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NIF concentrates all
192 laser beam
energy in a football | %
stadium-sized facility #&.
mto a mm3

Matter
Temperature >10% K

Radiation
Temperature >3.5 x 10° K

Densities >103 g/cm?
Pressures >10" atm
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NIF is now operational,
conducting experiments and
acqumng great data
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NIF Missions

Unclassified

Ensuring National
Security and

Global Stability
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Advancing
frontier

science

Enabling clean

energy

Unclassified

Building future
generations of
HED scientists
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NIF is by far the
largest and most

complex optical
system ever built

- - - 5 -
2 e ;
< ’ A e
A :
f < >
17 A~ ; e
i

+ 350,000 m3 building
8,000 large optics
30,000 small optics
60,000 control points
3,600 m2 total optics area
22 m?2 total beam area

. 192 Pulsed Laser Beams
~ Energy 1.8 MJ 3w
Power 500 TW




NIF has thousands of optics on the beamlines which

must be inspected after every shot

1.053 um 0.351 um
Transport Final
Power  gpatial 18 kJ Optics
Amplifier Filter Assembly
Deformable i : Hi=F
| i =
0 LEE 9.5 kd
1J
AWV 17
. s o Preamp (1 ndJ
Main Cavity Spatial Polarization
Amplifier Filter Switch Master Oscillator
4-pass

NIF laser is made possible by six “wonders”: high volume laser glass
production, large aperture polarization switch, high gain preamplifier,
deformable mirror, rapid growth crystals, and integrated control system
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On high quality surfaces initiated
damage sites are very small

« Damage sites are typically initiated
with diameters of 20 to 50 ym

« Damage sites initiate at:
— “Precursors”

— Flaws in the surface
— Contaminants on the surface

NIF-0910-19961.ppt Kegelmeyer, NASA
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192 beams operational at 3w —
1.2 MJ on target December, 2009
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The LOIS inspection system for the Main Laser has

mirrors, relay optics and intervening glass. Light
scattering sites can still be detected

Real light scattering sight
/

We must detect the
site, identify the
optic on which it
resides and
estimate its size

LOIS-3,1,5 /

/
r Singlet Info ... j ( [lyleriay =N

Pinhole Configuration = 1100 | [Bright Field [

1100 5F2 PCi Pol-R+T L2 Pol-R+T PCi1

SF2

BF median

Analysis software is capable of detecting very small imperfections; we track
these over time to ensure quality performance of the laser system.
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Modern, real-world data is too cumbersome to
handle with traditional mathematical & human
analysis methods

* High-tech applications generate overloads of data that can be skewed, noisy
* For NIF, thousands of optics must be inspected and tracked
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Initial machine learning results have been excellent (> 99% accuracy).
Previous false positives (50 for this bundle) are eliminated,;
the 1 high probability defect is flagged

NIF-0910-19961.ppt Kegelmeyer, NASA 18




Overview of Pattern Recognition (i.e. supervised

machine learning, statistical inference, data mining)

Input: expert-labeled “ground truth”

Sample Attributes Truth

Data point 1 sizel optic-typel brightnessl... “defect”

Data point 2 size2 optic-type2 brightness2... “camera flaw”

Data point 3 size3 optic-type3 brightnesss... “debris” 2-D Attribute space

1.0

Generate a classifier

e Decision trees
* Neural networks 3

1st

« Support Vector Machines A ‘X A o
Ly Decision tree
X | /
>, Ik 2nd
0.0 Y <;°3<>
0.0 1.0 ves No
x < 0.467? O
Output: Rules for labeling new, unlabeled data: A N
partitioning of attribute space with which to O
classify (predict the classification of)
. 4
new data points e O
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Current wisdom in machine learning:
Use ensembles of classifiers for robust accuracy

XI'hetraditional “craftsman” model of Pattern
Recognition
— Use 100% of training data to build a
“sage”
— Painstakingly screen & select features

— Normalize attributes (essential but
challenging)

— Prune the tree (black art)

