

Dinkar Mylaraswamy (and others)

Vehicle Level Reasoning System (VLRS) and Data Mining

Acknowledgements

- NASA
 - Eric Cooper (COTR)
 - Robert Mah
 - Ashok Srivastava
- Vanderbilt University
 - Gautam Biswas
 - Xenofon D. Koutsoukos
 - Daniel Mack
- Honeywell
 - George Hadden
 - Craig Schimmel

Outline

- Motivation: Role of vehicle level reasoning system (VLRS) in aviation safety
- Approach: Vehicle Integrated Prognostic Reasoner (VIPR)
 - concepts, architecture, operations
- Role of data mining in VLRS
 - available data, planned activities
- Closing remarks

NTSB Safety Incidents

(Ref: Cooper et al., Av Safe Conference, 2009)

- Air France Flight 447 accident on 1st June, 2009 (Bureau d"Enquêteset d"AnalysesInterim Report f-cp090601ae)
 - Analysis of the series of 24 broadcast maintenance messages concluded that various monitoring processes were triggered, with many of them pointing to an inconsistency in speed measurement
- In-flight upset 154 km west of Learmonth, WA, 7 October 2008 Airbus A330-303 (ATSB Transport Safety Report AO-2008-070 Interim Factual)
 - While cruising at 37,000ft the aircraft autopilot disconnected, various aircraft system failures were indicated. Before the flight crew could deal with them, the aircraft abruptly pitched nose-down and descended 650 ft.
- Loss of Pitch Control During Takeoff, Air Midwest Flight 5481, Raytheon (Beechcraft) 1900D, N233YV, Charlotte, North Carolina, January 8, 2003 (NTSB/AAR-04/01)
 - Post event analysis showed consistent differences in pitch control position values 10 flights before the maintenance check, and the 9 flights after the D6 maintenance check.

Capturing safety events

An aircraft consists of several subsystems. Propulsion, flight management, bleed, etc. All these have subsystems have diagnostic monitors

Safety event cube: region spanned by three axes: progression of fault, impact spread, and symptom persistence

Large number of heterogeneous, synchronous and asynchronous evidence needs to be and reasoned to determine vehicle state – Vehicle Level Reasoning System (VLRS)

Data Driven VLRS

Current state of the ART

Honeywell's ADMS = Aircraft Diagnostic & Monitoring System. Onboard the B777, B787, Embraer, Dassault.

Next Generation VLRS needs to support the following features

- ➤ Handle variety of evidence heterogeneous & uncertain
- Support temporal and prognostic reasoning
- Active role for fault isolation

Working with NASA to lay the foundation for a next generation vehicle level reasoner – VIPR

1. User Requirements

	Event Type	Top Level requirements				
		(Flight crew)				
n	Slow	1. Less important.				
ne utioi		2. Important, if and only if it will affect the current flight.				
Time Evolution	Fast	1. Very important. Early detection of incipient conditions.				
		ic control) actions				
'n	1. Detect events in real time.					
Impact Propagation		2. If impact is localized, confirm g as designed				
Impact opagatio	Widespread	that backup is working as				
Pro		move the evidence				
	Constant	designed				
ptom stence	COIISIdIII	3. Keep track of intermittents				
pto ste		uei.				

	Top Level requirements					
	(VLRS Installer)					
Scalability	 Separate the reasoning algorithms from aircraft specific configurations. A common code base is easy to validate and makes is easier to certify. Finite set of operations, each of which is bounded computationally. 					
Deployment	1. Reason 2. Suppor 3. VIPR sh 4. Unamb 1. Allow member systems to encode proprietary knowledge. 2. Common code base to reduce tation.	r.				
Accuracy	 Ability t Must in used as States a Certification efforts. 3. Work within aircraft HW/SW constraints ' operations ' operations	d				
	4. Capable of proposing and working with multiple fault hypotheses.					

tion and establish that intermittency is true.
ot cause may be less important

2. Basic Elements/Definitions within VLRS

- 1. VLRS logically separates evidence generation (monitors), data collection (measure), and evidence interpretation (the reasoning/inferencing engine)
- 2. Information and data exchange occurs a well-defined standard messaging protocols
- 3. VLRS needs to interpret heterogeneous evidence provided by advanced monitors (multivariate, prognostic, trending, human)

2. Sub-functions within VLRS

3. Monitor Abstraction / Evidence Types

Monitors are the eyes and ears of the VLRS

4. System Reference Model

System Reference Model (static) is a network that captures the specific aircraft configuration for VLRS

5. Concept of Operations

- VLRS is an onboard system level reasoner.
 - It runs continually in the background when the aircraft is powered on, updating its internal states
- VLRS states are structures called 'Fault Conditions'
 - FC group evidence as explained by possible fault hypotheses
- The reasoning proceeds through steps of
 - Abductive reasoning: Primary monitor → ambiguity of failure models
 - Deductive reasoning: Failure mode → monitors of interest

Ref: Felke, T., "Application of Model-Based Diagnostics Technology on the Boeing 777 Airplane", IEEE Aero Conf., Big Sky, MT. 1994.

