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Abstract

We present a fast and statistically principled approach
for land cover change detection. The approach is illus-
trated with a geographic application that involves analyzing
remotely sensed data to detect changes in the normalized
difference vegetation index (NDVI) in near real time. We
use the Wal-Mart land cover change data set as a nontra-
ditional way to monitor and validate known cases of NDVI
change. A reference distribution has been justified to fit the
available data. An adaptive metric based on the exponen-
tially weighted moving average (EWMA) of normal scores
derived from p-values is tracked for new or streaming data,
leading to alarms for large or sustained changes. A heuris-
tic algorithm based on the property of the metric is pro-
posed for change point detection. The proposed framework
performed well on the validation dataset.

1. Background

Change detection is the process of identifying differ-
ences in the state of a feature or phenomenon by observing it
at different times[6]. This process has been widely used in
quality control, network intrusion detection, and financial
analysis[8]. In geographic applications, change detection
plays a critical role in land use/land cover change analy-

∗This manuscript has been authored by employees of UT-Battelle, LLC,
under contract DE-AC05-00OR22725 with the U.S. Department of Energy.
Accordingly, the United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United States
Government retains a non-exclusive, paid-up, irrevocable, world-wide li-
cense to publish or reproduce the published form of this manuscript, or
allow others to do so, for United States Government purposes.
†Corresponding author. Auroop R. Ganguly; Tel.: +1-865-241-1305;

Email: gangulyar@ornl.gov; Address: Oak Ridge National Laboratory, 1
Bethel Valley Road, MS 6085, Oak Ridge, TN 37831
‡Neal Feierabend is currently at Mississippi State University. Email:

neal@nealf.com.
§David T. Potere is currently at Princeton University. Email:

dpotere@princeton.edu.

sis such as monitoring deforestation or vegetation phenol-
ogy. Coupled with recent advances in sensor technology,
a huge amount of land cover information is now available
and accessible. Real-time detection of land cover change
has been identified as a critical research area and the de-
mand is expected to grow significantly in the future given
potential applications for high-priority domains like disaster
response, urban planning, deforestation, intelligence analy-
sis, and warfare scenario assessment.

1.1. Related Work

Change detection has been extensively studied in the
context of time series analysis and forecasting. The stan-
dard approaches include various smoothing techniques,
the Box-Jenkins ARIMA modeling, innovation and out-
lier analysis, and more recently wavelet-based methods[8].
Previous researchers have applied these techniques to land
cover change detection[12]. However, fast and statistically
principled approaches in this context are not frequently en-
countered in the literature. From a statistical point of view,
a change point is a point in time where the observations ex-
hibit one combination of distribution/parameters up to that
point and another combination after that point. Thus, the
change detection problem is two-fold: one is to decide if
there is any change and another is to locate the change point
if change has occurred. The method presented here is close
in spirit to the approaches reported in [10, 2] for monitoring
network counts and Chinese websites, with the important
difference being that one of our major foci here is on the
identification of change points. A preliminary version of
our work was developed for linking sensor and cyber net-
works in the context of security applications[5].

1.2. Our Contributions

We approach the online land cover change detection
problem by proposing a statistically principled framework.
The Wal-Mart land cover change validation data set[14]



has been used as a nontraditional data source to validate
our framework. While our method works for any base-
line model that can capture normal behavior, in the case
study presented here we justify using the Gaussian dis-
tribution. An alarm will be generated based on the ex-
ponentially weighted moving average (EWMA) Statistical
Process Control (SPC) chart. We provide a heuristic ap-
proach to identify change points based on the property of
the “severity metric” [10, 2].

