Soft Computing (SC) in the Design of Anomaly Detection Models (AD)

Piero P. Bonissone

Chief Scientist GE Global Research, Schenectady, NY, USA

2 Outline [Soft Computing in the Model Design of Anomaly Detectors] 4 **Anomaly Detection** Motivation: Prognostics and Helath Management (PHM) 2 **Model Generation** Domain Knowledge and Field Data 3 Soft Computing: Evolution of a Concept History (1991-2007) Current Soft Computing View (2010) **Applications of SC to Anomaly Detection** 4 Anomaly Detection for Aircraft Engine Fusion of Models (Categorical & Time-series Data) to reduce false alarms Use of EA +FS + AANN to improve model accuracy

5 Conclusions & References

Anomaly Detection

Motivation: Prognostics and Helath Management (PHM)

Why is Prognostics & Health Management Important

This leads to a large logistics footprint and higher operating costs

Conservative estimates are necessary to ensure reliability. Parts replaced while they are still useful. Even with large spares inventory unforeseen problems can cause major fleet disruptions.

With PHM Specific engine part conditions are known. Small problems can be addressed before they lead to larger more costly maintenance

Smaller logistics footprint - lower costs

Reduced spares inventory. Engine parts replaced only when necessary - reduced maintenance. Engines have longer life with better reliability. Fleet maintenance is more manageable with fewer disruptions.

PHM is a major enabler for Condition Based Maintenance (CBM)

CBM Goals:Unplanned → Planned Maintenance EventsPHM Evolution:Diagnostics → Prognostics → Optimization

Technical Synergy in PHM

Prognostics and Health Management (PHM)

105K units33K units22.7K units1.1K units12.4K unitsImaging devicesEngines / AircraftsTurbines / Engines /TurbinesLocomotivesPACS servers/workstations (fixed & rotary wings)Motors / Plants / towersLocomotives

GE Healthcare GE Aviation GE Energy GE Oil & Gas Dr. Piero P. Bonissone © All Rights Retained - CIDU 2010

Model Generation for Decision Making Domain Knowledge and Field Data

Classical Engineering Approach

Soft Computing Approach

Integrating physics-based with data-driven approaches into hybrid systems

Model Generation

Model =

Representation (Structure + Parameters)

+ Reasoning Mechanism + Search Method

Examples of Modeling Methodologies:

- Differential Equations
- Bayesian Belief Networks
- Neural Networks
- Fuzzy Systems (Mamdani or TS type)
- Instance Based Systems

Representation, Reasoning & Design Search

Modeling Techniques	Linear Differential Equations	Bayesian Belief Networks	Neural Networks	Fuzzy Systems (TSK)/(ANFIS)	Instance Based Reasoning
Model Structure	Order	Topology	Topology	Rule Set	Attribute Space
Model Parameters	Coefficients	Prior Prob. Conditional Prob.	Biases Weights	Term sets Scaling Factors Coefficients	Attribute weights Similarity parameters
Reasoning Mechanism	Solve equations - Closed form - Approximation	Propagation	Propagation	Node evaluation & Propagation	Local Model evaluation & Output combination
Design Search Method	First principle Energy balance methods (Bond Graphs)	Manual EM EA 	Manual EA Backpropag ation Conjugate gradient,	Manual EA Backpropag ation 	Manual EA

REPRESENTATION

imagination at work

PHM Modeling and Optimization: Dynamic Models

PHM Modeling and Optimization: Dynamic Models

PHM Modeling and Optimization: Statistical Models

PHM Modeling and Optimization: KB Models

PHM Modeling and Optimization: Implicit Models

PHM Modeling and Optimization: Local Optimization

PHM Modeling and Optimization: Global Optimization

Soft Computing: Evolution of a Concept

History: 1991-2007

- Current Soft Computing View (2010) Offline Meta to design Online Meta and Object models

Soft Computing (SC): The Origins

"In contrast to traditional hard computing, soft computing exploits the tolerance for imprecision, uncertainty, and partial truth to achieve tractability, robustness, low solutioncost, and better rapport with reality" (Zadeh 1991)

Soft Computing: FL Systems

Soft Computing: NN Systems

Soft Computing: EA Systems

Hybrid Soft Computing (H-SC): A Personal Timetable

Soft Computing: Hybrid Probabilistic Systems Approximate **Functional Approximation**/ Reasoning **Randomized Search Multivalued & Evolutionary Probabilistic** Neural **Fuzzy Logics Algorithms Networks** Models **BBN** D-S CART Rand. For. **HYBRID PROBABILISTIC SYSTEMS Probability Fuzzy Belief of Fuzzy Evolved** Influence of Fuzzy **Fuzzy Random BBN Events Diagrams Events Forest**

