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NIF concentrated all 192 laser beam energy in a 
football stadium-sized facility into a mm3
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NIF is now operations, conducting experiments and 
acquiring great data
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NIF Missions
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NIF has thousands of optics on the beamlines which 
must be inspected after every shot
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NIF laser is made possible by six “wonders”: high volume laser glass 
production, large aperture polarization switch, high gain preamplifier, 

deformable mirror, rapid growth crystals, and integrated control system
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Laser Bay



On high quality surfaces initiated
damage sites are very small

• Damage sites are typically initiated 
with diameters of 20 to 50 μm

• Damage sites initiate at:
— “Precursors”

– Flaws in the surface
— Contaminants on the surface
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Target Chamber
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Building NIF was exciting
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192 beams operational at 3W -
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The LOIS inspection system for the Main Laser has 
mirrors, relay optics and intervening glass. Light 
scattering sites can still be detected 

Real light scattering sight

Analysis software is capable of detecting very small imperfections; we track 
these over time to ensure quality performance of the laser system.

We must detect the 
site, identify the 
optic on which it 
resides and 
estimate its size
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Modern, real-world data is too cumbersome to 
handle with traditional mathematical & human 
analysis methods

• High-tech applications generate overloads of data that can be skewed, noisy 
• For NIF, thousands of optics must be inspected and tracked

Initial machine learning results have been excellent (> 99% accuracy). 
Previous false positives (50 for this bundle) are eliminated;

the 1 high probability defect is flagged

+4 more     on Low/High Z

Avatar results Previous OI Results
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Overview of Pattern Recognition (i.e.  supervised 
machine learning, statistical inference, data mining)
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2-D Attribute space

Decision tree

Input: expert-labeled “ground truth”
Sample Attributes Truth
Data point 1    size1  optic-type1  brightness1… “defect”
Data point 2    size2  optic-type2  brightness2… “camera flaw”
Data point 3    size3  optic-type3  brightness3… “debris”

Output:  Rules for labeling new, unlabeled data:  A 
partitioning of attribute space with which to 
classify (predict the classification of)
new data points

Generate a classifier
• Decision trees
• Neural networks
• Support Vector Machines



Current wisdom in machine learning: 
Use ensembles of classifiers for robust accuracy

• The traditional “craftsman” model of Pattern 
Recognition

— Use 100% of training data to build a 
“sage”

— Painstakingly screen & select features
— Normalize attributes (essential but 

challenging)
— Prune the tree (black art)
— Use domain knowledge to tune 

parameters and weight attributes

• Use randomized 100% of training data to 
build an “expert”.  Repeat to build many 
experts and let them vote.

— Always improves accuracy
— Robust in face of noise 

(accepts data as it is)
— Concept scales to terabytes of data
— No need to tune parameters
— Specially handles skewed data
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Avatar 
innovations



Repeated Bagging (sample with replacement) 
generates experts that have seen different training 
points and have “diversity”
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Why do ensembles work?  One key is diversity

• Imagine 3 classes, each expert is only 10% accurate and when 
wrong, chooses randomly among the 3 classes

• After voting, the correct class has more votes than the others --
100% accurate!
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How many trees to grow?

• Don’t use fixed size ensembles.  They can be deceptive!

• Instead, stop when accuracy levels off
• How to measure accuracy?  Need method that is inexpensive and easy
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Out of Bag (OOB) accuracy is possible because 
every expert doesn’t see some samples….

• In other words: every sample is unseen by some classifiers!
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How many trees to grow?

Kegelmeyer, NASA 25NIF-0910-19961.ppt

A
cc

ur
ac

y

Size of ensemble (# of trees)

Avatar innovation:  Stop generating trees when accuracy flattens out



Other Avatar innovations handle skewed data

• Say you have 9000 labeled examples from mammograms of 
“benign” and you have 100 labeled examples for “cancer”

• Any classifier that always picked “benign” would be 98.9% 
accurate and you would have missed all of the most important 
data points!

• Avatar Tools has 2 functions which inherently deal with skewed 
data.

— Hellinger distance metric instead of InfoGain for measuring 
impurity of the nodes (we use this)

— SMOTE (Synthetic Minority Over-sampling Technique):  a 
method which adds more examples of the scarce class by 
sampling from an estimate of the minority classes’ 
distribution.
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Steps for applying Avatar (from Sandia’s ASC program, WP 
Kegelmeyer) machine learning to NIF shotcycle inspections
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Experts “Log Defects” to 
train data

OI Analysis team 
collects all logged 
defects and “cleans” 
the data

Avatar uses cleaned 
data to grow an 
ensemble of decision 
trees

Current Operations:  Send 
images to OI to analyze 
new images and find 
defect candidates

Candidates 
are “fed” to 
decision trees

Trees vote for 
predicted 
class

Training phase

Test or prediction phase

This has not changed.  These candidates 
are presented as “All Defects” on GUI.

