally, the comparison of any steady and unsteady simulation results with 
experimental data is presented. 

1 INTRODUCTION 
Aeroelastic simulations comprise the prediction of both steady and unsteady aeroelastic 
phenomena. These include e.g. the deformation of wings, stability (flutter, buffet) as well as 
dynamic response analysis, of e.g. gust loads. While most of the common aeroelastic analysis 
are performed in the frequency domain, various cases in high-speed flight domains and in 
regions of large angles of attack can only be analyzed correctly by employing high-fidelity 
models. These models typically couple structural dynamics (therefore using finite element 
analysis, FEA) and computational fluid dynamics (CFD). For the handling of industrial 
configurations, the numerical models are usually set up in well-established and validated 
disciplinary codes. Static deflections, dynamic stability and response can then be simulated 
directly using co-simulation among these disciplinary codes. However, for reliable results 
such an approach requires great attention concerning the set-up of the problem. The obtained 
results are sensitive to the modeling techniques applied, which comprise mainly the mesh set-
up and the numerical schemes (at the CFD part). The proper choice of the spatial coupling 
scheme is crucial for adequate results as well. 

In 2007, the HIRENASD wind tunnel experiment was conducted in the cryogenic European 
Wind Tunnel (ETW) by RWTH Aachen University and sponsored by the German Research 
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Association (DFG). The configuration consists of a wing-fuselage model, where the wing was 
designed with a specified elasticity and fixed with a rigid fuselage at the wind tunnel wall. 
The main objectives of this experiment were the collection of comprehensive data for the 
validation of aeroelastic simulation programs on the one hand and to provide a profound 
insight into the physical phenomena of the flow field at transonic flight conditions at high 
Reynolds numbers on the other side. Such physical conditions typically occur in flights of 
large transport aircraft [1], [2]. 

In this paper the authors present results of time-accurate aeroelastic simulations of selected 
experimental cases, were dedicated in-house developed coupling software was used. The CFD 
parts of the coupled simulations were done by the TAU code, a time-accurate, hybrid finite-
volume flow solver developed by the DLR. The numerical analysis were performed to 
accurately predict the non-linear behavior of the flow field in the transonic flow regime at 
high Reynolds numbers, both for steady and unsteady elastic deformations of the wing model. 

Another focus of the investigations was to verify whether the coupling software and 
especially the flow solver are able to correctly represent the non-linear, unsteady behavior of 
the flow field occurring at the complex interaction of fluid and structure systems. As a result, 
the second part of this paper presents simulations employed to compare the results of 
unsteady aerodynamic response experiments. For this purpose, simulations of elastic wing 
motions were performed and the obtained pressure distributions have been compared to 
measured pressure distributions. 

2 THE NUMERICAL METHODS USED FOR THE SIMULATIONS 
In this section the employed numerical methods of the simulations are described. These 
methods can be divided in two parts. The first part describes the method for the steady 
aeroelastic coupling (fluid structure interaction method) using a modal approach. Therein the 
approach for representing the elastic behavior of the structure as well as the applied 
interpolation method (which is based on scattered data interpolation with radial basis 
functions to exchange data on boundaries between the structural and the aerodynamic model) 
are described. The second part describes the methods applied to the unsteady simulations in 
order to validate selected, unsteady wind tunnel experiments. 

2.1 The Coupling Method for Steady Aeroelastic Simulations 

The coupling of aerodynamics, usually represented by a CFD model, and structural dynamics, 
represented by a FE model, is accomplished via the so called weak coupling strategy. At this 
method the flow solver and the structural solver each integrate their respective governing 
equations separately. Boundary conditions are exchanged in each iteration step via an 
interpolation method based on scattered data which becomes necessary due to the different 
meshes used for each system discretization. This data exchange is carried out as long as a 
specified convergence criterion is reached. The chosen convergence criterion can e.g. be the 
minimum of the differences between the last and the actual maximum displacement of a 
certain point of the structure. In a general and discrete approach, the data exchanged at the 
system boundaries are the structural displacements on the one hand and the aerodynamic 
forces on the other hand. These data are exchanged between the flow solver and the structural 
solver by spatial interpolation. Historically, two coupling strategies evolved that are called 
discrete approach and modal approach. They differ in the handling of the degrees of freedom 
of the system: Either the original degrees of freedom of the structural model are used in a 
straightforward manner or the system is described by a reduced basis of modal coordinates. 
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For any steady, coupled aeroelastic simulations presented in this paper the modal approach 
was used. The associated governing equations and their derivation are described in the 
following. 