Soft Computing: Hybrid FL Systems

Soft Computing: Hybrid NN Systems

Soft Computing: Hybrid EA Systems

Hybrid Soft Computing (H-SC): Two Level Modeling

Dr. Piero P. Bonissone © All Rights Retained - CIDU 2010

Offline Meta-Heuristics: EA generates Structure & Parameters

Examples of Offline Meta-Heuristics

Example: Use of EA to Design a Classifier [using a Wrapper Approach]

On-Line Meta-Heuristics: KB Controller for Object-Level Problem Solver

Hybrid Soft Computing (H-SC): Two Level Modeling

	One Shoot	Tactical	Operational	Strategic	Lifecycle	Time Horizon
Lexicon		Anomaly Detection				
Morphology		Anomaly Detection				
Marked-up Lexicon		Anomaly Identification				
Syntax		Anomaly Id. Diagnostics	Scheduling			
Semantics	Transactional	Anomaly Id.	Scheduling Planning Readiness	Long-Term Planning Contingency Planning		
Pragmatics	Decision	Prognostics Control	Assessment Allocation Optimization DM	Asset Management MOO, Tradeoffs, MCMD	Model Update & Maintenance	

Representing Domain Knowledge for PHM Decisional Tasks

	One Shoot	Tactical	Operational	Strategic	Lifecycle	Time Horizon
Lexicon		Anomaly Detection				
Morphology		Anomaly Detection				
Marked-up Lexicon		Anomaly Identification				
Syntax		Anomaly Id. Diagnostics	Scheduling			
Semantics	Transactional	Anomaly Id. Diagnostics	Scheduling Planning Readiness Assessment	Long-Term Planning Contingency Planning		
Pragmatics	Decision	Prognostics Control	Assest Allocation Optimization DM	Asset Management MOO, Tradeoffs, MCMD	Model Update & Maintenance	

Domain

Knowledge

SC Techniques & Domain Knowledge

SC/Stat/AI Techniques	Domain Knowledge
Self-Organizing Maps (SOM) Kolmogorov Complexity, One-class Support Vector Machine, Neural Networks, Unsupervised Machine Learning techniques, fuzzy clustering, non-parametric statistics	Lexicon and Morphology
Supervised Machine Learning techniques, NN, Fuzzy Classifiers, CART, Random Forest, MARS	Marked-up Lexicon
Automated Kernel Splitting, Grammatical Inference, Evolutionary Algorithms (EA)	Syntax
Feature extraction/selection, fuzzy models, 1 st Principle based simulations, temporal reasoners, Case-based Reasoners, planners, Evolutionary Algorithms	Semantics
Model Selection/Mixing, EA, MOEA, Fuzzy models for preference aggregation and tradeoffs	Pragmatics

Hybrid Soft Computing (H-SC): Family of MH's

imagination at work

Soft Computing: Evolution of a Concept

- History: 1991-2007

Current Soft Computing View (2010) Offline Meta to design Online Meta and Object models

Hybrid Soft Computing (H-SC): On- line MH for Model Design; Off-line MH for Model Control;Object Model for Problem Solving

SC Techniques for Offline MH's, Online MH's, and Object-level Models

	Problem	Problem	Model Design	Model	Object-level models	References
	Instance	Туре	(Offline MH's)	Controller (Online MH's)		[As listed in Bonissone 2010]
	Anomaly Detection (System)	Classification	Model T-norm tuning	Fuzzy Aggregation	<i>Multiple Models:</i> SVM, NN, Case-Based, MARS	[24]
\ Y	Anomaly Detection (System)	Classification	Manual design	Fusion	<i>Multiple Models:</i> Kolmogorov Complexity, SOM. Random Forest, Hotteling T2, AANN	[25, 26]
\ 	Anomaly Detection (Model)	Classification & Prediction	EA tuning of fuzzy supervisory termset	Fuzzy Supervisory	<i>Multiple Models:</i> Ensemble of AANN's	[27, 28]
	Insurance Underwriting: Risk management	Classification	EA	Fusion	<i>Multiple Models:</i> NN, Fuzzy, MARS,	[29, 30]
	Load, HR, NOx forecast	Prediction	Multiple CART trees	Fusion	<i>Multiple Models:</i> Ensemble of NN's	[31, 34]
	Aircraft engine fault recovery	Control/Fault Accommodati on	EA tuning of linear control gains	Crisp supervisory	<i>Multiple Models (Loop):</i> SVM + linear control	[14]
	Power plant optimization	Optimization	Manual design	Fusion	Multiple Models (Loop): MOEA + NN's	[32, 33, 34]
	Flexible mfg. optimization	Optimization	Manual design	Fuzzy supervisory	EA	[10, 35]

