National Aeronautics and Space Administration

|/
Dr. Misty D. Davies
Research Computer Engineer
NASA Ames Research Center

2011 Annual Technical Meeting .

May 10-12, 2011

St. Louis, MO

M

www.nasa.gov

Margins Testing NextGen

Analysis Plus Example Conclusion

Validation needs to happen on many different scales.

Photos from: http://contrailscience.com/britain-from-above-air-traffic/, www.southwest.com, northrupgrumman.com

Margins Testing NextGen

Analysis Plus Example Conclusion

6. REQUIREMENTS FOR APPROACHES WITH A MISSED APPROACH LESS THAN RNP 1.0.
a. No single-point-of-failure can cause the loss of guidance compliant with the RNP
value associated with a missed approach procedure.

From: FAA Advisory Circular 90-101: Approval Guidance for RNP Procedures with SAAAR. 2005.

Photo from NewZealandView.com

Margins Testing NextGen Conclusion

Analysis Plus Example

Problem Domain:

Large (thousands of
independent variables),
complex, non-linear, with
interacting modal, continuous,
periodic and stochastic
parameters.

The Unreasonable Effectiveness of Data
--Alon Halevy, Peter Norvig, and Fernando Pereira

Scene Completion Using Millions of Photographs
--James Hayes, Alexei Efros (CMU) ,

Testing NextGen

Motivation Conclusion

Plus Example

Monte Carlo Filtering

What are the inputs (and their ranges)
most likely to lead to some output?

*+ N-factor combinatorial test case
generation
+ Data manipulation to identify
distributions (continuous,
discrete, periodic), reduce
dimensionality where it helps,
and actually increase
dimensionality where we can
afford it in order to eliminate the
independence assumption.
What are we + UnsuPervised }eaming
techniques to find structure.
doing differently? + Supervised learning techniques
(treatment learning) to find
dependencies.
+ Automated iterations.

Motivation

nput2

Most of the space in traditional testing remains
uncovered—you know very little about:

= how likely failures are between data points,
= what the space might look like beyond the
nominal input spaces,

= if there is a correlation between your failures
and the values of a particular set of variables.

Testing NextGen

Plus Example Conclusion

Standard testing casts a
grid across the nominal
input space, looking for
failures.

Testing NextGen

Motivation Conclusion

Plus Example

el 8

- . - . . -
-
.
- - Ao . - . -
- . - . - . . .

- ~N
T L2
- - .

nput2
o
-

pat |

Instead, we build models between
the input and output spaces. This
means that we can make predictions
about where to test in order to find
failures, and it can give us a probability
for whether or not there are failures in
our untested space. It also lets us find
patterns in high-dimensional, complex
spaces.

Motivation

Testing

Plus

NextGen

Conclusion
Example

How confident can we be in the models we are building?

16
14
12
08
06
04
02

02
04

Alpha
(angle of attack)

Mean posterior predictive - Lift
fixing Beta (side slip angle) to zero

Mach (speed)

Alpha

(angle of attack) 5

Yaw
001
0008
0006
0004
0002

0002
0004
D006
0008

£

Z.\
0
15

10

Mean posterior predictive - Yaw
fixing Beta (si

slip angle) to 2

Mach (speed)

Surfaces predicting the values of yaw and lift that were built by Bayesian statistical
emulation for the Langley Glide-Back Booster. Note that the discontinuity in the
surfaces as the booster crosses into the supersonic regime has been captured by the
model. (Images courtesy Dr. Herbert Lee, UC Santa Cruz)

onl

0008
onoe
0004
0002

0002
-0.004
0006
0008

Motivation Margm_s i g, Conclusion
Analysis Example

|2<

Idea: Combine heuristic testing and
formal techniques

=Explicit techniques give (some) guarantees
=Heuristic techniques provide scalability

