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Prognostics CoE

“The Prognostics Center of Excellence 

(PCoE) at Ames Research Center provides 

an umbrella for prognostic technology 

development, specifically addressing 

technology gaps within the application 

areas of aeronautics and space 

exploration.”

• En route to becoming a national asset

• Expertise in prediction technology and 

uncertainty management for systems 

health monitoring
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Prognostics
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Key Ingredients for Prognostics
• Run-to-failure data

– Measurement data

– Ground truth data

– Operational conditions

• Load profiles

• Environmental conditions

– Failure threshold

• Physics of Failure models

– For each fault in the fault catalogue

• Uncertainty information

– Sources of uncertainty

– Uncertainty characterization
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Prognostics Algorithms
• Data Driven Algorithms

– Gaussian Process Regression

– Relevance Vector Machine

– Neural Networks

– Polynomial Regression

• Model Based Algorithms

• Hybrid Algorithms

– Particle Filters

• Classical PF

• Rao-Blackwellized PF

• Risk Sensitive PF

– Kalman Filters

• Classical KF

• Extended KF
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Metrics Example
• Establishing a common ground to compare different prognostic efforts

• Metrics must not only measure accuracy and precision but also the 
convergence of both properties

• Data/time requirement of algorithms (prognostic horizon) before they 
produce consistent predictions is also important
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Sources of 

Uncertainty

Uncertainty 

Management

• Model

• System complexity

• Insufficient knowledge

• Usage

• Load profile

• Temperature 

• Noise

• Internal, external

• Electrical, mechanical, thermal

• Sensors

• Training data based extrapolation

• Probabilistic state space model

• Online model adaptation

• Noise modeling

• Probabilistic regression

• Hyperparameters to prevent 
overfitting

Uncertainty Management
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Ames Research Center

Application Example: Valves
Modeling, Algorithms, Metrics
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Valve Prognostics
• Apply model-based prognostics to 

pneumatic valves

• Develop high-fidelity simulation model
– Progressive damage models include seal wear 

(internal and external leaks), spring degradation, 

and increase in friction.

• Investigate performance under different 

circumstances using prognostic 

performance metrics for comparison
– Impact of using different filters

– Effects of increased sensor noise

– Effects of increased process noise and model 

uncertainty

– Feasibility of different sensor sets (e.g. continuous 

position sensor vs. discrete open/closed indicators)

Computational Architecture

Source: M. Daigle and K. Goebel, "Model-based Prognostics with Fixed-lag Particle Filters“ Accepted for publication 

at PHM09
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Problem Formulation

• Prognostics goal
– Compute EOL = time point at which component no longer meets specified 

performance criteria
– Compute RUL = time remaining until EOL

• System model

• Define condition that determines if EOL has been reached

• EOL and RUL defined as

5/

26

Compute                                    and/or

State Input Process Noise

Output Sensor Noise

Parameters
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Fault Detection 

Isolation & 

Identification

Damage 

Estimation
Prediction

uk yk F p(EOLk|y0:k)
System

yk

p(xk,θk|y0:k)

p(RULk|y0:k)

Prognostics Architecture

5/

26

System receives 
inputs, produces 

outputs

Identify active 
damage mechanisms

Estimate current 
state and parameter 

values

Predict EOL and 
RUL as probability 

distributions

1

2

3

4
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Return Spring

Piston

Plug

Top 

Pneumatic Port

Bottom 

Pneumatic Port

Fluid Flow

Case Study
• Apply framework to pneumatic valve

– Complex mechanical devices used in many domains 
including aerospace

– Failures of critical valves can cause significant effects 
on system function

• Pneumatic valve operation
– Valve opened by opening bottom 

port to supply pressure and top 
port to atmosphere

– Valve closed by opening bottom 
port to atmosphere and top port 
to supply pressure

– Return spring ensures valve will 
close upon loss of supply pressure

5/

26

/2
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Case Study
• Faults

– External leaks at ports & internal leaks across piston
– Friction buildup due to lubrication breakdown, sliding wear, buildup of 

particulate matter
– Spring degradation

• Defining EOL
– Limits defined for open and close 

times of valves
• E.g., main fill valve opens in 20 seconds 

(26 req.), closes in 15 (20 req.)