2. Data and Domain Description

Our goal is to detect land cover changes in real time. By
“real time” we mean, the components involved in our pro-
cedure are updated almost at the same rate as the data is
received. To accomplish this goal, we analyze time series
of the normalized difference vegetation index (NDVI) val-
ues from the study area. NDVI is a simple spectral ratio
derived from remote sensing imagery that is correlated with
vegetation health[16]. The NDVI value is a direct indicator
of green leaf biomass and green leaf area index [3]. Time
series of NDVI values indicate seasonal and temporal pro-
files of vegetation activity. In this study, a time series of 16-
day NDVI composites produced by the Global Land Cover
Facility at the University of Maryland was used. Wal-Mart
stores in the US are spatially distributed in a wide variety of
environments with a majority of the stores being built on un-
developed vegetated land. The stores have a long lifespan in
the US, the first store opened in 1962 and currently they are
expected to grow at the rate of one store per day. In addition,
each store may have significant impact on the vegetation in
the surrounding area. All of these factors make the Wal-
Mart data set ideal for validating land cover change events
within the NDVI record[14]. In this paper, three Wal-Mart
stores were used. One is located in a desert environment
in Apple Valley, California, another is in forested land in
Brewer, Maine, and the third one is in an area of mixed veg-
etation in Fayetteville, North Carolina. 20 locations were
sampled from each region, representing the Wal-Mart con-
struction area (4 locations), the bordering area (8 locations),
and the background area (8 locations), respectively.

3. Theoretical Framework

3.1. Building a Reference Model for Difference
Time Series

A key step of the approaches developed and utilized by
previous researchers [10, 2] is to build a baseline model that
captures normal behavior. However, it is often hard to find
a generic baseline model in many real applications. For ex-
ample, in our case, the NDVI time series may show com-
pletely different characteristics in different spatial regions.

While some of the time series have strong seasonal effects,
others do not exhibit seasonality. The predictive distribution
justified for one region may not be appropriate or adequate
in another region. In this study, we monitor the difference
between time series pairs instead of monitoring the original
NDVI time series.

If there is no change in vegetation in a region, the mean
of the difference between time series pairs fluctuates around
zero for regions that are close and have similar vegetation
and land cover. When a Wal-Mart store is constructed in a
certain area, the difference between the NDVI at the Wal-
Mart location and at the background begins to deviate. This
change can be detected based on the mean shift.

We arbitrarily choose 3 locations (Wal-Mart, bordering
region, background) for our analysis for the Wal-Mart store
at Fayetteville and obtained the NDVI time series difference
for each location. We removed the mean-variance depen-
dence from our data through a cubic-root transformation.
Our analysis is based on the transformed difference scores
d1, d2, ..., di. We assume that the differences are indepen-
dent identically distributed (i.i.d.) with the Gaussian dis-
tribution, conditional on their meansµ1, µ2, ..., µi. If no
change occurs,µt = 0. Thus, the baseline model for the
difference time series is

p(d1, ..., di|µt = 0) =
i∏

t=1

p(di|µt = 0) (1)

We validate this assumption by the quantile-quantile
(QQ) plot of the residuals against the theoretical quantiles
of the standard normal distribution. Figure 1 shows the QQ
plot for each difference, which indicates good agreement
with the assumption.
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Figure 1. QQ plots of the difference time se-
ries between nearby points in space shows
good agreement with the Gaussian distribu-
tional assumptions



3.2. Alarms for Single Large Change or Small but
Sustained Changes

To detect small mean shift in the difference time series
d1, d2, ..., di, we follow the approach of [10] and monitor
the EWMA of normal scoreqt = Φ−1(P (dt < dobs

t )),
whereΦ−1 is the inverse standard Gaussian cumulative dis-
tribution function andP (dt < dobs

t ) is called tail probabil-
ity, or p-values. If there is no change present and the base-
line model is correct, the p-values will be approximately a
uniform (0,1) distribution andqt will be approximately nor-
mal (0,1), which allows standard control chart technology to
be applied. The change detection is based on thresholding
the severity metriczt,

zt = λqt + (1− λ)zt−1 (2)

where weightλ ∈ (0, 1]. This is also known as Q-
charting in quality control[15]. Either a single large change
or small but sustained changes over time can causezt to ex-
ceed a threshold. Thus, magnitude and duration are both
incorporated into the severity metriczt, and the weight be-
tween them is controlled byλ. In our case, we are only
interested in small but sustained changes since Wal-Mart
stores are not built in one day. Hence we tend to choose
small values ofλ.