— Use domain knowledgeto tune
parameters and weight attributes

Ae randomized 100% of training data to
build an “expert”’. Repeat to build many

experts and let them vote.
— Always improves accuracy

— Robustin face of noise
(accepts data as it is)

— Concept scales to terabytes of data
— No need to tune parameters
— Specially handles skewed data } ﬁ,\ﬁ\?;“ons

NIF-0910-19961.ppt Kegelmeyer, NASA
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Repeated Bagging (sample with replacement)

generates experts that have seen different training
points and have “diversity”
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Why do ensembles work? One key is diversity

* Imagine 3 classes, each expert is only 10% accurate and when
wrong, chooses randomly among the 3 classes

» After voting, the correct class has more votes than the others --
100% accurate!

|: l
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How many trees to grow?

 Don’t use fixed size ensembles. They can be deceptive!

Accuracy Three ensemble methods,

as a function of ensemble size.

0.0

0 250 Size of Ensemble 800 1000

* Instead, stop when accuracy levels off
« How to measure accuracy? Need method that is inexpensive and easy

NIF-0910-19961.ppt Kegelmeyer, NASA 23



Out of Bag (OOB) accuracy is possible because

every expert doesn’t see some samples....

* In other words: every sample is unseen by some classifiers!
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How many trees to grow?

Avatar innovation: Stop generating trees when accuracy flattens out

09 r

0.8

Accuracy

06 |

05 | 1 l E 1 1
0 20 40 860 80 100 120

Size of ensemble (# of trees)
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Other Avatar innovations handle skewed data

» Say you have 9000 labeled examples from mammograms of
“benign” and you have 100 labeled examples for “cancer”

* Any classifier that always picked “benign” would be 98.9%
accurate and you would have missed all of the most important
data points!

o Avatar Tools has 2 functions which inherently deal with skewed
data.

— Hellinger distance metric instead of InfoGain for measuring
impurity of the nodes (we use this)

— SMOTE (Synthetic Minority Over-sampling Technique): a
method which adds more examples of the scarce class by
sampling from an estimate of the minority classes’
distribution.

NIF-0910-19961.ppt Kegelmeyer, NASA 26



.
Steps for applying Avatar (from Sandia’s ASC program, WP

Kegelmeyer) machine learning to NIF shotcycle inspections

Training phase >

Ol Analysis team
b ; Avatar uses cleaned
Experts “Log Defects” to | collects all logged .
. > y , » datato grow an
train data defects and “cleans .
ensemble of decision
the data
trees

Test or prediction phase

A 4

Current Operations: Send
images to Ol to analyze
new images and find
defect candidates

Candidates
are “fed” to
decision trees

Trees vote for
predicted
class

A\ 4

Probability for a class
is the percentage of
trees that voted for
that class. These are
presented as
P(Defects) on GUI.

This has not changed. These candidates
are presented as “ All Defects” on GUI.

NIF-0910-19961.ppt Kegelmeyer, NASA 27



Training phase 1: We fed initial training data to the

Avatar decision tree ensemble and used 10-fold
cross validation to evaluate the results

« “Experts” labeled 354 defect candidates
« Wetrained Avatar on these and tested it.

 Initial results helped us identify “errors” in the training data. e.g.
complications from

— relay optics
— white (phase) defects

— “expert wars” (different definition and classification given by
different experts for same defect candidate)

 We cleaned the training data so it could be resubmitted. We also
realized....

NIF-0910-19961.ppt Kegelmeyer, NASA 28



Ol software tracks defects through history, so if a

candidate defect was classified during any one
Inspection....

[ Shotld  |ImageId|Defect Name Id[Beamline|  System |Defect Id/[Comment Id|Classification| Thumbnail

NO0S0719-001-999 44129 (663592 314 |SHOTCYCLE_SF3 [697238 ]
N050729-001-999 44364 (663592 314 |SHOTCYCLE_SF3 (698434 }
NOS0801-001-999 45114 663592 1. Label as “defect” once : }
NO050803-002-999 45235 (663592 314 |SHOTCYCLE_SF3 (703542 ]
NOS0804-001-999 (45320 (663592 314 |SHOTCYCLE_SF3 (703906 }

NIF-0910-19961.ppt Kegelmeyer, NASA 29



...we could apply the same “expert truth” label to

each instance in history to get nearly 6000 data points!

