HIRENASD structural model

Joint exercise in Aeroelastic Prediction RTO-203/AVT-067 Paris, 7/1/11

Dr. Alexander Boucke Prof. Josef Ballmann ITAM GmbH / Chair for Mechanics RWTH

Outline

- Closer look at the structures of wing and balance
- Aims and requirements for structural modeling
- Reducing complexity: Beam model
 - Definition of beam properties and potential problems
 - Eigenmodes in comparison with measurements
 - Simulation of excitation

- Wing: Two complex shaped halves, screwed together
- Wing is exposed to temperature changes in wind tunnel
- Wing clamped to balance and filled with measuring equipment
- Complex balance, mounted in heated enclosure

Equipment inside wing

- Aims for this project:
 - Stationary aeroelastic solution: Correct wing deflection needed; needs fully coupled stationary solver
 - Forced excitation of mode: Can be done using
 - Forced motion of given mode shape: No need for coupled computation; needs good representation of mode shape, frequency given
 - \rightarrow gives unsteady aerodynamic data
 - Simulation of excitation mechanism: Needs fully coupled, non-stationary simulation; needs good representation of mode shapes and frequencies up to a certain mode
 - \rightarrow additional to above: aerodynamic damping
- **Not now:** Frequency shift and aeroelastic damping of modes; needs fully coupled non-stationary solver, good representation of mode shapes and reasonable frequencies.

Volume models

- "Easy" for coupling to CFD if surfaces match.
 Problems for modeling:
- Contact conditions between parts of wind-tunnel model
- Equipment inside wing (extra mass)
- If done: high computation times and possibly non-linear solver needed.
- Simplification: Model of wing only as "solid" without extra mass.
- → This will give good deflection results and good mode shapes for low frequencies. Frequencies will not be a good match.

Reduced order models

- Beam or shell/plate models possible. Shell models pose similar problems to full 3d modeling \rightarrow Beam model
- Simplifies:
 - Much smaller equation systems
 - Represent total stiffness and mass distribution of cross section in a single value on the "axis".
 - Quicker to adjust, so that results match with experiments
- Complication:
 - Needs matched data exchange strategy to CFD

- Define the properties of a beam section:
 - Cross section area, mass center
 - Secondary moments of intertia
 - Shear center
- For complex cross sections:
 - Exact solutions may be hard to obtain
 - Reduce complexity by using simplified cross section or
 - Use 3D-FEM simulation of long beam with this cross section to get good approximation of properties

GmbH Aa

- Strong 3D influence (i.e. near wing root)
- Non-unitary bodies (contact surfaces)
- Experimental data, special experiments and numerical simulation may be used to get good estimates of equivalent beam.

GmbH Aachen

Eigen-Frequencies (wind off)

Beam-model vs. experiments

B=Flap bending, T=Torsion dominated

HIRENASD exp. # 304 (M=0) & 332 (M=0.75)

Beam Model	Mode	Experiment (120K)	
F [Hz]		M=0	M=0.75
25.3	1 st B	26.0	27.6
78.6	2 nd B	78.6	81.6
158.4	3 rd B	166.2	172.6
243.5	4 th B	245 [*]	247.1
267.3	1 st T	265.8	273.1
342.1	5 th B		351.5
424.5	2 nd T		435.9

*: multiple of excitation frequency (35Hz)

1st Bending mode

Exp. #304: Acceleration sensor broken

Experiments: Mode shapes from accelerometers #304 M=0; #332 M=0.75
Green dots and violet shape: projection from beam model onto wing surface

2nd Bending mode

Mode shapes: Beam vs. experiment (3)

3rd Bending mode

Mode shapes: Beam vs. experiment (4)

•Mode not found in wind-off trial #304

•Shapes of beam and actual wing start to diverge near wing tip

Mode shapes: Beam vs. experiment (6)

1st Torsion mode

Effect of wind on Eigen-frequencies

B=Flap bending, T=Torsion dominated

Experiments at 205K, Re=23.5M, q/E=0.48E-06

Significant frequency shift for 1st and 2nd bending mode

Mode	M=0	M=0.7	M=0.75	M=0.8	M=0.83	M=0.85	M=0.88
1 st B	26.1	28.2	28.3	29.3	29.6	29.5	28.7
2 nd B	77.6	80.5	81	80.4	80.9	80.7	81.3
3 rd B	170	172	171.4	172.5	173	172.2	174.3
4 th B	241	243.3	242.5	242.3	242.2	242.4	243
1 st T	268	267.7	267.2	268.2	268.1	267.8	268.7

Fully coupled simulation using reduced order model (ROM)

- Structure: beam model, but earlier stage as shown before
- Fluid: FLOWer with medium fine grid and no fuselage substitute
- Coupled simulation of forced excitation using a Volterra scheme as a ROM

Simulation of frequency shift (2)

Frequency shift due to wind (M=0.8), 1st flap bending mode

Simulation of frequency shift (3)

Frequency shift due to wind (M=0.8), 2nd Flap bending mode

 Beam models allow good approximation of typical commercial aircraft wing structure

with good representation of

- Mode shapes and
- Mode frequencies
- Uncertainty in model can be addressed using comparison with experiments
- Modeling the structure for HIRENASD is a challenge of same complexity and importance as getting good CFD results