It can be shown thatzt approximately follows a normal
distributionN(0, λ/(2−λ)) if the baseline model is correct
and the process is in control[13]. An alarm is generated,
indicating a large change or sustained smaller changes, if
|zt| > M

√
λ/(2− λ), whereM is a user-defined para-

meter. Insight into the choice ofM has been provided by
[11, 17].

3.3. Tracking the Change Origin

As we have discussed in Section 1.1, change detection
should include the ability to locate the change time point,
in addition to generating alarms when change occurs. This
process is called change point analysis[4]. The process is
important both in our application, as well as in the devel-
opment of our proposed theoretical framework, where we
may need to identify the change point to be able to opti-
mally re-adjust the severity metric after an alarm has been
generated[5]. Change point analysis is often viewed as a
parameter estimation problem and the methods used are pri-
marily based on either likelihood ratios, or nonparametric
methods, and/or Bayesian approaches[4]. However, these
approaches are usually not appropriate for the online change
detection environment since they typically require large vol-
umes of data for parameter estimation. Moreover, most of
these methods are limited by their assumptions on the model
settings.

Here we propose a heuristic algorithm for our case study.
The algorithm is fast, needs to retrieve only few past data
points and locates the change point with satisfactory accu-
racy.

Since Wal-Mart stores are not built in a day, the shift
of normal scoreqt is not sudden but gradual. We assume
the shift to be linear with slope parameterβ. That is, if the
change point isk+1 and the time point to generate an alarm
is i, then the expectation ofqt is E(qt) = E(qk)+β(t−k),
for i > t > k. Once a Wal-Mart store is constructed at time
point j (j > i), thenE(qt), for t > j, is expected to remain
invariant. For simplicity, our discussion is limited to the
case ofβ > 0 (zi exceeds the upper limits). The following
property of the severity metric indicates thatzt will increase
in a statistical sense if there are linear changes occurring in
the means.

Property 1 (see Appendix A for proof): In the case of lin-
ear changes inE(qt) with slope parameterβ, then we have
E(zt − zt−1) = β(1− (1− λ)t−k), for i > t > k.

Based on Property 1, we propose the following algorithm
for estimating the ground-breaking dates of the Wal-Mart
stores. In fact, this property holds for any monotonic change
function. Thus, the given algorithm is applicable to a wide
range of cases.

Pseudocode for change point identification
y := zi; n := 0; % Initial state
while (y > zmax) and(n < nmax) % While not good

enough and time remains
yc := zi−1 % Check the previous time point
if yc < y
theny := yc; i := i− 1; % Decision point to

move to the prior time point

elseifrand < e
y−yc
T0αn % rand is a random draw

from [0,1] uniform
theny := yc; i := i− 1;

n := n + 1; % Next iteration
returni; % Return the change point

This algorithm is inspired by simulated annealing
(SA)[7] for global optimization problems. After the change
point k + 1, the severity metriczt is expected to increase
at each time step. When an alarm is generated at the time
point i, we move “downhill” to the previous time point,
which is similar in spirit to searching for global minimum
of zt. Sincezt does not strictly increase, but increases in a
statistical sense (i.e., the increase is statistically significant
but because of the stochastic nature there may be an occa-
sional decrease), we allow “uphill” moves, which saves the
method from being stuck due to random effects in a point
analogous to the local minima.zmax is the threshold of the



expected value forzk, which should be around zero. We
choosezmax = L

√
λ/(2− λ), whereL < M . nmax is

the maximum number of iterations of the algorithm. In our
case study, since the groundbreaking date, or the change
point, should not be too far from the time point we generate

an alarm, we choosenmax = 20. e
y−yc
T0αn is analogous to

the transition probability function in SA, whereT0 andα
(0 < α < 1) are called “initial temperature” and “tempera-
ture reduction factor”, respectively. Insight into the choice
of T0 andα has been provided by [9, 1].