The governing equation for a linear elastic structure can be written as 

 Kx f=  (1) 

where K represents the stiffness matrix of the system, f the vector of the external loads and x 
the corresponding displacement vector. In the modal approach the structural elasticity is 
introduced from a modal decomposition of the discrete finite element model, thus leading to a 
linearly approximated elastic model based on a reduced number of modal degrees of freedom. 
With the mass-orthogonally scaled modal basis sΦ , and the generalized coordinates q the 
physical displacements can be expressed as 

 s sx qΦ

s

 (2) =

Equation (1) can then be written as 

 sK q fΦ =  (3) 

Multiplying this equation again with the transposed modal basis T
sΦ  leads to 

 T
s s sK q fT

sΦ Φ = Φ  (4) 

Due to the mass-orthogonally scaled eigenmodes the expression ( )T 2
s sK diagΦ Φ = ϖ = Ω , 

equation (4) becomes 

 T
s sq fΩ = Φ  (5) 

Assuming that each eigenmode of the structure can be interpolated to the aerodynamic surface 
via an adequate interpolation method, the interpolated mode shapes of each eigenvalue on the 
aerodynamic surface can expressed by a H sΦ = Φ , respectively . The 
linear equation (5) then gets the form 
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where  now are the aerodynamic forces acting on the aerodynamic surface. The eigenvalues 

occur in the modal stiffness matrix 
a

( )1 ndiag , ,Ω = ω ω…2 2 . 

The right hand side of equation (6) shows the equivalence of the explicit back transfer of the 
aerodynamic forces and a following projection onto the structural eigenmodes to the direct 
projection of aerodynamic forces onto the individual mode shapes on the aerodynamic 
surface.  
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The deformation of the aerodynamic surface is subsequently determined by 

 a ax qΦ  (7) =

A reasonable number of structural modes must be chosen to represent the dynamic and static 
behavior appropriately. The structural eigenmodes need to be interpolated on the aerodynamic 
mesh only once during a pre-processing step. Favourably, this procedure allows convenient 
handling of free-free structures, since the aerodynamic forces can be split easily in forces 
acting on rigid-body motions and forces acting on elastic deformations. Additionally, the 
reduction to low wave number modes filters out local errors in the spatial interpolation. 
Contrarily to the discrete approach this method is inherently limited to linear structures. 

2.2 The Numerical Method for Unsteady Simulations 
Besides the necessity to gain a deeper insight in the physics involved in aeroelastic 
phenomena, the HIRENASD experiment was conducted to obtain data for the validation of 
methods used for multidisciplinary design and aeroelastic simulations, both steady and 
unsteady, of airplanes in flight [2]. To get such a comprehensive data base of the dynamic, 
aeroelastic behavior of the wing model, unsteady elastic motions of the wing were carried out 
in some of the experiments. Therefore, the wing model was excited in its resonance 
frequencies in order to respond in its elastic modes. These experiments furthermore yield 
information about the unsteady behavior of the pressure distribution on the wing surface as 
well as information about the phase shift between the motion and the response of the flow 
field, the instantaneous shock position and the amplitude of the shock. For the simulations of 
these kinds of experiments a simple approach described in the following was used. In the 
selected experiment for our simulation the second bending mode of the structure was excited. 
Due to the fact that the measured deformations of this mode were not free from interferences, 
the corresponding structural mode shape of the finite element model has been interpolated on 
the aerodynamic surface mesh. Within the unsteady simulations, the elastic motion of the 
wing has been described by an analytical, harmonic function. For the interpolation of the 
deflections on the aerodynamic mesh a scattered data interpolation method was applied [3]. In 
order to simulate the elastic deformation of the wing as accurately as possible, different radial 
basis functions were tested in a preliminary investigation [4]. In this investigation, the basis 
functions were tested successively for given analytical form functions that approximate the 
second harmonic mode shape. The radial basis function that yields the lowest interpolation 
error (in this case the basis function of the Thin Plate Spline) regarding these analytical 
functions was applied. The interpolated second mode shape of the structure on the 
aerodynamic surface mesh is depicted in Figure 1. 