Xm
Ym=f(Xm)
can be found explicitly
Ym

using formal techniques

System

B=f(x_’) can be

approximated

x_m=f(X_;) using

Y! heuristic

POSSibl)’ B:f(m) techniques

s
&

Margins NextGen

Motivation Conclusion

Analysis Example

Testing Plus Model Checking mcp

transformation

passes

Fully Coupled

PID
. A 4
— PS:?J::" llvm-gce .| LLVM opt Instrumented
Lea'\;:i‘r‘;,go:\‘l(:ural Actuator test compiler “l tool bitcode
Model
Linearized Plane Run-ttlme llvm-gcc Bitcode | LLVM
Reference Model system compiler P linker
. sources
. [bitcod
MCP: An Explicit State Model |>**
++
10 seconds Checker for C p—
.005 sec/timestep tool

MCP ran out of memory the first time through the OLNNs
With the OLNNs removed (PID control only), MCP ran out of memory after 7 times through the loop.

O g e A S T R S A e

0.1 0.2 0.3 0.4 0.5 0.6

NAN errors are most associated with roll gains (but the correlation isn’t perfect).
10

Margins NextGen

Motivation Conclusion

Analysis Example

Testing Plus Model Checking

localB-=Product4_a[l] = localB-=cpll * @.1;
localB-=Product4_a[2] = localB-=cpl2 * A.1;
localB-=Product4_a[3] = localB-=cpl3 * 6.1;

Instrumentation A Sumz '<355x/5umz " */
localB-=MathFunctionl = localB-=MathFunctionl - rtu_U_p_adl;

mfl = mfl - rtu_U_p_adl;

'H_ Strategy: Flag the first NAN, treat the
o inputs to the module for that time step as
oo A the test case for the model checker.
A
P up_adt .
. . /% Product: '<557=/Product4’' incorporates:
> . yuadl_outp; * Constont: '<554=/cpl@’
o ol s in : * Constont: '<556:/cp2@’
ro . */
chan“nEPrmmamH‘: o localB->Pkoduct4_a[8] = 1.APAPAARARAARARAZE-02;

** starting the model ** /¥ Gain: '<586=/Gain' */

-—— Step #0 localB-=MathFunctionl = -localB-=MathFunctiond;
——— rtu_U_p_adl = 5.264576e+65 (size 8) mfl = -mfl;

- nfl = -7.475918e+01

——- mfl - -5.205324e+85 /% Math: '<S55=/Math Function' */

——— mfl = 5.205324e+85

/¥ Operator : exponential */

::: 3:1 ;:: localB-=MathFunctionl = exp(localB->MathFunctionl);
—— nfl = 0.000000e+00 mfl = exp(mfl);

-— mfl = B.008080e+88, |b--mfl = B.000600e+80)

—— uldd = nan A% Sum: '<555=/5Sum' incorporates:

#H GENZ_w_test2_Roll_nn.c(348): Assertion failure: 8 * Constant: '<555:/Constant’

*/
localB-=5um = 1.8 - localB-=MathFunctionl;

11

Margins NextGen

Motivation Conclusion

Analysis Example

Testing Plus Concolic Execution

int gl =1, g2 = 2;

int System(int Il1, int I2)

{
if (I1 > 0) gl = I2; else gl = -12;
g2 = 11 + 3;
Unit (12, I1);

} Multiple Monte—Carlo Simulations
int Unit(int il, int i2)
{
if(il > 0) { Wsnw,l./e!rdlnpuw(o
i2 = g2;
if(i2 > 0) return 0; else return 1; System S
} else { 1= &i)
i2 = gl + 3; it Level inputs (i)
if(i2 > 0) return 2; else return 3;
: } Unit U Symbolic
Executions
1 1

Concrete Executions

12

Margins NextGen

Motivation Conclusion

Analysis Example

Testing Plus Concolic Execution
System Inputs (I): Pt, Ps, Alt
4)

0.4
1.4
Subsonic: Ma = 5 (&) —1

After 25 tests—

N-factor:
16 covered,
10 uncovered

P, 5.6Ma2 — 0.8 2.4

Supersonic: P (5.76 Ma?)3'5 2.8Ma? — 0.4
P,

Model-based:

Unit Inputs (i): Ma, Cf, Cfbterm, Cfterm 21 covered
)
e ™ 12 not covered
[Tree]
9 (Cf > CfTerm) (C, ...)
10 (Ma >= (780000 / 1000000)) (C, ...)
11 (Ma > (1040000 / 1000000)) (C, ...)
12 (Ma >= (600000 / 1000000)) (C, ...)
13 (Cfb > CfbTerm) (C, ...)
14 (Ma >= 1) (C, ...)
15 (Ma <= (2000000 / 1000000)) (c, ...)
16 (Ma > (2000000 / 1000000)) (C, ...)
17 (Ma < 1) (S8, ...)
18 (Cfb <= CfbTerm) (S, ...)
19 (Ma < (600000 / 1000000)) (S, ...)
20 (Ma <= (1040000 / 1000000)) (S, ...)
21 (Ma < (780000 / 1000000)) (s, ...)
22 (Cf <= CfTerm) (S, ...)

13

Margins Testing

Motivation Conclusion

Analysis Plus

Terminal TSAFE

.
520 —r—1— — ————

.)l 4
I _ // |
i (\ b
510+ \ _ il]
2300
'5 o)
< I {
- | : ACI
490+) .
L o
w.: ,{ :4
wJ P PO . | .\ i | S | W T T S 1
520 S 530 550 S60 S7T0

X Position, nmi

This figure represents a sample operational error. It shows several minutes
of track data for two aircraft (AC1 and AC2) leading up to the loss of
separation (LOS) where the two circles, which are 3 nautical miles in
diameter, overlap. The asterisks are minute markers denoting three
minutes before the LOS. The sharp turn to the right of AC2 after LOS is due
to controller intervention.

14

Margins Testing NextGen

Motivation Analysis Plus Example

When should you use model-based testing?

When you don’t have lots of information about P
relationships (too complex, too many) but you)
do have lots of data (and the ability to get more
data).

When you have some idea of what ‘good’ data
or ‘bad’ data look like.

Eve n bette r if.- Mutltiple Monte-Carlo Simulations
]sclrellnpus 0l
System S -
it Levell inputs (i,
You can isolate some parts of the system to onie Symbotie
‘white-box’ and can feed the the illuminated

data in as information. concrete Executions

15

Model-Based Validation Testing

Why change current testing methods?

Finding bugs in modern flight software is an arduous
process. Interdependencies between the systems and
subsystems of the flight vehicle and the environment mean
that, not only does each component need to be explored,
the interfaces between the components must also be
exercised. During the later parts of the design phase the
system is usually validated using high-fidelity simulations.
Advances in computing power make it possible to try many
thousands of combinations of input variables to exercise
the behavior of the system. However, a thorough
exploration of the entire flight envelope results in gigabytes
of data that requires expert domain knowledge to interpret; The possible flight envelope is much larger than

POSSIBLE FLIGHT
ENVELOPE

IDEAL FLIGHT
ENVELOPE

and because of the high dimensionality of the data, it is the ideal flight envelope. Standard testing
difficult to pick out patterns with the human eye. concentrates on the ideal flight envelope. Model-
based testing allows us to explore off-nominal but
Additionally, standard testing is based on isolated still possible scenarios in order to find failures.
operating points for the system. Inputs are selected
randomly, or are chosen according to some grid, and are k&
usually concentrated in the ideal flight envelope. The 2 B & / ~ -
outputs of the system are evaluated against failure criteria, | B 6 L\' /sf\ :
with each test case either ‘succeeding’ or ‘failing’ - there is e
no notion of a distance to failure. o
How is model-based validation testing better than
traditional testing methods? o
3F - . .
Instead of trying to find isolated failures, model-based N

Input1

validation testing uses collected test data to build a
relationship between the inputs and the outputs. We can
then treat testing as a scientific experiment. The model we
are building becomes a hypothesis for the system
behavior, and we can test and refine our hypothesis using
standard methods from experimental design. When the
model we are building represents the actual system
closely enough, we can use it to make predictions about
the system in places we haven't tested yet. More
importantly, we can begin to put bounds on the maximum
error between reality and our model using statistics and
formal methods. These means that we can produce
evidence that provides a high confidence of system safety.