Probability for a class 
is the percentage of 
trees that voted for 
that class.  These are 
presented as 
P(Defects) on GUI.



Training phase 1: We fed initial training data to the 
Avatar decision tree ensemble and used 10-fold 
cross validation to evaluate the results

• “Experts” labeled 354 defect candidates 
• We trained Avatar on these and tested it.
• Initial results helped us identify “errors” in the training data. e.g. 

complications from
— relay optics 
— white (phase) defects
— “expert wars”  (different definition and classification given by 

different experts for same defect candidate) 

• We cleaned the training data so it could be resubmitted. We also 
realized....
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OI software tracks defects through history, so if a 
candidate defect was classified during any one 
inspection....
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1. Label as “defect” once



... we could apply the same “expert truth” label to 
each instance in history to get nearly 6000 data points!
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2. Apply label to all

defect

defect

defect

defect

1. Label as “defect” once



Accuracy was 98.39% with only 23 candidate sites 
“mis-categorized” in the “wrong” direction (expert 
“defect” called “not-a-defect”)
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Expert label

Avatar 
Prediction

These “errors” helped us identify problems with the training process. 
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Training phase 2: identify and correct mislabeled 
“truth” in the training set

• Candidate sites may be mislabeled for a variety of reasons
• Don’t always know what classes will be needed
• Some cases are trickier than others  

• Examples follow...
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Expert Wars
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This is a blemish on the CCD
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Accidentally labeled the diffraction ring, which 
was detected separately from defect.

Kegelmeyer, NASA 35NIF-0910-19961.ppt



Training phase 3:  determine what additional 
measurements can help distinguish different classes

• The decision trees won’t predict well if they were not trained with 
salient features (measurements or other attributes)

• We provided as many measurements as we could think of, but....

• Using Avatar provides additional information we can use -- the 
historical average of Avatar probabilities for one site can be fed 
back as salient features (measurements or attributes) to the 
ensemble of trees to improve results further

• Examples follow....
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OI found 8 times.  Avatar mis-classified 1 time out of 8
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OI found 8 times.  Avatar mis-classified 1 time out of 8, but 
average over all time gives correct classification.

P(white) P(camera) P(defect) P(NOT defect)

0.06 0.00 0.68 0.27

0.027 0.000 0.840 0.133

0.048 0.000 0.857 0.095

0.000 0.000 0.548 0.452

0.000 0.000 0.961 0.039

0.286 0.000 0.667 0.048

0.000 0.000 0.729 0.271

0.000 0.000 0.714 0.286

0.095 0.000 0.095 0.810
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10-fold cross validation gives a stringent estimate of 
accuracy for the ensemble; also helps clean dataset 
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Expert label

Avatar 
Prediction

White Camera Defect Not_a_defect
White 238 0 15 1

Camera 1 985 1 3
Defect 16 2 1867 3

Not_a_defect 0 2 2 2812
255 989 1885 2819

Accuracy is > 99%



OI found this site only twice.  AvatarTools called it 
“Not a defect” both times.
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(SD/Expert)



With traditional image analysis, the Inspection 
Summary Chart  had too many false alarms to 
follow-up in the time constraints
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Avatar machine learning makes it possible to follow up on flagged sites

False alarms were adversely impacting the efficiency 
of operations

• SF lenses inspected every shot;  4 x 192 lenses = 768 optics
• Five (5) false alarms per image x 768 images = 3840 false alarms !
• Tinspection = ( Timage + Treview ) x Nimages(false) … Time used to review 

false alarms
• Tinspection = ( 7 sec + 60 sec1 ) x 768 = 14.3 hours ! 

• Eliminating 99% of the false alarms using Avatar
• Nimages(false) = 3840 false alarms x 0.01 = 38.4 false alarms
• Tinspection = ( 7 sec + 12 sec2 ) x 38.4 = 12.2 minutes
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Using Avatar machine learning, the 192-beamline 
inspection summary is accurate and usable within 
time constraints
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“It will be through the use of technologies such as machine learning, ...  
that will help to address this information overload.
By using such technologies, a computer will soon be able to sift through 
the data and present 
... the most important areas of concern.”

Drawbaugh (U Pittsburgh Medical Center) in Wired Magazine (July 30, 2008)





NIF Master Strategy
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4 steps
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Capsule implosions in 1 MJ cryogenic gas-filled 
hohlraum have shown good symmetry at 290 eV 
uranium equivalent
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Recent publication in SCIENCE – March 5, 2010
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We have demonstrated hohlraums that scale  to 
ignition conditions
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