
National Aeronautics and Space Administration

www.nasa.gov

Evidential Tool Bus for Flight
Critical Systems

Natarajan Shankar Devesh Bhatt and Kirk Schloegel
SRI International Honeywell International
2011 Annual Technical Meeting
May 10–12, 2011
St. Louis, MO

Objective

• The project An Evidential Tool Bus for Flight-Critical
Systems (ETB4FCS) aims to develop a unified semantic
framework for the end-to-end
– Model-based methodologies for the development of

flight-critical systems.
– Analytic capabilities for building dependable flight-critical

systems.
– Public libraries of definitions, decision procedures, and

theorems used in formal analysis.
– Early and compositional analysis tools for flight-critical

software-intensive systems.

2

Background

• Software is increasingly critical to avionics and air-traffic
control systems.

• Certifying the reliability of flight-critical software systems is a
major challenge.

• The ETB4FCS projects addresses the model-based
certification of such systems building on
– SRI's Prototype Verification System (PVS), which has

already been used in several landmark verification efforts
– Honeywell's HiLiTE analyzer for Simulink/Stateflow

models that has been used in DO-178B certification of
commercial aircraft avionics

– The Evidential Tool Bus (ETB) for integrating diverse
tools and composing end-to-end assurance cases.

3

NASA’s ACCoRD Framework for Coordination

4

Algorithms for detecting and
avoiding impending conflicts
Algorithms for recovering from
loss of separation

Comprehensive PVS
proofs of correctness

Technical Approach

5

Evidential Tool Bus (ETB)

• Verification tools include SAT/SMT
solvers, static/dynamic analyzers, and
interactive theorem provers.

• Useful verification functionality, e.g.,
symbolic simulation or test case
generation, is typically built from
combinations of these tools.

• The ETB is an operating system for
integrating verification tools and
composing assurance cases.

• Prototype design using XSB Prolog;
Implementation using Python

• Ongoing pilot study of invariant
strengthening tool using SAL and
Yices for transition systems

6

PVS Enhancements: Libraries

• Prototype Verification System (PVS) is a widely used theorem proving
system combining interactive and automated verification techniques.

• Many complex systems have been verified with PVS.
• PVS has an extensive set of formal libraries for foundational

mathematics, mostly developed by many researchers (including those at
NASA Langley).

• We add background theories for linear algebra and probability as
needed to tackle correctness arguments for cyber-physical systems.

det_type: TYPE = {f: (alternating) | FORALL (i: posnat): f(I(i)) = 1}
det_exists: lemma EXISTS (f: det_type): true
det_unique: lemma FORALL (f, g: det_type): f = g

jensens_E_inequality: THEOREM convex?(f) => f(E(X)) <= E(f o X)

7

PVS Enhancements: Nonlinear Arithmetic

• When reasoning about physical systems, many proofs require extensive
nonlinear arithmetic reasoning.

• Currently, the level of automation for this kind of reasoning is quite low.
• Integration of NASA Field, Manip, PVSio, ProofLite in PVS 5.0 release;

integration of NLYices and latest RAHD release; formalization of IEEE 754.
• Collaboration with Edinburgh/Cambridge on nonlinear arithmetic extensions.
• lt_D_t1_lt_t2_1 : LEMMA

FORALL (t,t1,t2,D:real):
vx*vx + vy*vy /= 0 AND
t1 < t2 AND
(FORALL xy: xy*xy >= 0) AND
(sx+vx*t1)*(sx+vx*t1) + (sy+vy*t1)*(sy+vy*t1) = D AND

(sx+vx*t2)*(sx+vx*t2) + (sy+vy*t2)*(sy+vy*t2) = D AND
(sx+vx*t)*(sx+vx*t) + (sy+vy*t)*(sy+vy*t) < D IMPLIES

t1 < t AND t < t2

8

PVS Enhancements: Physical Dimensions

• In modeling physical systems, variables ranging over numbers represent
physical quantities

