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Talk Outline

Introduction

* Background

* Why SSA (spatial signature analysis) is important
®* Challenges and HVM fabs needs

Methodology

* Fault Detection: SSA framework
— Signature detection
— Signhatures summarization

* Fault Isolation/Commonality Analysis - explaining SS
— SS Signal enhancement/purification, signature matching

— Feature Selection. Targeted Rule Induction. Resulting rules point to
manufacturing attributes (possible interactions) and time intervals that
are likely responsible for SS

lllustration/Demo
Q&A




Overview of Semiconductor Manufacturing Process

Front End: Transistor Formation
D
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Shallow Trench Isolation Gate Dielectric Source-Drain & Tip Implants
Well Implant Gate Patterning Salicide Formation
Sidewall Spacer Contact Patterning
Back End: Transistor Wiring
Metal 1 Patterning Via Patterning Higher Layer Interconnects
Far Back End: External Contacts Full Wafer Testing
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Process Operations to Tools Relationships

Photoresist Tracks

Anti-reflective Coating Tracks -
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Data Collection Scheme

Process Hist Analytical Tool Processing Electrical
rocess History Measurements Parameters Testing
PTD'CE’F:S step (102391) Film Thickness (spatial) Pressure (time series) Functional
Track-in ti L (02/22/09 10:29:34.759) Litho CD (spatial) Temperature (time series) Design Structures
Track-out time {02/22/05 11:05:21.839) Litho Registration (spatial) RF Power (time series) Cache Patterns
Queue time (384.812 5) Trench Depth (spatial) Bias Voltage (time series) Parametric Data
Process AL s) Etch Rate (point) Gas Flow Rate (time series)
Process recipe (Oxide_Dep_2837_200s_revD) Polish Rate (point) Chemical Flow Rate (time series)
Tool name (DEP&72) Defect Particles (spatial) Bath Life (time series)
Chamber name (CHA) Plasma Discharge Counter
Slot position (14)
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Spatial Map of Electrical Testing

* One example of testing before the wafer is sawed and packaged into parts is
Bin testing.

» Since there are many types of bins that are similar, the first step is to group
them into the target that one wants to do commonality/correlation to.
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Problem statement / challenges
Problem: Majority of fab yield problems have a spatial signature.

Ultimate goal: isolate in time manufacturing steps/tools/toolattributes
responsible for the excursion that manifested itself as non-random
spatial failure signature.

Challenges:

Spatial Signature analysis:

Detect non-random spatial signatures on wafer maps for all relevant
levels of aggregation (lots/lot sets, wafers/wafer sets, ...)
dynamically (“on the go”) for potentially thousands of wafers in
minutes with standard hardware

Integrate automated groupings/classification of spatial signatures
with interactive improvement by engineers

Purify/match spatial signatures - create a target variable for the
supervised commonality learning (distance to a signature and/or
signature ID)

Commonality analysis:

* Find operations and tools (by time) that explain purified spatial
signatures (= next: ID tool EP params = root cause diagnosis)




Basic Analysis Flow

Input: raw wafer maps

De-noising/signal detection
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SSA Elements: non-random spatial signatures
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De-noised wafer maps

e We use a de-noising procedure to separate spatial signatures from
the random distribution and assign a non-randomness index to each

wafer.

e Wafers with the same total failure rate could have dramatically

different non-randomness indexes.

e Non-randomness index could be used to separate/rank wafers with
SS and/or in APC settings




De-noising approach using supervised learning

e Build a committee of experts (classifiers) to detect regions of non-
random failure densities.

e Each expert is trained to distinguish a given wafer signature from a
random signature of the same cardinality




De-noising approach
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Classifiers used: gradient tree boosting machine
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De-noising approach

e Each failure point xXO on the wafer gets a point estimate of
probability pi(x0) that it belongs to a random signature from each of

the experts of the committee.

e All these estimates represent 11D sample by construction of size =
#Hexperts

e Now we can use a standard statistical inference to call a point on a
wafer “random”




De-noising approach
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We used the following criteria:
upper 99% conf limit on
p_hat(x0) < 0.5
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De-noising approach

That approach works well in off-line mode or when the #wafers
to be processed is not very large (hundreds)

For an interactive mode with 1000s of wafers we offer a
computational shortcut to denoising

e Standardized density in each point of a smoothed wafer is compared
to an 1-p quantile threshold estimated through interpolation from a
number of random wafers generated for a range of different average
defect densities




SSA elements: binary (0/1) assignment at
every die position is true with some uncertainty

