A Local Scalable Distributed Expectation Maximization Algorithm for Large Peer-to-Peer Networks

Summary

Motivation

- Peer-to-peer data mining growing area of research for analyzing data content, modeling user behavior and computing network statistics
- Expectation maximization useful for data clustering, anomaly detection, target tracking, and density estimation

Contribution

- Provably correct *local* distributed asynchronous algorithm for monitoring gaussian mixture model parameters in peer-to-peer networks using expectation maximization
- Shows how second order statistics can be directly monitored in a peer-to-peer network

Application

Clustering and fault isolation in (1) large scale sensor networks such as embedded aircraft sensors on systems and subsystems, (2) national air space for identifying anomalous aircrafts

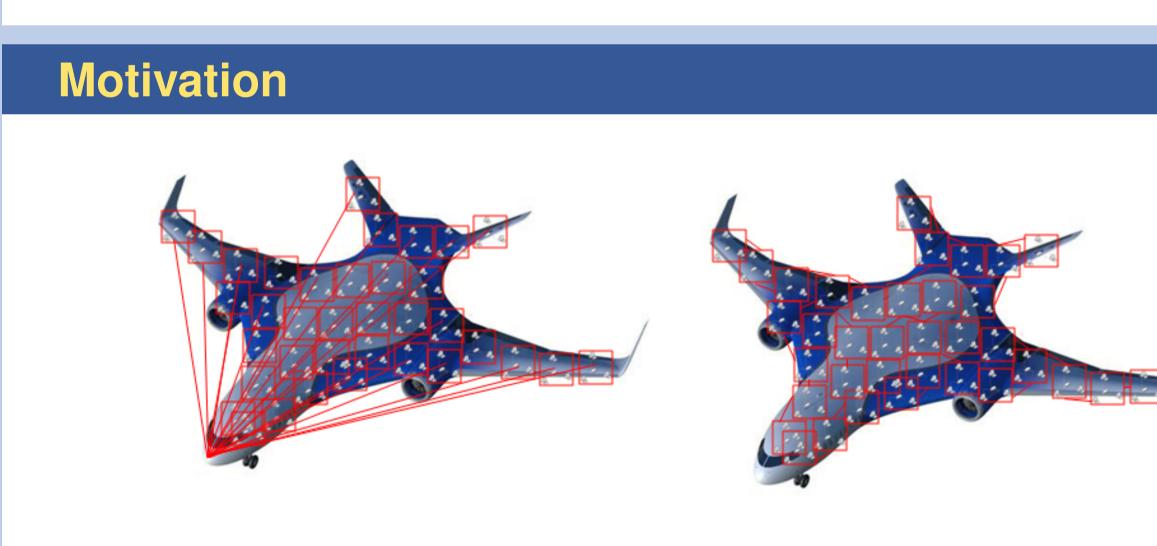


Figure: Centralized vs. in-network computation

Overview of approach

Monitoring phase

- Each peer maintains estimate of prior probability, mean, covariance of the global (all peers') data
- When data changes, peers jointly track this change
- Triggers alarm if model is outdated with respect to global data

Computation phase

Convergecast: Sample data from network, build new model Broadcast: Send new model to all peers

Kanishka Bhaduri¹ Ashok N. Srivastava²

¹ MCT Inc. at NASA Ames Research Center, MS 269/3, Moffett Field, CA-94035 ² MS 269/3, NASA Ames Research Center, Moffett Field, CA-94035

Background

► Data stream at each peer $S_i = \begin{bmatrix} \overrightarrow{x_{i,1}}, \overrightarrow{x_{i,2}}, \dots, \overrightarrow{x_{i,m_i}} \end{bmatrix}$ ▶ k gaussians

▶ Input

- Global input $\mathcal{G} = \bigcup S_i$
- ► $X_{i,j}$: messages sent by P_i to P_j
- Set statistics
- Knowledge of P_i : $\mathcal{K}_i = S_i \bigcup X_{j,i}$
- Agreement of $P_i, P_j: A_{i,j} = X_{i,j} \cup X_{j,i}$
- Withheld knowledge of $P_i, P_i: \mathcal{W}_{i,i} = \mathcal{K}_i \setminus \mathcal{A}_{i,i}$
- Message: $X_{i,i} = \mathcal{K}_i \setminus X_{i,i}$