– Limits placed on valve leakage rates 
(pneumatic gas)

– Valve must be able to fully close upon 
fail-safe

– Valve is at EOL when any of above conditions 
violated (defines CEOL)
• Function of amount of damage, parameterized 

in model

5/

26

Return Spring

Piston

Plug

Top 

Pneumatic Port

Bottom 

Pneumatic Port

Fluid Flow
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Physics-based Modeling

• Valve state defined by

• State derivatives given by

• Inputs given by

5/

26

Valve position
Valve velocity
Gas mass above piston
Gas mass below piston

Velocity
Acceleration
Gas flow above piston
Gas flow below piston

Fluid pressure (left)
Fluid pressure (right)
Input pressure at top port
Input pressure at bottom port
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Physics-based Modeling: Forces

• Piston movement governed by sum of forces, 
including
– Pneumatic gas:

– Process fluid:

– Weight:

– Spring:

– Friction:

– Contact forces:

5/

26

Valve Stroke 
Length



12/09/2009 D I A G N O S T I C S  &  P R O G N O S T I C S 16

Physics-based Modeling: Flows

• Gas flows determined by choked/non-choked orifice flow equations:

• Fluid flow determined by orifice flow equation:

5/

26
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Pneumatic Valve Modeling

• Possible sensors include

where, 

5/

26

Valve position
Gas pressure (top)
Gas pressure (bottom)
Fluid flow
Open indicator
Closed Indicator
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Modeling Damage

Increase in friction

• Based on sliding wear 
equation

• Describes how friction 
coefficient changes as 
function of friction force, 
piston velocity, and wear 
coefficient

Degradation of spring

• Assume form similar to 
sliding wear equation

• Describes how spring 
constant changes as 
function of spring force, 
piston velocity, and wear 
coefficient

Growth of internal leak

• Based on sliding wear 
equation

• Describes how leak size 
changes as function of 
friction force, piston 
velocity, and wear 
coefficient

Growth of external leak

• Based on environmental 
factors such as corrosion

• Assume a linear change 
in absence of known 
model

5/

26
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Damage Progression

5/

26
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Damage Estimation

• Wear parameters are unknown, and must be estimated 
along with system state

5/

26

Position
Velocity
Gas mass above piston
Gas mass below piston
Friction coefficient
Spring rate
Internal leak area
External leak area (top)
External leak area (bottom)

Friction wear
Spring wear
Internal leak wear
External leak wear (top)
External leak wear (bottom)

Augment system 
state with unknown 
parameters and use 

state observer
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Particle Filters

• Employ particle filters for 
joint state-parameter 
estimation
– Represent probability 

distributions using set of 
weighted samples

– Help manage uncertainty 
(e.g., sensor noise, 
process noise, etc.)

– Similar approaches have 
been applied successfully 
to actuators, batteries, 
and other prognostics 
applications

5/

26

w

x

t

Distribution 
evolves in time

State represented with 
discrete probability 

distribution
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Damage Estimation with PF

• Particle filters (PFs) are state observers that can be applied to general 
nonlinear processes with non-Gaussian noise
– Approximate state distribution by set of discrete weighted samples:

– Suboptimal, but approach optimality as N∞

• Parameter evolution described by random walk:

– Selection of variance of random walk noise is important
– Variance must be large enough to ensure convergence, but small enough 

to ensure precise tracking

• PF approximates posterior as

5/

26
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Sampling Importance Resampling

• Begin with initial particle population
• Predict evolution of particles one step ahead
• Compute particle weights based on likelihood of given observations
• Resample to avoid degeneracy issues

– Degeneracy is when small number of particles have high weight and the rest have very low weight
– Avoid wasting computation on particles that do not contribute to the approximation

5/

26
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• Particle filter computes

• Prediction n steps ahead approximated as

• Similarly, EOL prediction approximated as

• General idea
– Propagate each particle forward until EOL reached (condition on 

EOL evaluates to true)

– Use particle weights for EOL weights

Prediction

5/

26
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Prediction

5/

26

25

Friction progression EOL prediction

Hypothesized 
inputs
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Validation of Methodology

5/

26

26

EOL predictions all contain true EOL, and
get more accurate and precise as EOL is
approached.

Estimate of wear parameter converges
after a few cycles, after this, leak area can
be tracked well.