Spatial kernel based smoothing
with optional edge effect
weighting is applied

Special algorithms/tests are
used for periodic signatures




SSA elements: Signature
Summarization/Clustering Basic Concept

Each die location is an axis in space D
For example, 3 wafers, each with 3 a
die locations, bin result is either 012
“good” (bin = 0) or “bad” (bin=1) W1
o
(@\
Wafer die location (x,y) Bin E
1 (00 1 = Good
1010 1
1|20 1
2|00 0 o .tm
2010 0
2|20 0 / L \
3 (o0 0 110 01z 010
31,0 1
2|20 o W2

Example wafer maps W3




SSA elements: Sighature Summarization/Clustering
wafer level clustering

Clustering is done on smoothed and
exponentially transformed (d-
>d”p) wafers after no-signhature
and “dog” wafers were removed

hybrid divisive-agglomerative

clustering e @
special initialization with a large = O
number of distinct seeds (far from

each other) \

k-means like update to the seeds =™ e

with outlier-cluster removal EQW%%
then agglomerative clustering is %%%%%
applied resulting in interactive =
expandable drillable dendodram- ﬁl%ﬁ@#

tree mmmm%




SSA elements: Sighature Summarization/Clustering
cross wafer/lot small signatures

e Small cross wafer/lot signatures g T T
LOT CLUSTER LOT CLUSTER LOT CLUSTER

invisible on the wafer level, He 160 ) N: 166 ) N 168 )
almost always missed by humans

e Requires completely different
algorithm

e Uses a set of thresholds and a
special similarity measure
Twin= #1 Twins #2

described in matching LOT CLUSTER LOT CLUSTER
N: 124 (& N: 97 ()




SS Signal enhancement/purification signature
matching

e Crucial for the commonali kA Ak A Ak Al b A e e )
analysis (ultimate goal()) a%iﬁ¥y to [J
& the idere REBRBR BB R AW R
purify the identified groups (each ﬁ;ﬁ}-##{ﬁ:*ﬁﬁ}#{ e lL -
having pure signature). 'Tﬁ s P R _#& 45’# #’# f“if‘i
. . . . W M T I BT O R A P T I O
e To do this, a similarity score SETIRTO2IEDH
(distance) Is required which O
accurately measures how well a 8%%8%8888 e
specific wafer matches a pattern QC@@ NN ( L
(preferably close to a human eye). m;_M:;:?\ D& R R R IO JQ,;
e It is reduced to supp(Al&A2)- . | /
K*supp(A1\A2+A2\Al) if both
searched signature and /
smoothed wafers have common ) S
areas Al1,A2 of the same density.

e Affected wafer/lot indicator (0/1)
and distance to a pattern
become the targets for the
commonality analysis.




Commonality Analysis - explaining Spatial
Sighatures.
Feature selection: removing irrelevant suspects-variables

= Signature Indicator (or a distance to a
pattern) becomes a binary target,
process attributes — predictors

e Random Forest (RF) is a committee of
experts (trees) learner, and is capable
of efficiently ranking features for very
large datasets.

= We exploit this property of RF, augment
the original data with artificial probe ;
variables constructed independently
from the target, and use their ranking
for removal of irrelevant variables from
the original set.

e Selected subset of relevant variables
will be used in rule induction to
discriminate wafers/lots that have a
signature from the rest of the
population




Commonality Analysis. Decision Tree (DT) iIs
one of the most basic and widely used rule
Induction engines

Terminal nodes: 3

e Variables selected by the FS
become input variables to the DT
construction algorithm

e OQur tree is capable of an interval
search, and a look-ahead for
linked/nested variables such as
tool-1D and time-through-tool

ring_GFA ID




Commonality Analysis. We employ a custom
direct search rule induction engine

« We employ custom rule induction [:rx
engine to search for Tool x Time m Hq
dependencies covering maximum ._
# of affected wafers/lots with “L j
high confidence. WENAGemAL 8 BB BEs
e (Confidence, ConditionalSupport) e
plane, each point is a rule ; DMENTZE RPN 0B WOSY  cesy 2
e Rules are found to maximize a I/ ¢
muuap*ﬁmrm'f Time Trends{GFA_ID) ¥ O by Enity \ i]r]x

goal function - weighted sum of
C and CS




Illustration/Demo

e Data set contains almost 5,000
wafers

e Sighatures processing and
clustering the wafers, we arrive
at the groupings shown to the
right

e There are several interesting
spatial patterns in this views,
will focus on the highlighted
pattern

e Cluster data is combined with
fab tool data, and rule induction
IS used on purified signature
Indicators
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Bottom left signature
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peniodic

Periodic signature M
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Ring cross-wafer signature
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Conclusion

e To do this entire analysis has required about 5
minutes; a great improvement over the
approximately 4-10 hours required by highly skilled
analysts (often with no success) with the set of
techniques previously used.

e \We have applied these methods to many data sets
where the spatial patterns and their commonalities
were known, were able to identify them all
correctly, and find quite a few that were previously

undetected.