3.4. Updating the Parameters

In our case study, the mean and variance of the NDVI dif-
ference need to be updated in online mode. If the process
is in control, the mean does not need to be updated (kept
at zero). When an alarm is generated (for example, when
a Wal-Mart store is constructed), the mean is held invari-
ant until it converges to a new state (i.e. the store is com-
pletely constructed). We update the mean for monitoring
new changes.

The updated varianceσt+1 is given by

σ2
t+1 =

t

t + 1
σ2

t +
t

(t + 1)2
d2

t+1 (3)

Only the current varianceσt and the new observation
dt+1 are needed for the operation (see Appendix B for the
detailed proof).

4. Experimental Results

We validated our approach on the data from the three
regions introduced in Section 2. For each region, a refer-
ence location was taken from background (desert, forest or
mixed vegetation) and an objective location was arbitrarily
taken from the Wal-Mart area. The difference time seriesdt

for each region is included in Figure 2.
We chooseλ = 0.1, M = 3.5 for the EWMA con-

trol chart. To evaluate the performance of EWMA control
charts, the Average Run Length (ARL) is a widely used
measure[13]. The in-control ARL (ARL0) is the average
number of samples taken before an out-of-control signal is
given, if the process remains in control. Our choice of para-
meters results inARL0

∼= 500[13]. In other words, we will
have a false alarm occurring once in about every 500 sam-
ples if the process is in control, indicating our EWMA chart
has low false alarm rate if no change is present. We choose
the following parameters for the heuristic change point al-
gorithm:L = 1,T0 = 10, α = 0.6, andnmax = 20.

Figure 2 shows the EWMA control chart which monitors
normal scoresqt. The approach works in online mode since
the current severity metric,zt, and the new data,dt+1, are

sufficient to update the old severity metric and hence pro-
duce the new severity metriczt+1. Each step of the alarm
generation, as well as the change point detection, algorithm
only involves a bit of basic algebra. In general, each iter-
ation of either of the algorithms at one time point can be
completed in almost constant time. Thus, the worst case
scenario for the change point detection algorithm to reach
completion (or arrive at the change point) could beO(n)
wheren is the number of the time points. This worst case
occurs when the change point is at the origin, which is rarely
the case. Therefore, the updates can be generally completed
in real time and the change points can be detected in real-
time or near real-time. We note that in this experiment we
validated our approach on a single change (namely, con-
struction of a Wal-Mart store), hence updating the estimated
mean of the baseline model was not necessary.
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Figure 2. EWMA monitoring of normal scores

Figure 3 shows how the p-value evolves over time. As it
has been discussed in Section 3.2, the p-values would fol-
low a uniform (0,1) distribution if the reference distribution
is correct and the process remains in control. We can see
from Figure 3 that before the alarms were generated (solid
line), p-values were approximately uniformly distributed,
but after the alarm, this distribution became highly skewed
compared to the distribution prior to the alarm. The dashed
line indicates the change time point suggested by our ap-
proach.

Table 1 summarizes validation results for the three case
study locations. The mode value from 100 runs are shown
in the table. The row names, from top to bottom, denote
the following: (a) Alarm: Time index when alarm was gen-
erated, (b) Change Point: Time when the original change
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Figure 3. p-value distribution changes over
time

was detected by our algorithm, (c) Store Opening: Time
when the Wal-Mart store was opened, and (d) Groundbreak-
ing: Time of groundbreaking, or the beginning of construc-
tion, for the Wal-Mart store. Alarms are generated when the
sustained change in NDVI causes the severity metric to ex-
ceed a threshold and hence indicate that a change has been
detected. Table 1 shows that an alarm was generated for
each of the three cases. This is a validation of our proposed
change detection approach since in each of the three cases
a change in the NDVI is known to have occurred based on
information about Wal-Mart store openings.