Shotld  [Image Id Defect Name Id [Beamline| System |Defect Id |Comment Id |Classification| Thumbnail
NO050719-001-999 44129 663592 314 SHOTCYCLE_SF3|{697238 :
defect
N050729-001-999 44364 663592 314 SHOTCYCLE_SF3||698434
defect
NO050801-001-999 (45114 663592 1. Label as “defect” once >
I I I
2. Apply label to all _
NO050803-002-999 45235 663592 314 SHOTCYCLE_SF3|[703542 defect ]
NO050804-001-999 45320 663592 314 SHOTCYCLE_SF3|[703906
defect

NIF-0910-19961.ppt Kegelmeyer, NASA 30



Accuracy was 98.39% with only 23 candidate sites

“mis-categorized” in the “wrong” direction (expert
“defect” called “not-a-defect”)

Expert label
White Camera Defect Not_a_ defect
White 227 0 14 0
Avatar Camera 3 976 6 6
Prediction Defect 23 10 1848 11
Not_a_defect 2 3 17 2803
255 989 1885 2820

These “errors” helped us identify problems with the training process.

NIF-0910-19961.ppt Kegelmeyer, NASA 31



Training phase 2: identify and correct mislabeled

“truth” in the training set

Candidate sites may be mislabeled for a variety of reasons
Don’t always know what classes will be needed
Some cases are trickier than others

Examples follow...

NIF-0910-19961.ppt Kegelmeyer, NASA 32
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Training phase 3: determine what additional

measurements can help distinguish different classes

« The decision trees won’t predict well if they were not trained with
salient features (measurements or other attributes)

« We provided as many measurements as we could think of, but....

» Using Avatar provides additional information we can use -- the
historical average of Avatar probabilities for one site can be fed
back as salient features (measurements or attributes) to the

ensemble of trees to improve results further

 Examples follow....

NIF-0910-19961.ppt Kegelmeyer, NASA 36



'{ Ol found 8 times. Avatar mis-classified 1 time out of 8 ;—
P—
NOT0329-005-999 ||113431 ||920395 416 SHOTCYCLE_SF4(2323735 *
N—
NOT70403-001-999 ||113723 ||920395 416 SHOTCYCLE_SF4(2343733 924 Defect *
I
NOT70403-006-999 114559 ||920395 416 SHOTCYCLE_SF4(2364812 .
F—
BU41LOIS0OT0405/(1153571 |[920395 416 SHOTCYCLE_SF4/(2380051 .
F——
NOT0423-003-999 ||121324 ||920395 416 SHOTCYCLE_SF4/(2511628 .
F——
NOT0425-001-999 || 122400 ||920395 416 SHOTCYCLE_SF4 (2528097 >
P
NOT0711-005-999 || 144564 ||920395 416 SHOTCYCLE_SF4/(3107521 :
N ceoeimeser NASA o
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Ol found 8 times. Avatar mis-classified 1 time out of 8, but
average over all time gives correct classification.

NO70329-005-999 ||113431 (920395 416 SHOTCYCLE_SF4|2323735
P(white) P(camera) P(defect) P(NOT defect)

0.027 0.000 0.840 0.133
0.048 0.000 0.857 0.095
0.000 0.000 0.548 0.452
0.000 0.000 0.961 0.039
0.286 0.000 0.667 0.048
0.000 0.000 0.729 0.271
0.000 0.000 0.714 0.286
0.095 0.000 0.095 0.810
0.06 0.00 0.68 0.27

NO70425-001-999 1122400 920395 416 SHOTCYCLE_SF4|2528097 >

NNIE_Ogml_llgéappﬁp;QQQ 144564 ||920395 416 SH;Q(_;EEJ;F.{-A};A—SFJ“ 3107521

11110111




10-fold cross validation gives a stringent estimate of

accuracy for the ensemble; also helps clean dataset

Expert label
White Camera Defect] Not a defect
White 238 0 15 1
Avatar Camera 1 985 1 3
Prediction Defect 16 2 1867 3
Not_a defect 0 2 2 2812
255 989 1885 2819

Accuracy is > 99%

NIF-0910-19961.ppt Kegelmeyer, NASA 39



Ol found this site only twice. AvatarTools called it
“Not a defect” both times.