Internal 
Leak EOL 

Predictions
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α-λ Performance

• Plot summarizes 
performance of 
internal leak prognosis

• Over 50% of 
probability mass 
concentrated within 
the bounds at all 
prediction points 
except at 20 and 30 
cycles
– Mean RULs are 

within the bounds at 
these points

• For α=0.122, metric is 
satisfied at all points

5/

26

27

α=0.1, β=0.5
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Prediction Performance

5/

26

28

α-λ metric for spring damage prediction, where 
α =0.1, β=0.4, M={x,f,pt,pb}

α-λ metric for spring damage prediction, where 
α =0.1, β=0.4, M={open,closed}

Both cases have similar accuracy, but the case with continuous measurements
has much better precision, as the metric evaluates to true for all but one λ point.
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Discussion
• Different sensor sets have comparable estimation and prediction accuracy, 

but some differences are observed

• Wide differences observed in precision of estimation and prediction

• Results reveal that some sensors are more useful for certain faults than 
others

– Flow measurement can be dropped with little effect

– For friction and spring faults, sensor sets with position measurement perform 
best

– For leak faults, sensor sets with pressure measurements perform best

– Helps decide importance of sensors based on which faults are most important

• Overall performance still reasonable with higher levels of noise

– Sensor sets with continuous measurements impacted most

5/

26

29
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Ames Research Center

Application Example: Electronics
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Prognostics for Electronics

Component:

Power Transistor

Line Replaceable Unit: 

Power Controller
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Motivation
• Electronic components have increasingly critical role in on-

board, autonomous functions for 
– Vehicle controls, Communications, Navigation, Radar systems 

• Future aircraft systems will rely more on electric & electronic 
components
– More electric aircraft

– Next Generation Air Traffic System (NGATS) 

• Move toward lead-free electronics and 
microelectromechanical devices (MEMS)

• Assumption of new functionality increases number of 
electronics faults with perhaps unanticipated fault modes

• Needed
– Understanding of behavior of deteriorated components to 

– develop capability to anticipate failures/predict remaining RUL
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Current Research Efforts

• Thermal overstress aging of MOSFETs and IGBTs
• Electrical overstress aging testbed (isothermal)
• Modeling of MOSFETs
• Identification of precursors of failure for different IGBT 

technologies*
• Prognostics for output capacitor in power supplies+

• Effects of lightning events of MOSFETS
• Effects of ESD events of MOSFETS and IGBTs
• Effects of radiation on MOSFETS and IGBTs

• In collaboration with
* University of Maryland
+ Vanderbilt University
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Accelerated aging system

• A platform for aging, characterization, and scenario simulation 
of gate controlled power transistors.

• The platform supports:
– Thermal cycling

– Simulation of operation conditions

– Isothermal aging

• In situ state monitoring is supported at varying gate and drain 
voltage levels.
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• Turn-OFF collector-emitter voltage 
transient decreased significantly with 
both increases in temperature and 
thermal overstress aging time
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Electronics Aging
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Ames Research Center

Application Example: EMA
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Electro-Mechanical Actuators

Mission Statement
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Flyable Electro-mechanical Actuator (FLEA) Testbed

• One load actuator and two test actuators 
(nominal and faulty), switcheable in flight

• Sensor suite includes accelerometers, current 
sensors, position sensors, temperature sensors 
and a load cell

• Real-time flight surface loads 

simulation and data recording

• Data collection flights performed on 

C-17 (DFRC) and planned on UH-60 

(ARC) 
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Ames Research Center

Application Example: Energy 
Storage Devices

Demonstration
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Prognostics HIL Testbed

• Demonstrate prognostic 
algorithm performance
– Fast

– Inexpensive

– Control of several run-to-failure 
parameters

– Interesting dynamics

• Evaluate different prediction 
algorithms and uncertainty 
management schemes
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Modeling Batteries
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• Objective: Predict when Li-ion battery voltage will dip below 2.7V indicating end-
of-discharge (EOD)

• Approach

– Model non-linear electro-chemical phenomena that explain the discharge process

– Learn model parameters from training data 

– Let the PF framework fine tune the model during the tracking phase

– Use the tuned model to predict EOD
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Modeling SOC
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• Objective: Predict when Li-ion battery capacity will fade by 30% indicating life 
(EOL)

• Approach

– Model self-recharge and Coulombic efficiency that explain the aging process

– Learn model parameters from training data 

– Let the PF framework fine tune the model during a few initial cycles

– Use the tuned model to predict EOL

time

v
o
lt
a
g
e

 

 

discharge self-recharge

from measurements from model
R. Huggins, Advanced Batteries: Materials Science 

Aspects, 1st ed., Springer, 2008.

Modeling SOL
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Battery Testbed
• Cells are cycled through charge and 

discharge under different load and 

environmental conditions set by the 

electronic load and environmental chamber 

respectively 

• Periodically EIS measurements are taken to 

monitor the internal condition of the 

battery

• DAQ system collects externally observable 

parameters from the sensors

• Switching circuitry enables cells to be in the 

charge, discharge or EIS health monitoring 

state as dictated by the aging regime
BHM

EIS: Electro-chemical Impedance Spectroscopy
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Prognostics in Action
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