Applications of SC to Anomaly detection (for Aircraft Engine)

Fusion of Models (Categorical & Time-series Data) to reduce false alarms

- Use of EA +FS + AANN to improve model accuracy

Anomaly Detection (Fusion)

Reference: Integrated System Health Management (ISHM) and Software Technologies Support, P. Bonissone, N. Eklund, N. Iyer, H. Qiu and A. Varma, 2007GRC928, November 2007, Public (Class 1) Dr. Piero P. Bonissone © All Hights Retained - CIDU 2010

Anomaly Detection (AD) using both Parametric and Anomaly Categorical Data Sources

Categorical data sources

Leverage ALL the information you have BEFORE the flight

Source: Integrated System Health Management (ISHM) and Software Technologies Support, P. Bonissone, N. Eklund, N. Iyer, H. Qiu and A. Varma, 2007GRC928, November 2007, Public (Classifi imagination at work

Parametric data sources

Fusion within Anomaly Detection Modules Anomaly Detection

Anomaly Detection Using Information Theory

Fusion of Anomaly Detection Algorithms based on categorical data

Anomaly Detection

P. Bonissone, N. Eklund, N. Iyer, H. Qiu and A. Varma, 2007GRC928, November 2007, Public (C magination at work

AD Fusion: Output fusion for Categorical & Parametric Models

Systems", IJCNN 2008, WCCI 2008 . Hong Kong, China, June 1-6, 2008

AD Fusion: Output fusion for Categorical & Parametric Models

Fusion of all Anomaly Detection Algorithms

Anomaly Detection

Fusion of error-uncorrelated detectors increases robustness & accuracy

Source: Integrated System Health Management (ISHM) and Software Technologies Support, P. Bonissone, N. Eklund, N. Iyer, H. Qiu and A. Varma, 2007GRC928, November 2007, Public (C

Applications of SC to Anomaly detection (for Aircraft Engine)

- Fusion of Models (Categorical & Time-series Data) to reduce false alarms

- Use of EA +FS + AANN to improve model accuracy

Anomaly Detection (Model Improvement)

Problem Instance	Problem Type	Model Design (Offline MH's)	Model Controller (Online MH's)	Object-level models
Anomaly	1-class	EA tuning of fuzzy	Fuzzy	<i>Multiple Models:</i>
Detection	Classification	supervisory termset	Supervisory	Ensemble of AANN's

Reference: "A Systematic PHM Approach for Anomaly Resolution: A Hybrid Neural Fuzzy System for Model Construction", Proc. PHM 2009, San Diego, CA, Sept 27-Oct 1, 2009. - [GE GR Technical Report, 2000, GRC839, Sept. 2009]

Sources of Anomalies

Dynamic System: Simulated Aircraft Engine [GE 90] Dynamic System

Physics-Based Simulation

-**CLM:** Component Level Model is a physics-based thermodynamic model widely used to simulate the performance of a commercial aircraft engines.

-Flight Regime: Flight conditions, such as altitude, Mach number, ambient temperature, and engine fan speed, and a large variety of model parameters, such as module efficiency and flow capacity are inputs to the CLM

-Outputs: CLM's outputs are the values for pressures, core speed and temperatures at various locations of engine, which simulate sensor measurements.

-**Noise**: Realistic values of sensor noise can be added after the CLM calculation.

Rationale

The Auto-Associative Neural Network (AANN) leverages covariance information like other approaches (SRC and T2). The AANN also produces sensor estimated values to replace the ones generated by faulty sensors. This approach provides a better discrimination between sensor faults and system component faults.

Definition/Properties

AANN computes the largest Non-Linear Principal components (NLPCA) - the nodes in the intermediate layer – to identify and remove correlations among variables.

NLPCA uncover both linear and nonlinear correlations, without restriction on the type of the nonlinearities present in the data.

Computation

Traditional NN training with back-propagation

Variable Contribution

Residuals magnitude/distribution

Basic AD Model: Auto-Associative Neural Network

AD Model

Experiments with Simulated GE90 Aircraft Engines

- Experiment Setup
- Segmentation of the Operating Space
- Experiments
 - 1st 3 local models
 - 2nd 1 Global Model
 - 3rd
- 3 local Models + Supervisory Model

Experiment Setup

Experiements

Segmentation of the Operating Space **Three regions in the Flight Envelops**

Operating

Space

Experiments

Experiments Settings

- We used a steady state CLM model for a commercial, high-bypass, twin-spool turbofan engine.