’ 4, B l l = ] [ + l €A http: / /tilden /viewcommenteddefects.htm[?dni=683391 (6] - va Coogle

[l wvcd RMI im train spie_man Prague Illns Sprint Weblinks Lite oi-req FSA STATS spie WP LAPIS myUHC wantAds n

eatherlinlgov/o... | @ hutp:/ titden;vieweomm... |

defect name id: 683301

| Subrit |
(SD/Expert)
| ShotId |Tmage Id|Defect Name Id [Beamline)| System |Defect Id (Comment Id |Classification| Thumbnail
i
LOISOQO60914 /75549 683391 324 SHOTCYCLE_SF4 (1898144 3 y
i
LOISOQO60918 76284 683391 324 SHOTCYCLE_SF4 (1901469 (505 Defect «
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With traditional image analysis, the Inspection
Summary Chart had too many false alarms to
follow-up in the time constraints

Help | Praferenced
Ol Status s

User: Imascio
NIF Optics Inspection Status
MOST RECENT INSPECTIONS SUMMARY

.
=« Full LOIS ? SF3
= Shoteycle LOIS Cluster 1 Cluster 2 — Cluster 3 Cluster 4
= Final Optics

B11 B12 B13 B14 B15 B16 B21 B22 B23 B24 B25 B26 B31 B32 B33 B34 B35 B36 B41 B42 B43 B44 B45 B46
_—_—_—_— oo ooooodoe || coogooooodo | | A EEEEEECE | EEECSEEEEEEE

P BERCOOO00000800m {0 OpERdC EEEEEN | | [mym| jm| ol § ] |

: opertise [N | | N O BCOCONRCONEEER ([ F [ B[ o] | § I
::’“ :J';“;j;f“'g“ OmOO0O00O00O00E. N O 1] AEEEEEEEEn EEEEEEENEN
Leaend Mote: "Allowable’ size for SF3 is 7.4 mm. Alert at 3.7 mm. View All SF3 Images for Current Inspection pos]
.Sg Defect Alerts Largest Defects Summary Measurementare: LENGTH (mm)
[ |Allowable Defects ®m N070913-002-999 SF3 B337 - 7.426 mm defect at (116.0,110.0), score=0.882
P Unallowable Defects O MO70913-002-999 SF3 B345 - 5.999 mm defect at (96.0.647.0), score=0.7245
MAnalysis in Progress ®m NO70913-002-999 SF3 B347 - 8.316 mm defect at (98.0,64 1.0, score=0.747
EE;"“T‘;E'W“ O NOT0913-002-999 SF3 B361 - 4.951 mm defect at (95.0,646.0), score=0.71325

P ®m NO70913-002-999 SF3 B367 - 7.617 mm defect at (105.0,654.01, score=0.675

®m NO70913-002-999 SF3 B411 - 9.013 mm defect at (98.0,646.0). score=0.747 m

0O NO7T0913-002-999 SF3 B413 - 4.104 mm defect at (524.0,375.0), score=0.9
W NOT0913-002-999 SF3 B416 - 8.427 mm defect at (649.0,641.0), score=0.71325

0O MO70913-002-999 5F3 B422 - 5.611 mm defect at (649.0,645.0), score=0.71325 s
M MO7AG13-NN9-080 SF3 RA%4 - 4 AR mm dafant at (RAR N R3AR N _ernra=N 7RAZR

b-SF4
PTC".-"W
P_TC‘I.-"W
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False alarms were adversely impacting the efficiency

of operations

 SF lenses inspected every shot; 4 x 192 lenses = 768 optics
* Five (5) false alarms per image x 768 images = 3840 false alarms !

