
National Aeronautics and Space Administration 

www.nasa.gov 

Model-Based Validation Testing 

Dr. Misty D. Davies 
Research Computer Engineer 
NASA Ames Research Center 

2011 Annual Technical Meeting 
May 10–12, 2011 
St. Louis, MO 



2 



3 



4 



5 

Monte Carlo Filtering 
What are the inputs (and their ranges) 
most likely to lead to some output? 
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Most of the space in traditional testing remains 
uncovered—you know very little about: 
!   how likely failures are between data points,  
!   what the space might look like beyond the 
nominal input spaces,  
!   if there is a correlation between your failures 
and the values of a particular set of variables. 

Standard testing casts a 
grid across the nominal 
input space, looking for 
failures. 
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Instead, we build models between 
the input and output spaces.  This 
means that we can make predictions 
about where to test in order to find 
failures, and it can give us a probability 
for whether or not there are failures in 
our untested space.  It also lets us find 
patterns in high-dimensional, complex 
spaces. 
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How confident can we be in the models we are building? 

Surfaces predicting the values of yaw and lift that were built by Bayesian statistical 
emulation for the Langley Glide-Back Booster.  Note that the discontinuity in the 
surfaces as the booster crosses into the supersonic regime has been captured by the 
model. (Images courtesy Dr. Herbert Lee, UC Santa Cruz) 
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Idea: Combine heuristic testing and 
formal techniques 
! Explicit techniques give (some) guarantees 
! Heuristic techniques provide scalability 



Te"

10 

Testing Plus Model Checking 

MCP ran out of memory the first time through the OLNNs 

With the OLNNs removed (PID control only), MCP ran out of memory after 7 times through the loop. 

NAN errors are most associated with roll gains (but the correlation isn’t perfect). 
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Testing Plus Model Checking 

Strategy:  Flag the first NAN, treat the 
inputs to the module for that time step as 
the test case for the model checker. 
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Testing Plus Concolic Execution 
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Testing Plus Concolic Execution 

Subsonic: 

Supersonic: 

After 25 tests— 

N-factor: 
16 covered,  
10 uncovered 

Model-based: 
21 covered, 
12 not covered 
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This figure represents a sample operational error. It shows several minutes 
of track data for two aircraft (AC1 and AC2) leading up to the loss of 
separation (LOS) where the two circles, which are 3 nautical miles in 
diameter, overlap. The asterisks are minute markers denoting three 
minutes before the LOS. The sharp turn to the right of AC2 after LOS is due 
to controller intervention. 

Terminal TSAFE 
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When should you use model-based testing? 

When you don’t have lots of information about 
relationships (too complex, too many) but you 
do have lots of data (and the ability to get more 
data). 

When you have some idea of what ‘good’ data 
or ‘bad’ data look like. 

Even better if: 

You can isolate some parts of the system to 
‘white-box’ and can feed the the illuminated 
data in as information. 
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Why change current testing methods?

Finding bugs in modern flight software is an arduous 
process. Interdependencies between the systems and 
subsystems of the flight vehicle and the environment mean 
that, not only does each component need to be explored, 
the interfaces between the components must also be 
exercised.  During the later parts of the design phase the 
system is usually validated using high-fidelity simulations.  
Advances in computing power make it possible to try many  
thousands of combinations of input variables to exercise 
the behavior of the system. However, a thorough 
exploration of the entire flight envelope results in gigabytes 
of data that requires expert domain knowledge to interpret; 
and because of the high dimensionality of the data, it is 
difficult to pick out patterns with the human eye. 

Additionally, standard testing is based on isolated 
operating points for the system.  Inputs are selected 
randomly, or are chosen according to some grid, and are 
usually concentrated in the ideal flight envelope.  The 
outputs of the system are evaluated against failure criteria, 
with each test case either ʻsucceedingʼ or ʻfailingʼ - there is 
no notion of a distance to failure. 

How is model-based validation testing better than 
traditional testing methods?

Instead of trying to find isolated failures, model-based 
validation testing uses collected test data to build a 
relationship between the inputs and the outputs.  We can 
then treat testing as a scientific experiment.  The model we 
are building becomes a hypothesis for the system 
behavior, and we can test and refine our hypothesis using 
standard methods from experimental design. When the 
model we are building represents the actual system 
closely enough, we can use it to make predictions about 
the system in places we havenʼt tested yet.  More 
importantly, we can begin to put bounds on the maximum 
error between reality and our model using statistics and 
formal methods.  These means that we can produce 
evidence that provides a high confidence of system safety. 

What do you mean when you say that you treat testing 
like an experiment?

The end goal of our work is to be able to make predictions 
about the behavior of complex systems.  In order to do 
that, we build a model of the system.  We build the model 

     The possible flight envelope is much larger than 
the ideal flight envelope.  Standard testing 
concentrates on the ideal flight envelope.  Model-
based testing allows us to explore off-nominal but 
still possible scenarios in order to find failures.

Standard testing looks at isolated test points and 
only evaluates whether a case is a success or a 
failure.

Model-based testing allows us to predict regions of 
success or failure, and enables us to bound our 
uncertainty.
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automatically by making observations of the system, 
and using machine learning techniques to determine 
the relationships between the things we can control and 
the system behavior.  For our work, we use 
unsupervised machine learning techniques to find 
structure in the system.  This tells us what form our 
model should take, and it can automatically find 
anomalies in the data. In order to build an accurate 
model quickly, we borrow ideas from experimental 
design like factorial experiments - most failures are only 
triggered by one, two, or three factors at most, and we 
build test suites that take advantage of that fact.  

We use each successive model as a hypothesis, and 
test the predictions we can make.  These tests allow us 
to refine the models until we have reached some 
minimum confidence bound.

Whenever possible, we also can incorporate 
information gleaned from formal methods techniques.  
These are mathematical proofs that some part of the 
system must behave in a particular way.  We also can 
use model-based validation testing to give good initial 
models to formal methods tools, enabling the tools to 
more quickly produce definitive evidence of safety.

When do you use model-based validation 
testing, instead of other techniques?

Model-based validation testing is designed for use 
in large and/or complex systems with a combination 
of continuous and discrete variables.  You should be 
able to run tests on the system, and, ideally you 
should be able to define whether a particular 
behavior was ʻgoodʼ or ʻbadʼ.  Most of the time, the 
notion of ʻgoodʼ and ʻbadʼ behavior comes from the 
system goals.  Model-based validation testing has 
previously been used for launch pad abort 
scenarios, small satellite design, and medical device 
design.  We are currently using model-based 
validation testing to explore next generation 
(NextGen) air traffic management concepts of 
operation.
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The model-based testing process automates the 
creation and refinement of hypotheses.
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