Convex stopping rule

For each P_i and for every $P_i \in \Gamma_i$, if $\mathbf{k} \overline{\mathcal{K}_i} \in \mathbf{R}$ $\mathbf{P} \overline{\mathcal{A}_{i,j}} \in \mathbf{R}$ $\mathbf{V}_{i,i} \in \mathbf{R} \text{ or } \mathcal{W}_{i,i} = \emptyset$ then $\overline{\mathcal{G}} \in \boldsymbol{R}$

Expectation maximization

Log-likelihood:

$$\overline{\mathcal{L}}(\Theta|\mathcal{G}) = \frac{\sum_{i=1}^{p} \sum_{a=1}^{m_i} \log\left(\sum_{s=1}^{k} \pi_s\right)}{\sum_{i=1}^{p} m_i}$$

E-step:

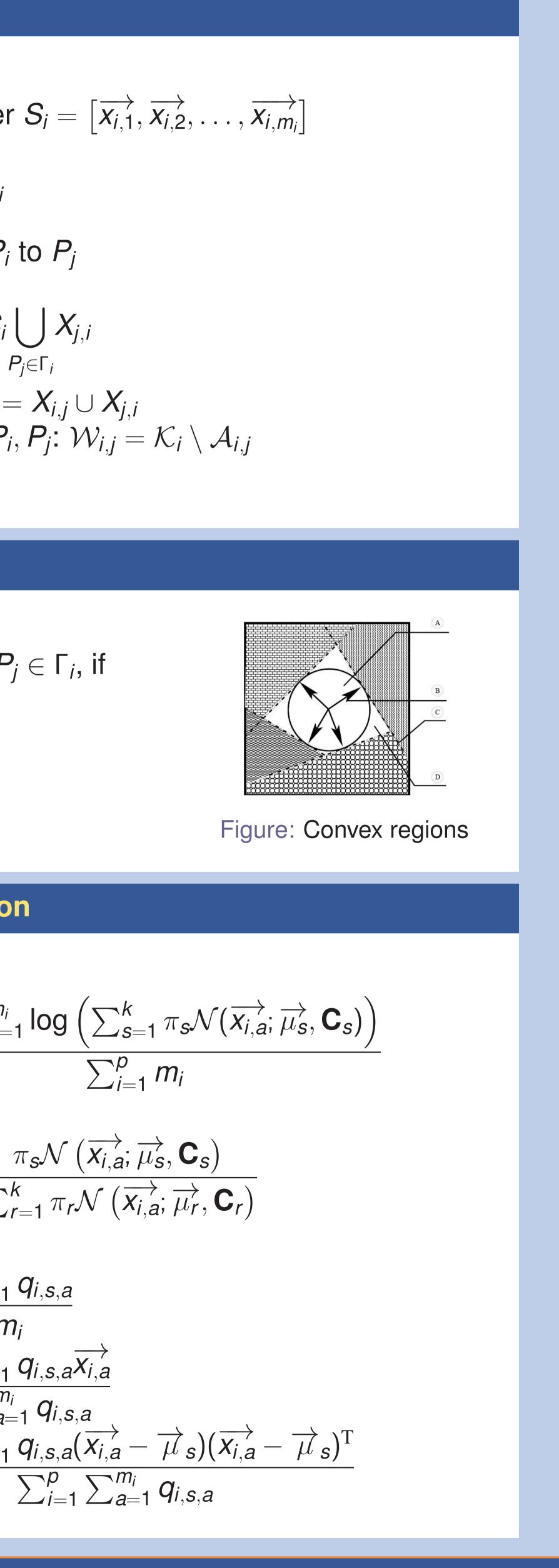
M-step:

$$\boldsymbol{q}_{i,s,a} = \frac{\pi_{s,v} \left(\boldsymbol{x}_{i,a}, \boldsymbol{\mu}_{s,v}\right)}{\sum_{r=1}^{k} \pi_{r} \mathcal{N}\left(\boldsymbol{x}_{i,a}; \boldsymbol{\mu}_{s,v}\right)}$$

$$\pi_{s} = \frac{\sum_{i=1}^{p} \sum_{a=1}^{m_{i}} q_{i,s,a}}{\sum_{i=1}^{p} m_{i}}$$