¢ Tinspection = ( Timage + Treview) X Nimages(false) ... Time used to review
false alarms

* Tinspection = ( 7 sec + 60 sec! ) x 768 = 14.3 hours'!

Eliminating 99% of the false alarms using Avatar
* Nimages(faisey = 3840 false alarms x 0.01 = 38.4 false alarms
* Tinspection = ( 7 S€C +12 sec? ) x 38.4 = 12.2 minutes

Avatar machine learning makes it possible to follow up on flagged sites

NIF-0910-19961.ppt Kegelmeyer, NASA 42



Using Avatar machine learning, the 192-beamline

Inspection summary is accurate and usable within
time constraints

Ol Status S
NIF Optics Inspection Status Ser. Imascio

SF3/SF4 BEAMLINE GRID SUMMARY ON INSPECTION N070913-002-399
This is not the latest shot to TCC (latest shot is NOB0905-001-993)

B o
Shob#: NOTIE13-002-0090
Date: 2007-00-13 Cluster 1 Cluster 2 Cluster 3 Cluster 4
B11 | B12 | B13 || B14 || B15 | B16 B21 | B22 | B23 | B24 || B25 | B26 B31 | B32 | B33 || B34 | B35 | B36 B41 | B42 | B43 | B44 || B45 | B46

View Avatar: IOn ¥ | | | [ 1 | H BN EN EEEE EEEEEEEEEE

! ] [ ] ] HEEEN HE EN Nl NN NN EE
Legend HE [ ] | ANEEEEEEEEEE EE NN EEEE NN
B No Defect Alerts T (1] ENEEEEEEEE NN BN NN EEEEEE

Allowable Defects

Note: 'Allowable defects' for SF3 are betwean 3.7 mm and 7.4 mm PDS
O Unallcn.:va.ble Defects Largest Defects Summary Measurement are: LENGTH (mm)
B Analysis in Progress

Did not participate MNO70913-002-999 SF3HIGHZ B311  5.387 mm P(NOTO) at (175.0, 534.0) probability=1.0
[] Mo Ol data received NO70913-002-999 SF3HIGHZ B313 5.422 mm P(NOTO) at (170.0, 537.0) probability=1.0
X Ol Error MNOT0913-002-999 SF3 B413 4.104 mm P(Defect) at (524.0, 375.0) probability=0.8

“Itwill be through the use of technologies such as machinelearning, ...
that will help to address this information overload.

By using such technologies,acomputer will soon be able to sift through
the data and present

...themostimportantareas of concern.”
Drawbaugh (U Pittsburgh Medical Center) in Wired Magazine (July 30, 2008)
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NIF Laser Operationally
Qualified to 1MJ on
March 10, 2009
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Four steps to ignition

09EIM/cid

« NIF-0110-18192S52

Blowoff . * . g

We are taking a systematic
approach to learning and
improving our enginering
design to achieve ignition

Capsule Implosion D7 107 me—— 1) 5:;:2

CH: 1077 E—
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Unclassified

Capsule implosions in 1 MJ cryogenic gas-filled
hohilraum have shown good symmetry at 284 eV

17% contour ccD cou;ﬁi) 4
Lond] P2,P0 — 14 + 2 0/0
w =1+6%
| s | 210
10*
0

1.05MJ N091204-001-999

-50 0 50
X (um)

16LL/sb - NIF-110-18149s2 Unclassified



Unclassified

Recent publication in SCIENCE — March 5, 2010

Symmetric Inertial Confinement
Fusion Implosions at Ultra-High
Laser Energies

S. H. Glenzer,™* B. ). MacGowan,* P. Michel,* N. B. Meezan,? L. ). Suter,* S. N. Dixit,* ]. L Kline,?
G. A. Kyrala,” D. K. Bradley, D. A. Callahan,* E. L. Dewald,* L. Divol,* E. Dzenitis,* M. . Edwards,*
A.V.Hamza,! C. A. Haynam,* D. E. Hinkel, D. H. Kalantar,]. D. Kilkenny,? O. L. Landen,* ]. D. Lindl,*
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