• Many errors arise from incompatible dimensions and units
• Dimension typing has been added to the PVS type system
• Primitive units are defined below

units: THEORY
BEGIN
metre: _UNIT = metre
kilogram: _UNIT = kilogram
second: _UNIT = second
coulomb: _UNIT = coulomb
candle: _UNIT = candle
degree_kelvin: _UNIT = degree_kelvin
radian: _UNIT = radian

END units

9

PVS and ETB: The Value Proposition

• Safety-critical cyber-physical systems are everywhere
• Cars, planes, ships, spacecraft, robots, power plants and grids,

factories, air-traffic control systems, and the human body
• An assurance case for such systems must combine

– Background mathematical theories
– Sophisticated constraint solvers for proving and test generation
– Static and dynamic analyzers
– Diverse forms of evidence for demonstrating safety, stability, fault

tolerance, and robustness
• PVS with libraries, nonlinear arithmetic, dimensions/units is a productive

and comprehensive framework for formalizing cyber-physical systems
• ETB supports the scriptable integration of multiple analysis tools for

building a verifiable assurance case

10

Honeywell Integrated Lifecycle Tools and Environment (HiLiTE)

11

Benefit: Reduced certification cost & cycle time; detect design problems early
Technology Transfer: HiLiTE Improvement from this NASA program will be used
in upcoming commercial aircraft certifications

Model Analysis

Test
Generator

MATLAB Simulink and
StateFlow Models

System Dictionaries
Code

Model
Impl.
Code

Test Cases

Test Driver

Target Processor

HiLiTE

I/0, Symbols
ranges, type,
code ref.

B-787
Flight Control

Reuse
Libraries

Multiple
Block Library sets

HAM

Code
Generator
(HAM/RTW or HiLiTE)

Detection of Design Problems
- Logic/relational conflicts
- untestable conditions / paths
- divide by zero, overflow
- numerical error: ambiguity/stability
- Control function level analysis
Design review automation

Engines
Blocks

Simulink Range Analysis Example

12

0 to 15 Overflow

{-5E+08 to -1, 1.25 to 5E+08} Overflow

-5 to 8

-100 to 160

-10 16

Ranges propagated
by HiLiTE

SafeDivide_Out (a) [5]

Sum_Out (a) [4]

Gain_Out (a) [3]

DivideByZero_Out (a) [2]

Uint_Subtraction_Out (a) [1]

n

d
n/d

divideByZero

+

-

Uint_Subtraction

+

-

Sum

n

d
n/d

SafeDivide

X

ProductLimit
Limit
2 to 4

k=5

GainLimit_In (f, 0, L) [6]

-10 to 10

Sum_In2 (f, 0, L) [5]

2 to 5

Sum_In1 (f, 0, L) [4]

0 to 10

DivideByZero_n (f, 0, L) [3]

10 to 100

Uint_Subtract_In (u, 0, L) [2]

5 to 12

Uint_Add_In (u, 0, L) [1]

10 to 20

– Range at the output of a block is calculated taking into account all possible
combinations of input values within their respective ranges over time.

Example Test Vector Generation from Low-Level
Requirements

13

In 1 In 2 In 3 In 4 Out 1

commentRange
0 0 0 0 0 0 0
1 1 1 10 1 1 1

steps Confirm TimeLimit Timeout
1 1 0 0 5 0 1 1 reset timer

249 1 1 1 5 0 1 1 1 cycle before
1 1 1 1 5 1 1 0 timer expires
1 1 1 1 5 1 1 0 1 cycle after