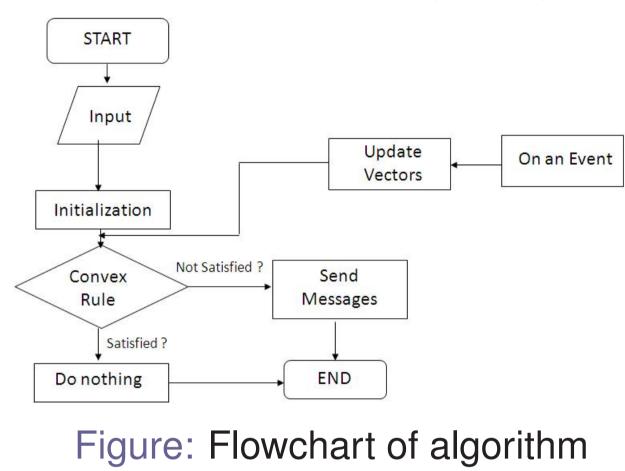
$$\overrightarrow{\mu_{s}} = \frac{\sum_{i=1}^{p} \sum_{a=1}^{m_{i}} q_{i,s,a}}{\sum_{i=1}^{p} \sum_{a=1}^{m_{i}} q_{i,s,a}}$$

$$\mathbf{C}_{s} = \frac{\sum_{i=1}^{p} \sum_{a=1}^{m_{i}} q_{i,s,a}}{\sum_{i=1}^{p} \sum_{a=1}^{m_{i}} q_{i,s,a}} (\overrightarrow{x_{i,a}} - \overrightarrow{\mu_{s,a}})$$