One further validation is that the time indices for the
alarms are earlier than the actual store opening time in all
three cases but later than the groundbreaking time in the
one case where the latter is available. In addition, we would
expect the detected change point to be on or after ground-
breaking and the alarm to be generated after groundbreak-
ing, possibly between the groundbreaking and the store
opening dates. While we do not have information about the
actual groundbreaking dates for the stores in ME and NC,
if we were to assume identical time periods for construction
(i.e., identical time gaps between groundbreaking and store
opening), the groundbreaking time indices would be 51 and
30 for ME and NC respectively. This assumption, while
imprecise, may be useful as a rough validity check. The ex-
perimental results shown in Table 1 are roughly consistent
with our expectations.

5. Discussion

We present a statistical framework for land cover change
analysis. It is fast, easy to implement, and storage efficient,

Table 1. Validation of alarms and change
points

CA ME NC
Alarm 75 52 35

Change Point 70 43 30
Store Opening 93 76 55

Groundbreaking 68 Missing Missing

which satisfies online computation requirements. The ap-
proach is validated by the Wal-Mart land cover change val-
idation data set[14]. In the case study, the approach did not
truly perform real-time detection since data is available only
every 16 days. However, the proposed approach updates in-
formation in real time and thus can be used to monitor daily
(or more frequent) NDVI or other remotely sensed data.

We are extending our work to the multiple time series
monitoring problem and taking into account the spatial de-
pendence structure among the data. This can quickly get
challenging in view of the increased computational com-
plexity. We are exploring online dimensionality reduction
techniques to summarize the statistics of multiple time se-
ries in real time. In addition, the proposed heuristic algo-
rithm for change point detection has some attractive proper-
ties, which we are investigating in detail. A thorough com-
parison with traditional methods is needed. We are also jus-
tifying the theoretical foundation of the approach and ex-
ploring applications to other domains with streaming and
evolving data.

Appendix A

In this appendix, we prove Property 1 given in Section
3.3.

EWMA has an alternative definition[13],

zt = λ
t−1∑
j=0

(1− λ)jqt−j + (1− λ)tz0

Then,zt− zt−1 = λqt−λ2
t−2∑
j=0

(1−λ)jqt−j−1−λ(1−
λ)t−1z0

Thus, the expectation ofzt − zt−1 is

E(zt − zt−1) = λE(qt)− λ2
t−2∑
j=0

(1− λ)jE(qt−j−1)

−λ(1− λ)t−1z0

In the case of linear changes in the mean,
sinceE(qt) = E(qk)+β(t−k), (k +1 is the time point

when the change begins) andE(qk) = 0 (the process is in
control), it follows that

E(zt − zt−1)



= λ(z0 + β(t− k))− λ2
t−k−2∑

j=0

(1− λ)j(z0 + β(t− j

−1− k))− λ2
t−2∑

j=t−k−1

(1− λ)jz0 − λ(1− λ)t−1z0

= λz0−λ2
t−2∑
j=0

(1−λ)jz0−λ(1−λ)t−1z0 +λβ(t− k)

−λ2
t−k−2∑

j=0

(1− λ)jβ(t− j − 1− k)

= λβ(t− k)− λ2β
t−k−2∑

j=0

(1− λ)j(t− k − 1− j)

= λβ(t−k)−λβ(t−k−1)+β((1−λ)− (1−λ)t−k)
= β(1− (1− λ)t−k)

Appendix B

In this appendix, we prove the variance update formula
(Eq.3) given in Section 3.4.

By definition,µt = 1
t

t∑
j=1

dj

andσ2
t = 1

t

t∑
j=1

(dt − µj)2 = 1
t

t∑
j=1

d2
j − µ2

t

Thus,σ2
t+1 = 1

t+1

t+1∑
j=1

d2
j − µ2

t+1

= 1
t+1 (

t∑
j=1

d2
j + d2

t+1)− ( 1
t+1 (

t∑
j=1

dj + dt+1))2

= 1
t+1 (t(σ2

t + µ2
t ) + d2

t+1)− ( 1
t+1 (tµt + dt+1))2

In our case,µt = 0, it follows that

σ2
t+1 = 1

t+1 (tσ2
t + d2

t+1)− ( 1
t+1dt+1)2

= t
t+1σ2

t + t
(t+1)2 d2

t+1
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