 
Figure 1: Front and side view of the on the aerodynamic surface interpolated, normalized second mode shape. 
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For the representation of the unsteady, elastic motion of the wing the aerodynamic surface 
was deformed following the harmonic equations 

 
x a,x

y a,y

z a,z

ˆu (t) a sin( t)
ˆu (t) a sin( t)

ˆu (t) a sin( t)= Φ ϖ

= Φ ϖ

= Φ ϖ

 (8) 

In equation (8)  are the components of the time dependent displacements at 
each aerodynamic surface point in the corresponding coordinate direction. The vectors 

 represent the first or the second eigenmode, respectively, of the structure 
interpolated on the aerodynamic mesh, which are normalized to a maximum component of 
one. The value a  is the maximum displacement amplitude and 

x y zu (t), u (t), u (t)

, ,Φ Φ Φ

ˆ 2 f

a,x a,y a,z

ϖ = π is the respective 
excitation frequency that is directly obtained from the experimental data. The maximum 
amplitude in the numeric simulation was calculated from the signal of an acceleration sensor 
(#15) which is obtained from the experimental data as well. This sensor is positioned near the 
leading edge at the wing tip. The signal of this sensor is comparatively free from any 
interferences and its quality is sufficiently good. Assumed that the motion can be 
approximated as a harmonic function, the displacement of the acceleration sensor #15 was 
calculated from its signal via equation 

 15 15
2 2 2

a,z,15 a,z,15

a aâ
4 f

= =
−ϖ Φ − π Φ
�� ��ˆ ˆ

 (9) 

In this equation f denotes the excitation frequency,  the fitted acceleration amplitude of 
sensor #15 and  the value of the interpolated structural eigenmode on the aerodynamic 
surface in z-direction, located at the same position as sensor #15. 

â15��

a,z,Φ 15

The according reduced frequency of each simulation was calculated using a reference length 
of the wing chord of c  (given in [1]). The reduced frequency can then be 
calculated as follows: 

0.3445m=

 *

v Ma RT∞

c 2 fc

∞

ϖ π
ϖ = =

γ
 (10) 

The deformation of the aerodynamic mesh was realised using the TAU mesh deformation tool 
[5]. Each physical time step the new position of the surface mesh is calculated via equation 
(8) and the whole volume mesh is deformed by the mesh deformation tool. The mesh 
velocities are computed via the differences of the last and the current mesh position at each 
aerodynamic mesh point divided by the actual time step size. All unsteady derivatives are 
calculated subsequently by the flow solver. 

3 THE EMPLOYED FLOW SOLVER 
For the steady simulations presented in the following the TAU-Code [6] was coupled with a 
finite element structural model of the HIRENASD wing. The TAU flow simulation package 
comprises a finite-volume solver that solves the Reynolds-Averaged Navier-Stokes (RANS) 
equations on unstructured grids, including several 1- and 2-equation turbulence models as 
well as LES- and DES models. Additionally, the package includes a pre-processor, a grid 
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adaptation module and a grid deformation module [5]. Different interfaces to structural 
analysis software allow coupled simulations of static and dynamic aeroelastic problems. The 
pre-processing module is used for constructing a dual grid of control volumes from the initial 
grid which can be composed of tetrahedral, prismatic, hexahedral or pyramidal elements, as 
well as for partitioning the grid to enable parallel computations. The dual grid contains 
information about metric data, boundary types and neighbouring domains. The CFD grids 
were generated using the commercial grid generation software CENTAUR [7]. 

For the spatial discretization a centered scheme with scalar artificial dissipation was used in 
combination with both an explicit 3-stage Runge-Kutta scheme and an implicit LUSGS 
scheme for the temporal integration. For any unsteady simulations a dual time-stepping 
method was employed, where a multi-grid cycle is used for convergence acceleration on the 
pseudo time line. 

4 USED NUMERICAL MODELS FOR THE HIRENASD WIND TUNNEL MODEL 
In the following the used numerical models are described. For the aerodynamic simulation an 
unstructured grid was build up with CENTAUR. Basis for this model was the original, 
structured mesh provided by RWTH Aachen University. 

4.1 Computational Fluid Dynamics Model 
The original computational fluid dynamics model provided by RWTH is a structured multi 
block mesh with approximately 3.3 million points and 3.2 million cells [8]. For the TAU-
Code it was necessary to build up a new CFD mesh in order to use the whole performance of 
the solver. Therefore, a new mesh was developed based on the geometry of the original mesh. 
This mesh is shown in Figure 2. 