Standard testing looks at isolated test points and
only evaluates whether a case is a success or a
failure.

Qutput

What do you mean when you say that you treat testing
like an experiment?

3 -
Input 2 3 Input 1

The end goal of our work is to be able to make predictions Model-based testing allows us to predict regions of
about the behavior of complex systems. In order to do success or failure, and enables us to bound our
that, we build a model of the system. We build the model uncertainty.

http://ti.arc.nasa.gov/tech/rse Model-Based Validation Testing - 2011

Model-Based Validation Testing

automatically by making observations of the system,
and using machine learning techniques to determine
the relationships between the things we can control and
the system behavior. For our work, we use
unsupervised machine learning techniques to find
structure in the system. This tells us what form our
model should take, and it can automatically find
anomalies in the data. In order to build an accurate
model quickly, we borrow ideas from experimental
design like factorial experiments - most failures are only
triggered by one, two, or three factors at most, and we
build test suites that take advantage of that fact.

We use each successive model as a hypothesis, and
test the predictions we can make. These tests allow us
to refine the models until we have reached some
minimum confidence bound.

Whenever possible, we also can incorporate
information gleaned from formal methods techniques.
These are mathematical proofs that some part of the
system must behave in a particular way. We also can
use model-based validation testing to give good initial
models to formal methods tools, enabling the tools to
more quickly produce definitive evidence of safety.

Choose Simulation

Parameters

2,3 factor

combinatorial Expanded Monte Carlo

”

Sensitivity -rnnlysls

Visualization

The model-based testing process automates the
creation and refinement of hypotheses.

http://ti.arc.nasa.gov/tech/rse

When do you use model-based validation
testing, instead of other techniques?

Model-based validation testing is designed for use
in large and/or complex systems with a combination
of continuous and discrete variables. You should be
able to run tests on the system, and, ideally you
should be able to define whether a particular
behavior was ‘good’ or ‘bad’. Most of the time, the
notion of ‘good’ and ‘bad’ behavior comes from the
system goals. Model-based validation testing has
previously been used for launch pad abort
scenarios, small satellite design, and medical device
design. We are currently using model-based
validation testing to explore next generation
(NextGen) air traffic management concepts of
operation.

Recent papers:

G. Gay, T. Menzies, M. Davies, and K. Gundy-Burlet.
“Automatically finding the control variables for complex system
behavior.” Automated Software Engineering 17(4), December
2010, pp 439-468.

M. Davies, G. Limes and K. Gundy-Burlet. “A Hardware Model
Validation Tool for Use in Complex Systems.” AIAA Space
Conference, Anaheim, CA, Aug. 31-Sep. 2, 2010

S. Thompson, M. Davies and K. Gundy-Burlet. “Hybrid
Decompositional Verification for Discovering Failures in
Adaptive Flight Control Systems.” AIAA Infotech@ Aerospace
Conference, Atlanta, GA, Apr. 20, 2010

K. Gundy-Burlet, J. Schumann, T. Barrett, and T. Menzies,
“Parametric Analysis of a Hover Test Vehicle Using
Advanced Test Generation and Data Analysis,” AIAA
Aerospace, 2009.

J. Schumann, K. Gundy-Burlet, C. Pasareanu, T. Menzies, and
T. Barrett. “Tool Support for Parametric Analysis of Large
Software Systems”, Proceedings of Automated Software
Engineering, 23rd IEEE/ACM International Conference, 2008.

e R —=—=—=—=
For more information, please contact:

Misty Davies
(650) 604-0476 misty.d.davies@nasa.gov

Model-Based Validation Testing - 2011