We can manipulate flight conditions to simulate different operation regimes (i.e. flight envelops of aircraft) and generate data corresponding to them

1st Experiment

Three AANN's: One for each region in the flight envelop (region)

Vary ALT, Mach and Tamb ->1000 normal operating pts for each region Run each operation point through CLM to generate a 9x1 sensor vector 900 points for training (200 for validation); 100 points reserved for test

Each local model performs very well (better than global model) in region of competence, and performs poorly outside its limited scope)

2nd Experiment

One Global AANN

Train on same 2700 training data points from experiment 1

Run each operation point through CLM to generate a 9x1 sensor vector Test on the left 300 points

Global model performs fair across all three regions - shows higher variance than each local AANN operating within its scope

3rd Experiment

Three AANN's: One for each region in the flight envelop Fuzzy Supervisory Model (FSM) to interpolate among local AANN's

Experiment 1

- Vary ALT, Mach and Tamb ->1000 normal operating pts for each flight envelop
- Run each operation point thru CLM to generate a sensor vector (9x1)
- Three AANN's: One for each region in the flight envelop
- 900 points for training (200 for validation); 100 points reserved for test

Goal: Create **three local models** Results: High performance when in scope inadequate performance when out of scope

Dr. Piero P. Bonissone 🛛 Ali Rignis Relained - Cido 2010

Raw Data from Flight Env 1

Residuals: test set from FE1 on AANN1

work

Residuals: test set from FE2 on AANN1

Dr. Piero P. Bonissone © All Rights Retained - CIDU 2010

Experiment 2

- One global AANN
- Train on the 2700 training data points from experiment 1
- Test on the left 300 points

Goal: Create **one Global model** Results: Mediocre performance across entire space – better than worse performance of local models

Dr. Piero P. Bonissone & Ali Rignis Relained - Cido 2010

Test data from FE1

Test data from FE3

Test data from FE2

Smaller residuals (20%) compared to FE2 on NN1 🐻

Experiments (con't)

Operational

Envelope

Object Models: AANN's

Operational

State Vector

Fuzzy Supervisory Rule Set

High

Nation Low V_{el}(Input)

Nachan

Fuzzy Supervisory Term Set

0.426 0.26 0.476 0.60 0.626 0.76

0.426 0.26 0.376 0.60 0.626

0 0.025 0.25 0.375 0.60 0.625 0.76 0.676

High

Low Faile

AAAA mubak

Notel 2

44221-1

AANN-3

State Undet de

RULES R2 High

/81

Engine Physics-based Simulato

Sensor

Data

Run-Time Anomaly Detection Model

Online MH Fuzzy Supervisory

System

Residual Analysis

3rd Experiment

- Three AANN's: One for each region in the flight envelop

- Fuzzy Supervisory Model (FSM) to interpolate among local AANN's

Simulate the change of flight conditions

FE1: 200 pts FE1 \rightarrow FE2: 200 pts FE2: 200 pts FE2 \rightarrow FE3: 200 pts FE3: 200 pts

Test the simulated data on the Fuzzy Supervisory Model + AANN1, AANN2, AANN3

Intentionally making transitions in the space not covered by any pre-trained flight envelop

Hierarchical structure performs very well across all regions – including transitions

Goal: Create a **Fuzzy Supervisory for three local models** Results: Higher performance across all regions
Flight Envelop Transitions

Fuzzy Model-Transition

Transition Management Using Fuzzy Supervisory Model

Network Implementation

Figure Of Merit (FOM)

- *n* is the number of the variables (sensors)
- *m* is the number of data points (measurement)
- *R_{ij}* is the residual between true measurement and AANN estimation,
- \overline{X}_i is the mean of the true measurement

Dr. Piero P. Bonissone © All Rights Retained - CIDU 2010

Residuals for each AANN and for hierarchical system (with FSM)

Design Tuning

- Design Choices in the Fuzzy Supervisory Model (FSM)
- Tuning the Fuzzy Supervisory Model
 - Manual tuning of FSM State Partitions
 - Automated tuning of FSM State Partitions

Manual FLS Tuning: Membership function parameters

Automated FLS Tuning with an EA using a Wrapper Approach

Automated FLS Tuning: Encoding Trapezoidal Membership functions

Encoding the abscissa of the slope intersections (x_i) and the lengths of the bases of each triangle (L_i) as an individual in the Evolutionary Algorithm population