 
Figure 2: Used CFD model – left whole wing fuselage model, right with tetrahedral elements and boundary layer 

The left picture depicts the mesh on the wing surface and the symmetry plane. In the right 
picture the boundary layer and the volume cells are shown additionally. The thickness of the 
boundary layer was calculated for a Reynolds number of about 14 million. It contains 30 
prismatic layers with an entire thickness of approximately 1.4 % of the mean chord length 
(0.3445 m). To refine significant regions of the mesh, e.g. the leading and the trailing edge of 
the wing as well as the wing tip region, so called geometric sources were inserted. In the 
region of the fuselage the sizes of the surface cells were coarsen to limit the number of points 
of the entire mesh. Relevant properties of the mesh are listed in Table 1. 
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Number of nodes Number of total cells Number of surface cells 
~ 5.37 Million ~ 14.18 Million ~ 311000 

Table 1 Properties of the deployed CFD mesh. 

4.2 Structure Mechanics Model 
A usual finite element model build of solid elements with approximately 200.000 nodes 
provided by RWTH Aachen University was used for the structural discretization of the 
HIRENASD wing model. This model is depicted in Figure 3. The elastic mode shapes of the 
model were calculated and used for the coupling process in modal coordinates. 

 
Figure 3: Used finite elements model – left whole wing model, right clamped section. 

The model is validated statically and dynamically, this guarantees reliable elastic 
deformations under aerodynamic loads. Further descriptions of the model and its properties 
are referred to in [1], [2] and [8]. 

5 RESULTS 
In the following the results of the numerical simulations are presented. At first, steady 
aeroelastic coupling simulations were performed at transonic flow conditions including strong 
shocks and large q/E ratio, where significant elastic deformations occurred. The simulation 
results are compared to data measured at the corresponding experiments. In the second part, 
the results of the unsteady simulations performed with elastic motions of the wing model are 
presented. All results are compared to experimental data at specific wind tunnel and model 
conditions. 

5.1 Results of the Steady Aeroelastic Simulations 
In this section different steady, aeroelastic coupling simulations at various angles of attack are 
presented. These simulations were used to validate the coupling algorithms and to show their 
capabilities of both predicting the correct deformations of an elastic wing supposed to 
transonic flow and the associated changes in the flow field due to these deformations. 

At first two different turbulence models (both the 1-equation Spalart-Allmaras and the 2-
equation LEA-k-ω model) were used in the coupled simulations [9]. Since the differences in 
the simulation results for these two turbulence models emerged as very small, the Spalart-
Allmaras model was used in all coupled computations. All steady aeroelastic simulations 
were performed for a Mach number of 0.80. Consequently, parts of the flow field involve 
strong shocks due to local supersonic regions. Since interesting transonic flow phenomena 
and significant wing deformations were found in the experiment at a Mach number of 0.80, a 
Reynolds number of 14 millions, and a q/E ratio of 0.47e-06, this case was investigated in 
more detail with various angles of attack (values: -1.0, 0, 1.0, 2.0, and 3.0 degrees). 
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The results clearly indicate an increasing deformation of the model from the fuselage to the 
wing. Figure 4 schematically depicts the comparison between the undeformed and the 
deformed wing for the aeroelastic equilibrium state at an AoA=3.0°. The surface pressure 
distribution in this plot belongs to the aeroelastic equilibrium state, a relatively strong shock 
occurs between approximately 20 and 70 percent of the wing span. Furthermore, the 
deformation of the wing at the tip is shown for the same angle of attack. The maximum 
deformation at this point reaches 0.0382 meters. Due to the backward swept wing and the 
aerodynamic loads an additional strong change in the angle of attack of Δα=-1.21° occurs. 

       
Figure 4:  Comparison of jig-shape versus aeroelastic equilibrium of the model at AoA=3.0° and corresponding 
 surface pressure distribution (left). Bending deformation and changes of the angle of attack at the 
 wing tip at η=0.99 and AoA=3° (right). 

In Figure 5 the comparisons between measured and calculated bending deformations of the 
wing for two different angles of attack are shown. In these two cases significant deformations 
occurred and thus a comparison between the measured and the calculated deformations give a 
reliable impression of the quality of the numerical simulation concerning the flow field and 
the interaction with the elastic structure. The numerically calculated wing deformation was 
compared with the deformations measured at the experiment for angles of attack of 2.0° (left) 
and 3.0° (right). 

