------------------------ Interfacing a Diagnosis Algorithm With the DXC Framework  --------------------

This HOWTO is a step-by-step guide to interfacing diagnostic algorithm (DA) software with the DXC Framework. DXC participants and competitors can use this as a starting point for creating their DA or adapting a previously existing DA. It is strongly recommended to look at "README.txt" included in the top-level directory of the framework, as well as the source code for the example diagnostic algorithms in Examples/. Additionally, it might be helpful to run ScenarioLoader to get a feel for how DAs will be executed once submitted.
Questions or comments may be posted on the DXC website, http://dx-competition.org/.
1) Submission Format  2) Starting From Scratch  3) Adapting a Previously Existing DA  4) Communication  5) XML System Catalogs
1) Submission Format  --------------------
DAs must be Windows XP or Linux x86 executables (or a .jar containing Java classes) with no external dependencies. Given the variation between Linux distributions, Linux developers should be especially cautious in ensuring that all dependencies are compiled statically. The application and all associated files must be contained within one directory. Submissions can be compressed into a single file (.zip or other); they will be decompressed upon arrival.
The top-level directory of a submitted DA must contain a file named "config.xml" which gives the specifics of how the application should be run. See the commented examples provided in the Algs/ directory of the framework. For example, config.xml is used to specify the command-line arguments that ScenarioLoader will pass the DA upon execution (see README.txt for more information).
2) Starting From Scratch  ------------------------
If you have yet to develop any software, here are a few questions to ask yourself:
- What programming language should I use?  Java and C++ are strongly recommended, as APIs in these languages are part of the framework. The APIs provide communication and message parsing functions, and they will continue to grow and provide new features. If you wish to use a different programming language, however, you may bypass the APIs and produce diagnoses by sending and receiving messages at the TCP/IP sockets level (see section 4).
- What operating system will my DA run on?  Currently only Windows and Linux DAs are supported.
- What systems will my DA diagnose?  There are two tracks in the DXC--industrial and synthetic--and they contain many systems for DAs to diagnose. The industrial track consists of two systems, ADAPT and ADAPT-Lite; the synthetic contains 15. Each system has a corresponding XML catalog and training dataset, which can be found on the DXC website.
After you've answered these questions, see sections 4 and 5.
3) Adapting a Previously Existing DA  ------------------------------------
For preexisting DAs written in a language other than Java or C++, it is recommended to modify them to receive data and send diagnoses directly through the underlying TCP/IP layer. See section 4 for details.
For those written in Java or C++, the task is simpler--you can create wrappers to convert to and from your known datatypes into DXC datatypes, and modify calls to update system data points and send diagnoses through the API. This process is very application-specific, however, and thus a general guide would not be of much help. See the example DAs provided with the framework and contact the DXC organizing committee if additional assistance is required.
If the DA has any external dependencies, these must all be removed. External .dll's/.so's should be linked statically, and if the application is written in a scripting language it must be converted to a standalone executable in a self-contained directory.
Only DAs that run under Windows or Linux are supported.
4) Communication  ----------------
At the API level, messages are exchanged via the DxcConnector class (see API documentation under Doc/). DAs only need to send two kinds of messages: a ScenarioStatusData message signaling they are ready to receive data, and DiagnosisData, the diagnosis message, to be sent when the system is believed to be in a faulty state. Once the initial ScenarioStatusData is sent by the DA, the system will begin sending data of tree kinds: SensorData, CommandData, and a ScenarioStatusData message to indicate the end of the scenario. See the source code for the example DAs provided with the framework in Examples/. More information about these datatypes can be found in the API documentation under Doc/.
The underlying TCP/IP layer is plaintext, which means it can be easily understood and parsed by DAs wishing to bypass the APIs. DAs must listen to incoming messages on the port number assigned to SDS_DA_PORT in Dxc.cfg (top-level framework directory), and send messages on SR_DA_PORT.
Scenario files (contained in Scenarios/) contain messages in the same plaintext format which is sent through TCP/IP. See these .scn files or download datasets from the DXC website for examples of the messages your application must parse (again, only if you are bypassing the API). Be warned that the message grammar can change without notice from one version of the DXC Framework to the next. For an exact grammar specification, MessageParser.ypp and MessageScanner.lpp are the flex/bison definitions used to produce the C++ API parser, and DxcParser.jj is the JavaCC definition usedto produce the Java API parser. They are located in the Src/APIs/ directory of the source release.
5) XML System Catalogs  ----------------------
Once communication is established and data can be exchanged, the next question to address is: what does this data mean? XML system catalogs are there to provide the answer--they serve as the central location for system information, such as component names, properties, modes, and connectivity.
System catalogs provide the high-level information necessary to build the models DAs will use to produce their diagnoses (assuming their approach requires it). Because of catalogs' XML structure, they can be used to build models in an automated way or even at runtime. This may be desirable when the components are extremely numerous and simple, as in most synthetic track systems.
XML system catalogs can also be used for data validation. Just as SensorData messages produced by a given system must conform to the IDs and datatypes specified in that system's catalog, DiagnosisData produced by a DA should contain names that conform to component IDs and fault mode IDs. Currently system catalogs are not integrated with the framework--this means that if a DA sends a diagnosis with bogus component IDs, no one will complain, and the DA will simply be marked as incorrect in the evaluation stage. Data validation is therefore left up to the DA. This will change in the near future.
A simple xml parser (TinyXML, http://www.grinninglizard.com/tinyxml/) is provided with the C++ API to aid in catalog parsing. Java ships with its own DOM and SAX XML parsers.