6. Inference Engine: States & Operators

7. Layered Architecture

Graph partitioning algorithms can be used to identify "islands of strongly connected" elements in the system reference model network

- The VLRS processing blocks need computational power to perform the underlying algorithmic calculation
- An aircraft LRU may not be capable of generating monitors
 - VIPR needs to provide computational resource to generate these monitors based on sensor data
 - Hence the need for a LRU health manager tier to support these intensive calculations
- Bus layouts limit inter-subsystem communications
 - Spatial and temporal fusion make most use of this connectivity and benefit from high information passing
 - Hence the need for a Area Health Manager that can distributed among existing data hubs

A distributed reasoning architecture allows VLRS to operate within aircraft computation constraints

8. Messaging protocols

Message Type	Description					
Broadcast	Broadcast messages are of interest to multiple elements and contain such information as flight phase and time.					
Command	Command messages to operate the vehicle are issued from VHM and maintenance crew. Acknowledgment is sent from receiver and often contains data response.					
Event	CONCLUSIONS sent to higher-level health managers as events. Messages contain originator, event type, time, location, analysis and supporting data. Includes Status, Capability, Maintenance, and Event Observe/Orient/Decide messages.					
Query	Query messages can request additional data.					
Command Response	Acknowledges the receipt of a command. Can include data confirming the results of the command.					
Event Response	Acknowledges the receipt of an event message.					
Query Response	Provides the data requested by	, a ∩ijerv message		Fields	common to all message types:	
		Follows ARING 624	Common Message Header	Source	r, destination, Timestamp, message r, packet type, packet length	
		Encoding	Specific Message SubHeader	Query,	Fields specific to messages such as Query, Command, Broadcast, Event and Event Response.	
			Data Payload	(Size fi	xed for each Message Type)	
		L	L	is 64 KI	e size payload. Max size bytes minus the size of -header	

Extend the ARINC 624 messages to support VLRS functions

How does one go about building the next gen VLRS?

ROLE OF DATA MINING

9. Aircraft Data

- We instrumented aircrafts to record 188 parameters at 1, 2, 4, 8 and 16 Hz over the entire the flight cycle
 - Fleet consisted of 36 identical airplanes and flies 2—3 flights each day

Data consists of approximately 3000 consecutive flights

10. Safety incidents & Annotations

(Dates masked to preserve anonymity)

		Event Date	Field annotation	
Event Date	Safety Incident			
		9-Nov-04, 08-Oct-04, 19-		
30-Aug-06	Loss of oil and engine shutdown	Aug-04	Bird strike to engine	
1-Aug-06	Vibration, engine shutdown, Turbine damaged	17-Oct-05	Eng. Starting hot & hot @ 28000 with all A/F anti-ice	
26-Jan-06	Over speed temperature and engine shutdown	24-Feb-05	Eng. Slow to light off	
20-Oct-05	Hydraulic leak. Take off aborted	11-Jan-05	Eng. Will not start	
15-Aug-05	Intermittent engine on fire. Traced to fuel problems	8-Jan-05	Eng. Will not sustain idle with FADEC off	
17-Apr-05	False alarm of engine on fire. Fuel leakages	7-Jan-05	Eng. Hung twice	
5-Mar-05	Pilot error	26-Dec-04	Eng.starting hot with FADEC on	
11-Jan-05	Hydraulic leak, smoke in the cabin	25-Nov-04	Eng. Low margin -troubleshoot	
5-Jul-03	Incipient ice formation	16-Nov-04	Eng.over-temp. during cross gen start.	
3-Sep-02	Runway incident. Hit a pole	1-Oct-04	Eng. Running hot- 50 deg. Hotter than other eng.	
19-Jul-02	Runway incident, hit a catering truck	30-Sep-04	Eng. Starting hot during leak checks	

Obtained by cross referencing with the ASIAS (FAA's safety reporting website)

11. Data Mining Objectives

Objective 1: Structural (discovering new entities in the reference model)

- Establish new relations between monitors and failure modes
- Discover monitor and fault cascades
- Discover subsystem interaction and spatial proximity relations

- Objective 2: Parametric (refine fault condition ranking and accuracy)
 - Derive probability values for symptom-cause relations
 - Derive relationship between operating mode and parametric monitors
 - ➤ Derive new monitors that combine existing raw sensor readings to define "new" evidence

Structured data mining and knowledge discovery approach

12. Data Mining Algorithm: TAN

- Extend Diagnostic Belief Networks (BNs) to Tree-Augmented Naïve Bayesian Networks (TANs) (Friedman, et al., 1997; Cohen, et al., 2004)
 - Intuitive corresponds to expert's representation in Reference model
 - Modifiable because of similarity of representation can combine expert relations with data-derived relations
 - Efficient Classification structure derived in polynomial time
 - Greedy search (Cohen, et al., 2004)
 - Mutual information function in combination with a minimum spanning tree algorithm (Chen, 2006)
- Two tasks being planned
 - Improving parameters of Original Structure
 - Improving reasoner by adding new local information

Closing Remarks

- Vehicle level reasoner is aimed at:
 - Improving aircraft safety due to enhanced monitoring and reasoning about the aircraft's health state
 - Operational cost savings by enabling Condition Based Maintenance (CBM)
- In this talk, we outlined the next gen VLRS namely VIPR
 - Trade space: user requirements and safety drivers, delta-increments from baseline to realize the advanced functions of VLRS
 - Reasoning steps: defined the steps for evidence aggregation, fault hypothesis management, using an abductive reasoning framework
 - Role of Data mining: defined a partially known reference model structure, available data and an algorithmic approach
- Did not touch on metrics