      
Figure 5: Deformation of the leading and the trailing edge and changes in the AoA along the wing span for case 
 AoA=2.0 degree (left) and AoA=3.0 degree (right). 
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The numerically calculated elastic deformation for an AoA=2.0° fits excellently the measured 
data on the entire wing, both at the leading edge and the trailing edge. The bandwidth of the 
leading and the trailing edge deformations of the simulation encloses any of the measured 
deformations. It should be mentioned that any markers are positioned in the region between 
the leading and the trailing edge of the wing surface. The same statement can be given for an 
AoA=3.0°, the good correlation between the simulation and the experimental results is clearly 
noticeable. The distribution of the twist angle is plotted additionally in Figure 5. 

For the variation of the angle of attack all calculated maximum deformations at the leading 
and the trailing edge at the wing tip (η=1.0) as well as the maximum changes in angle of 
attack (torsion angle) at the same position are listed in Table 2. 

α  [deg] LEzΔ  [mm] TEzΔ  [mm] Δα  [deg] 

-1.0 5.82 6.83 -0.36
0.0 12.6 14.2 -0.57 
1.0 19.8 22.0 -0.79 
2.0 26.8 29.7 -1.01 
3.0 34.8 38.2 -1.21 

Table 2: Simulation results of discrete displacements at the leading and the trailing edge of the wing as well as 
 the wing twist both at η = 1.0 (wing tip). 

In Figure 6 the dimensionless pressure coefficient (cp) is shown for all simulations. Each row 
depicts the results of three different cut planes. The first cut plane is located at 14%, the 
second one at 46%, and the third one at 95% the of the wing span. The angle of attack varies 
between -1.0 and 3.0 degrees. The results of the jig shape and the deformed shape compared 
to the pressure coefficients of the experiment are shown. 

 

α = -1.0° 
η=0.46

α = -1.0° 
η=0.14 

α = -1.0° 
η=0.95 

 

α = 0.0° 
η=0.14 

α = 0.0° 
η=0.46

α = 0.0° 
η=0.95 
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α = 1.0° 
η=0.46

α = 1.0° 
η=0.14 

α = 1.0° 
η=0.95 

 

α = 2.0° 
η=0.32 

α = 2.0° 
η=0.46

α = 2.0° 
η=0.95 

 

α = 3.0° 
η=0.32 

α = 3.0° 
η=0.46

α = 3.0° 
η=0.95 

Figure 6: Comparison of experimental and simulated (coupled simulation) pressure coefficients at different 
 sections of the wing (cut planes located at η=0.32, 0.46 and 0.95). The green lines depict the cp values 
 for the jig shape, the blue lines the coupled solution and the triangles the measured data. Flow 
 parameters: Re=14e+06, Ma=0.8, q/E=0.47e-06. Angles of attack: -1.0, 0, 1.0, 2.0, and 3.0°. 

Regarding the lowest angle of attack (-1.0 degrees), the influence of the elasticity of the wing 
becomes almost zero (this angle is close to the zero-lift angle). The simulated pressure values 
fit well with the measured ones. The suction peak at the upper side of the leading edge is 
reflected well by the simulation in all sections. Also the increase of the pressure on the lower 
side on the wing is predicted well. A low influence of the elastic deformation regarding the 
pressure coefficients can be observed beginning at an angle of AoA=0.0° at the outer section 
of the wing (η=0.95). This influence increases as the angle of attack increases. From an angle 
of attack in the region of 2.0° up to 3.0° it becomes evident that the deformation of the wing 
strongly influences the resulting pressure distributions. Mainly at higher angles of attack the 
differences in the outer sections of the wing between the jig-shape results and the aeroelastic 
simulations show the strong effect of the elasticity: increasing the angle of attack yields an 
increase of loads and thus an increase of deformation. In turn, a reduction of the local angle of 
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attack at the wing tip is followed by a local lift reduction in this section. The position of the 
shocks at higher angles of attack in the middle part of the wing could be predicted 
satisfyingly, as well as the pressure decrease due to the deformation of the wing and a change 
of the angle of attack in the outer sections. 

Figure 7 depicts the convergence behavior of the aerodynamic coefficients during the 
coupling process exemplarily for an AoA=2.0° and AoA=3.0°. The lift and the moment 
coefficients show convergence after ca. 15000 iterations. 