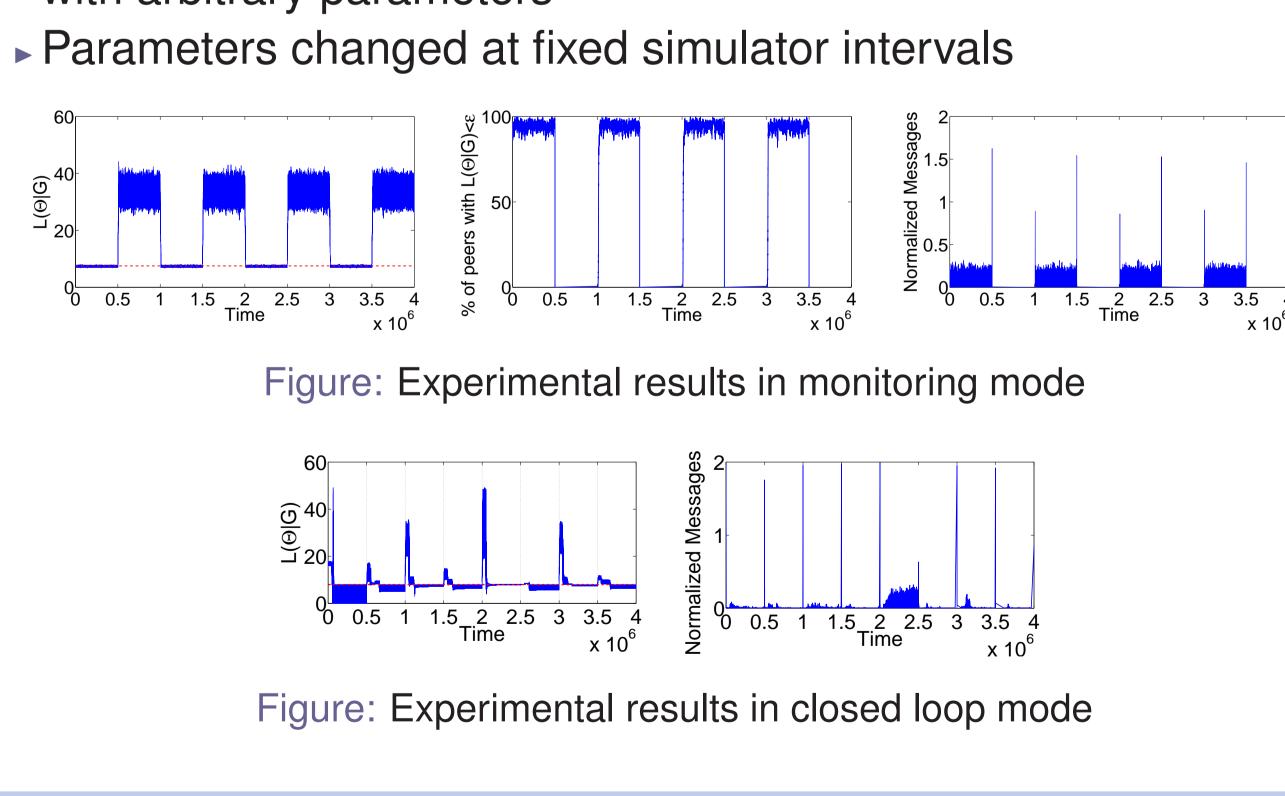
Algorithm details

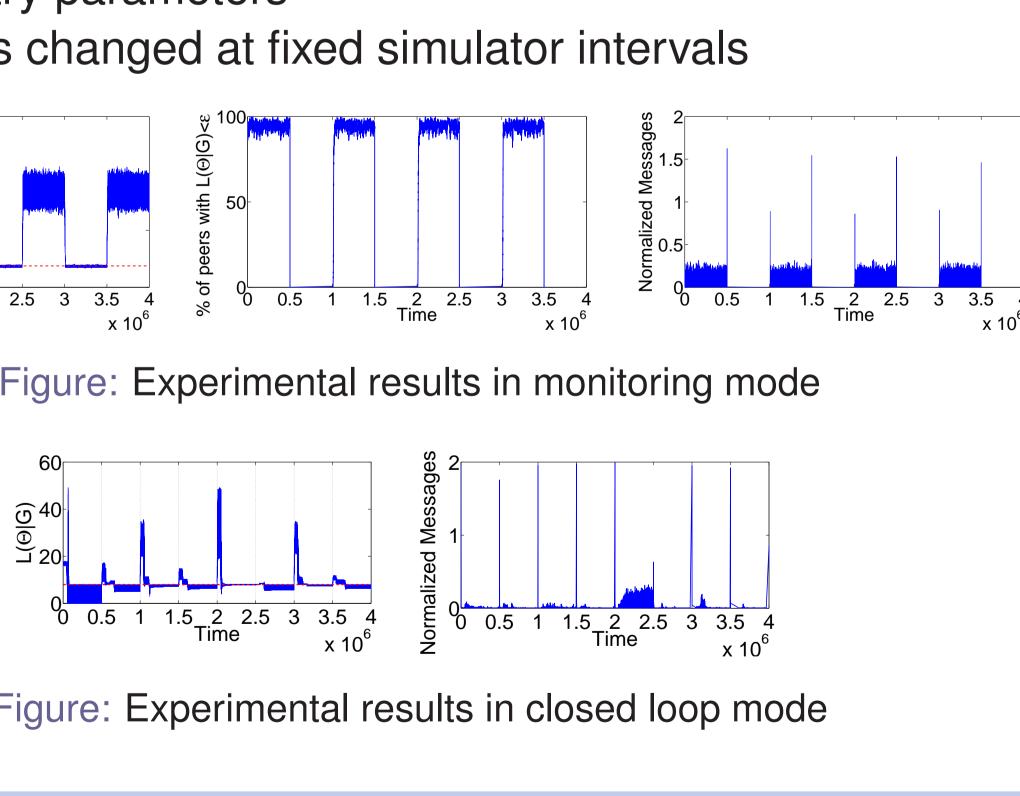
$$\begin{aligned} \overline{\mathcal{L}}(\widehat{\Theta}|\mathcal{G}) &= \frac{\sum_{i=1}^{p} \mathcal{L}_{i}(\widehat{\Theta}|S_{i})}{\sum_{i=1}^{p} m_{i}} < \epsilon \\ \overline{\mathcal{E}rr}(\pi_{s}) &= |\pi_{s} - \widehat{\pi_{s}}| < \epsilon_{1} \\ \overline{\mathcal{E}rr}(\overrightarrow{\mu_{s}}) &= \left| \left| \overrightarrow{\mu_{s}} - \widehat{\overrightarrow{\mu_{s}}} \right| \right| = \left| \left| \frac{\sum_{i=1}^{p} \sum_{i=1}^{m_{i}} \sum_{i=1}^{m_{i}} \sum_{i=1}^{m_{i}} \sum_{i=1}^{m_{i}} q_{i,s,a} x_{i,a}^{2} \right| \right| \end{aligned}$$



Synthetic data experiments

with arbitrary parameters





Conclusions

- and correctness of results



Simulated data consists of multivariate correlated gaussians

First algorithm for monitoring gaussian mixture model parameters in a local completely decentralized fashion Extensive experimental results show low communication cost

Integrated Vehicle Health Management Project