Generated Test Vector

Time
Steps

Rate = 50 Hz

No. of Time Steps
Block Under Test

comment
Confirm TimeLimit Timeout

1 0 Range.mid 0 reset timer
TimeLimit * Rate − 1 1 Range.mid 0 1 cycle before

1 1 Range.mid 1 timer expires

1 1 Range.mid 1 1 cycle after

Requirement-based Test Case
Template for ConfirmSec block

Block Under Test
Confirm Timeout

TimeLimit

In 1

In 2

In 4

Out 1

In 3

HiLiTE contains multiple test templates for over 250 different kinds of function blocks
including logic, math, integrators, filters, timers, latches, hysteresis

Time
Steps

How HILiTE Generates Test Vectors from Test
Case Templates

14

1. Convert formulae in block template to values, using operating ranges for block’s ports

2. Search all possible paths & values from block’s inputs to model inputs
• while computing reverse transformations by each intermediate block

3. Search all possible paths & values from block’s outputs to model outputs and set up inputs
• Determine expected values at model outputs corresponding to expected values at block’s outputs

while computing transformations by each intermediate block
• Observability is essential for detecting coding errors

4. Repeat steps 2 & 3 for each time step in template
– solve for conflicts of desired value in the same time step

input output

Time

And1
Input 1

Input 2

Input 3

And2

Input 4

Output 1
0

0

5

0

1

1

Block Under Test
0

5

X

0
0

0

1

0 1

Model Defects Analysis and Test Generation using
HiLiTE in Honeywell

Application
Domain

No. of
Models
(approx
order)

Types of Defects of
interest in Early
analysis

False
Alarms

Median
Requirements,
Robustness
Coverage
Achieved

Remarks

Domain A 2000 Overflow, underflow,
anomalous behaviors,
untestable/unreachable
constructs, floating point
ambiguity

5–10% > 90% Protection mechanisms/
constraints elsewhere in
the system mitigate
some “defects”

Domain B 300 Anomalous behaviors,
untestable/unreachable
constructs, deactivated
code

< 5% > 90% Still in the early stage of
design. Lot of re-use of
sub-models creates
deactivated code

Domain C 200 Untestable/unreachable
constructs

< 5% 85-95% Defects were reduced
with early analysis and
design maturity

Domain D 90 Untestable/unreachable
constructs, divergent
feedback loops

< 5% 85% Very specific design
patterns

15

Extensions under VVFCS TA 4

• Static analysis of flight-critical software models

• Dynamic analysis of flight-critical software models

• Creation of model representation framework

16

Static analysis of flight-critical software models

• Tighten range propagation results
– Detect state-based invariants in Stateflow models

• Monotonically increasing/decreasing variables that guard transitions
– Cross-signal interactions that are independent of control flow

17

oTimer is
monotonically
increasing in

State1

oTimer is
monotonically
increasing in

State3

oTimer is
monotonically
decreasing in

State2Range is [0,31]

Range is [9, 31]

Range is [9, 15.5]

Static and dynamic analysis of flight-critical
software models

• Static analysis of flight-critical software models
– Propagation of error along with type and range data
– Detection of anomalies

• Potential race conditions across sibling parallel states
• Dynamic analysis of flight-critical software models

– Improved test generation requirements, templates, and coverage results for selected
math function blocks

18

True result could be reported as false!
E.g., inport3 is v=[20.0], e=[-0.002]

v=[20.0]
e=[-0.002]

v=[10.0]
e=[-0.001]

v=[10]
e=[-1]

v=[true]
e=[1]

HiLiTE Static Analysis vs. Code Analysis Tools

HiLiTE Static Analysis Polyspace / Klocwork / Purify /Coverity
Works at model design semantics level

• Understands the semantics of HAM blocks,
modeling constructs, and block combinations

• Runtime < 1 minute for many industrial models

Works at the C-Code level
• Understands full set of C constructs including

pointers/arrays, functions, memory allocation.
(note: most such C-constructs are not used in MBD auto code)

Detects model- and block-semantics specific defects
e.g. Fader block used on a continuous signal

negative input to SQRT, variable timers
Multiport switch control input < 1 or > N

These tools have no knowledge of model-level or
block level design semantics.