            
Figure 7: Convergence history of residual, c-lift, c-mx and c-my for a coupled simulation at AoA = 2.0° (left) 
 and AoA = 3.0° (right). 

In conclusion, it can be pointed out that the results presented above show that the steady 
coupling process chain with TAU can be used as a reliable tool for high-fidelity simulations 
of weak fluid-structure-interaction problems. Both the flow field and elastic deformations of 
the wing are reflected correctly. Also the experimental data of the HIRENASD wind tunnel 
experiment are well suited to verify numerical methods for steady fluid structure interaction 
simulations. 

6 Results of the Unsteady Aeroelastic Simulations 

In [9] a first dynamic aeroelastic coupling with the HIRENASD wing model was performed. 
The objective thereby was to show the capabilities of the coupling procedure concerning the 
simulation of transient aeroelastic behavior of the wing by using a CFD-code for complex 
transonic flow and a FE-code for the elastic properties of the wing. In the next step, the 
dynamic behavior of the transonic flow around the wing under transient elastic deformations 
of the wing at high frequency was investigated more detailed and compared to experimental 
results. Therefore, the wing was excited in its second eigenmode at a frequency of 78.9 Hz. 
The simulation was conducted as explained in section 2.2. As described in chapter (2.2), the 
second eigenmode of the structural model of the wing was used to represent the deformation 
of the wing in the simulation. Therefore, the CFD mesh is deformed appropriately each 
physical step during the simulation using the mesh deformation module provided by TAU. 
Mostly, one oscillation period of the wing was sub-divided into 180 steps, resulting in a 
physical time step of ca. 7e-5 seconds for a frequency of 78.9 Hz. Subsequent to the CFD 
simulation, a FFT analysis of the results (were only the first harmonic of the results was taken 
into account) was accomplished to gain the relevant data of the unsteady flow field: The 
magnitudes as well as the respective phase angles of the cp values. 
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Any unsteady data of the HIRENASD experiment are available as time-series. Unfortunately, 
the raw data appear quite noisy and thus an adequate postprocessing (filtering) is essential. It 
must be remarked that the Signal-to Noise-Ratio (SNR) of the experimental data turned out to 
be comparatively low with values ranging from ca. 6dB at the trailing edge of the wing to ca. 
15 dB at its leading edge. The magnitude and the phase angle of the pressure values are 
obtained by applying a transfer function to the filtered raw data. These transfer functions were 
derived each such that it specifies the correlation between the unsteady signal of a certain cp 
sensor and the unsteady displacement of a designated point on the wing surface (here the 
wing tip trailing edge was used). The data of interest (cp magnitude and the phase angle of 
every pressure sensor signal) are now calculated directly from the respective transfer function. 

Each unsteady simulation is based on a steady initial solution. Therefore, an aeroelastic 
equilibrium state was calculated via the coupling procedure from section 2.1. The physical 
properties for the two flow conditions steady and unsteady are listed in Table 3. 

Description Value 
Mach number [-] 0.80
Reynolds number [-] 7.0e+06 
q/E ratio [-] 0.22e-06 
Angle of attack [deg] 1.50 
Exiting frequency [Hz] 78.9 
Max. Amplitude [m] 3.9e-03 
Reduced frequency [-] 0.66 
Mode shape Second bending mode 

Table 3: Physical properties from the experiment (also used as input parameter for the steady and unsteady
 simulations). 

In Figure 8 the steady pressure coefficients of the three cut planes located at 32, 66, and 95% 
of the wing span are depicted for the undeformed simulation, the aeroelastic equilibrium state, 
and the experimental data. It can be observed that the solution of the aeroelastic equilibrium 
state fits the experimental data better than the solution of the undeformed mesh in the outer 
section at η=0.95 does. This behavior arises due to the elastic deformation of Δz=0.013 meter 
at the wing tip. This deformation decreases the effective local angle of attack; the result is a 
decrease of the local pressure coefficients. The position of the shock in the inner region of the 
wing could not be predicted correctly, recognizable in the left plot of Figure 8. Though the 
data fit well at the outer cut planes, in this region the highest deformations of the wing were 
expected. 