Evolutionary Search for Tuning a Fuzzy Supervisory System using a Wrapper Approach

Anomaly Detection - Results

Automated FLS Tuning: Membership function parameters

Improving AD Design : Add AANN-4 & retune FLS

Most residual errors occur in the [200, 600] interval, indicating a performance limit that cannot be addressed only by tuning the FLS. Rather it suggests the need for an additional AANN-4 to provide better coverage in that region

Design Tradeoffs

* Chromosome:

** Chromosome:

 $\begin{bmatrix} x_1, \dots, x_5, L_1, \dots, L_5 \end{bmatrix}$ $\begin{bmatrix} a_1, \dots, b_1, \dots, a_{12}, b_{13}, c_{11}, \dots, (a_{n3}, b_{n3}, c_{n3}), p \end{bmatrix}$

Future Work

- Hierarchical Design (to Improve Accuracy and Extend Region of competence)
 - + Used Offline Metaheuristics (EA) and Online Metaheuristics (FLS) with AANN model
 - Use a more complex encoding for the EA individual to evolve BOTH structure and parameters:

AANN Models Scope of AANN Models Evolve membership Functions (GBF) in FLS Evolve Aggregation operators (parameterized T-norms)

- Model Lifecycle (to maintain model Vitality)
 - Use Offline Metaheuristics (EA) to create/retune hierarchical design with updated data sets (e.g. reflecting more recent engine degradation)

Conclusions & References

Summary

- Role of Anomaly Detection in PHM
- **Modeling with SC**: Combining Domain Knowledge with Field Data
- SC Evolution (1991-2010)
 - Association
 - Symmetric Hybrid Systems (Reasoning & Search)
 - Structured Hybrid Systems (Meta- & Object- Level Reasoning)
 - Offline MH and On-Line MH
 - Offline MH (model design); On-Line MH (models control or fusion); Objectmodels (problem solving)

Model Lifecycle Management

Use Offline MH to design and update the On-line MH and Object-level models

Applications of SC to Anomaly Detection for Alrtcraft Engine

- Anomaly Detection (System): Kolmogorov, SOM, RF, Hotteling T2, AANN + Fusion
- Anomaly Detection (Model): EA +FS + AANN

Other SC Applications to Classification and Prediction (not covered)

- Classification Digital Underwriting (EA +FS)
- Prediction
 Power Plant Management (EA + CART + Fusion + NN)
- Hybrid SC allows to easily integrate a broad set of techniques for leveraging knowledge and data

Hybrid Soft Computing (H-SC): A Personal Timeline References

REFERENCES

- [1] L.A. Zadeh, "Fuzzy logic and soft computing: issues, contentions and perspectives", *Proc. IIZUKA'94: 3rd Int'l.. Conf. on Fuzzy Logic, Neural Nets and Soft Computing*, lizuka, Japan, 1994, pp. 1–2.
- [2] L.A. Zadeh, "Soft computing and fuzzy logic", IEEE Software 11 (6) (1994) 48-56.
- [3] P. Bonissone "Soft Computing: The convergence of emerging reasoning technologies", *Soft Computing Fusion of Foundations, Methodologies Applications*, vol. 1, no. 1, pp. 6–18, 1997
- [4] P. P. Bonissone, Y-T Chen, K. Goebel, & P. Khedkar, "Hybrid Soft Computing Systems: Industrial and Commercial Applications", *Proceedings of the IEEE*, 87(9): 1641-1667, September 1999
- [5] P. Bonissone, "Soft computing and meta-heuristics: using knowledge and reasoning to control search and vice-versa", *Proc. of the SPIE, Vol. 5200, Applications and Science of Neural Networks, Fuzzy Systems and Evolutionary Computation V,* pp. 133–149, San Diego, CA, August 2003
- [6] P. Bonissone, R. Subbu, N. Eklund, and T. Kiehl, "Evolutionary Algorithms + Domain Knowledge = Real-World Evolutionary Computation", *IEEE Transactions on Evolutionary Computation*, 10(3): 256-280, June 2006.
- [7] J. L. Verdegay, R. Yager, and P. Bonissone, "On Heuristics as a Fundamental Constituent of Soft Computing", *Fuzzy Sets and Systems*, vol. 159, no. 7, pp. 846-855, 2008.
- [8] P. Bonissone, "Soft Computing: A Continuously Evolving Concept", Int. J. Computational Intelligence Systems, to appear, 2010 [GE GR Technical Report, 2009GRC845, Sept. 2009 (pdf)].

Questions?

Comments?