Some of the model defects can be masked in the
code by protection mechanisms.

Detects untestable block requirements/conditions and
corresponding structural coverage holes / deactivated
code.

Very limited capability and only at code level, not
model or block level (i.e., in terms of block
requirements)

Detects signal overflow (e.g., divide-by-zero) Detects signal overflow (e.g., divide-by-zero)

Performs range propagation within and across models
and creates range output data for all signals

Detects range-based code errors only but doesn’t
create range data output.

Not applicable in MBD auto code.
(C-Arrays bounds and buffer sizes are static in MBD
code using HAM)

C array bound violation, buffer overflow: noted by
Microsoft as the “single” underlying cause of security issues in
Windows. (Microsoft uses own, more powerful tools.)
Memory leaks, security leaks, etc.

Can be used on system build including multiple auto
code and hand code modules.

19

Both types of capabilities can be useful to a project
Code Analysis tools are typically useful in a non-MBD usage scenario

Creation of model representation framework

• Definition of XML schema to capture Simulink and Stateflow models

20

Current Work and Next Steps

• Static analysis of flight-critical software models
– Further improve (tighten) range bounds

• In StateFlow models by taking into account control flow
• Identify and solve sub-graph constraints in dataflow models – e.g. polynomials
• Bounds in feedback loops – e.g. counter patterns and other relational abstractions

– Generalize error propagation to work across Simulink-Stateflow and broader classes
of function blocks

– Detect behavior anomalies based upon range bounds
• specific to function block’s requirements

• Dynamic analysis of flight-critical software models
– Define common behaviors for classes of mathematical and time-dependent blocks

• Functional and robustness requirements that need specific testing
• What should be tested: test values/ranges criteria, equivalence classes

• Creation of model representation framework
– Generate XML files for Simulink and StateFlow models, representing the contents and

interface of the models.

21

Backup slides

22

Interfaces to other ETB Tools

23

Model Analysis

Test
Generator

MATLAB Simulink and
StateFlow Models

System
Dictionaries

HiLiTE

I/0, Symbols
ranges, type,
code ref.

B-787
Flight Control

Block Libraries

HAM Engines
Blocks

Model Translation
Tool

Model
Representation
Framework

ETB Tools

Yices

Simulink Range Analysis Example: Detecting
Divide by Zero Possibility

24

-10

10

[WARN] Divide Block Divide1: divide by zero is possible since maximum possible range contains zero
Max Possible Range: [- 5,15] Operating Range: [1,13]

HiLiTE Output

Note: HiLiTE does not warn about Divide2 since its denominator’s maximum possible range is [2, 22]

[- 5,15]

HiLiTE-calculated max possible range

[2, 22]

When complex constraints or feedback loops are present, baseline HiLiTE version can
result in “loose” range bounds -- that can lead to false alarms

	Evidential Tool Bus for Flight Critical Systems
	Objective
	Background
	NASA’s ACCoRD Framework for Coordination
	Technical Approach
	Evidential Tool Bus (ETB)
	PVS Enhancements: Libraries
	PVS Enhancements: Nonlinear Arithmetic
	PVS Enhancements: Physical Dimensions
	PVS and ETB: The Value Proposition
	Honeywell Integrated Lifecycle Tools and Environment (HiLiTE)�
	Simulink Range Analysis Example
	Example Test Vector Generation from Low-Level Requirements
	How HILiTE Generates Test Vectors from Test Case Templates
	Model Defects Analysis and Test Generation using HiLiTE in Honeywell
	Extensions under VVFCS TA 4
	Static analysis of flight-critical software models
	Static and dynamic analysis of flight-critical software models
	HiLiTE Static Analysis vs. Code Analysis Tools
	Creation of model representation framework
	Current Work and Next Steps
	Slide Number 22
	Interfaces to other ETB Tools�
	Simulink Range Analysis Example: Detecting Divide by Zero Possibility