 
Figure 8: Steady pressure coefficients of the undeformed state, the aeroelastic equilibrium state, and the 
 experimental data (cut planes located at η=0.32/0.66/0.95). 
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After the calculation of the initial states the unsteady simulations with the wing oscillating at 
a specified frequency were performed. Here, six periods of the harmonic motion for the 
second bending mode at 78.9 Hz. were calculated with 180 time steps for each period. For 
each time step a maximum of 100 inner iterations and a minimum residual of 1e-04 were set 
to get a converged solution, but also to limit the calculation time. In Figure 9 the changes in 
the pressure coefficients around the steady pressure distributions are shown for three cut 
planes (η=0.46/0.66/0.8). The maximum amplitudes of the changes in the pressure 
distribution occur both at the 0.46 and the outer section of the wing in the region of the shock. 

 
Figure 9: Steady and unsteady pressure coefficients cp for the second mode shape. Harmonic oscillation at a 
 reduced frequency of  (cut planes located at η=0.46/0.66/0.8). * 0.66ϖ =

Both the simulated unsteady pressure coefficients and the measured ones have been 
transformed properly using an FFT analysis. The results for the magnitude and the phase 
angle of the pressure coefficients are depicted in Figure 10. The lines in the plots represent the 
simulation and the symbols the experimental data. It can be seen that the calculated and the 
measured magnitude in cut plane η=0.46 fit well. Especially at the position of the shock the 
calculated unsteady changes in the pressure agree quite well with the measured ones. That is 
also the case for the phase shift in that cut plane. The strong increase of the phase shift around 
the shock appears in the simulation nearly at the same position as in the experiment. Behind 
the shock the phase shift between the movement of the wing and the reaction of the pressure 
coefficients reaches a value of almost 180 degrees. The phase shift increases in the direction 
of the wing tip up to nearly 360 degrees. Furthermore, one can observe that in direction of the 
wing tip (see cut planes at η=0.59/0.66/0.8) the magnitude of the unsteady pressure decreases 
in comparison to the experiment. However, the influence region of the unsteady pressure in 
the simulation is enhanced compared to the influence region of the experiment. The strength 
of the unsteady variations surrounding the shock is much stronger in the simulation than in 
the experiment. The magnitude of the simulated cp values is decreasing when compared to the 
experimental values, while the phase shift from the simulation moves towards the trailing 
edge compared to the experiment. One explanation therefore could be the mesh resolution in 
that region. While the mesh is finer in the inner region of the wing (η=0.46), it becomes 
coarser in direction towards the wing tip. Probably the changes of the unsteady flow 
properties get to strong due to the coarser mesh in downstream direction. That can also be 
explained if the leading edge for all cut planes is considered. In this region the mesh 
resolution is rather fine and thus the suction peak and its changes are always predicted well. 
The prediction of the magnitude and the phase angle of the pressure coefficients on the lower 
side are very close to the experimental data in all cut planes. Finally, it should be mentioned 
that these results were obtained within a first investigation of these kinds of unsteady 
experiments. Further simulations and validations of unsteady data will follow in the future 
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Figure 10: Magnitude and phase shift of the unsteady pressure coefficients cp for the second mode shape (cut 
 planes located at η=0.46/0.59/0.66/0.8). 
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7 CONCLUSION AND OUTLOOK 
In this paper numerical results for steady and unsteady simulations of the HIRENASD wind 
tunnel experiment are presented. In comparison with the experimental data, we partly got very 
good numerical results for steady aeroelastic analyses using the described coupling method. 
The pressure coefficients, displacements and changes in the local angle of attack (twist of the 
wing) can be predicted precisely. The employed flow solver TAU, the numerical models and 
their model resolution as well as the introduced coupling method are able to give a correct 
prediction of transonic flow phenomena like shock position in interaction with the elastic 
wing model. The results of the unsteady simulations regarding the harmonic oscillation within 
the second bending mode of the wing model partly show very good agreement concerning the 
magnitude and the phase shift. Regarding these first investigations, the TAU-Code predicts 
the unsteady behavior of transonic flows on the elastically deformed wing in a satisfying 
manner. The results of the unsteady experiments of the HIRENASD wing can also be used for 
the validation of unsteady flow simulations. Questions remain regarding the improvement of 
the simulation results, both steady and unsteady. For simulations in the future, further 
investigations under consideration of these experiments should be carried out. First of all, a 
mesh convergence study should indicate whether the results become better due to e.g. a 
refinement of the mesh in the outer region and especially in the shock regions. 
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