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ABSTRACT

The benefits of short-term (1–6 h), distributed quantitative precipitation forecasts (DQPFs) are well known.
However, this area is acknowledged to be one of the most challenging in hydrometeorology. Previous studies
suggest that the ‘‘state of the art’’ methods can be enhanced by exploiting relevant information from radar and
numerical weather prediction (NWP) models, using process physics and data-dictated tools where each fits best.
Tests indicate that improved results are obtained by decomposing the overall problem into component processes,
and that each process may require alternative tools ranging from simple interpolation to statistical time series
models and artificial neural networks (ANNs). A new hybrid modeling strategy is proposed for DQPF that
utilizes measurements from radar [Weather Surveillance Radar-1998 Doppler (WSR-88D) network: 4 km, 1 h]
and outputs from NWP models (48-km Eta Model: 48 km, 6 h). The proposed strategy improves distributed
QPF over existing methods like radar extrapolation or NWP-based QPF by themselves, as well as combinations
of radar extrapolation and NWP-based QPF.

1. Introduction

Distributed quantitative precipitation forecasts
(DQPF) are acknowledged to be among the most chal-
lenging areas in hydrology and meteorology (Fritsch et
al. 1998; Collier and Kryzysztofowicz 2000). Improve-
ments to precipitation forecasting have been somewhat
limited (Smith and Austin 2000) over the last few de-
cades. Several factors contribute to making precipitation
forecasting difficult. Precipitation processes can occur
over a range of scales, ranging from large airmass move-
ments to extremely localized convective events (Rogers
and Yau 1989). Precipitation is further influenced by air
motion and turbulent eddies, aerosol properties, and mi-
crophysical processes that dictate droplet growth and
evaporation. The net effect is that precipitation is ex-
tremely variable in time and space.

The appropriate temporal and spatial resolutions for
quantitative precipitation forecasts (QPF) vary with the
application and the methodology used. At very short
lead times (0–1 h), high forecast resolutions are needed.
Forecasts based on extrapolation of observations like
radar rainfall are often found to be most skillful in this
context (Golding 2000; Collier 1991). At lead times
greater than about 6 h, numerical weather prediction
(NWP) models provide QPF at lower space–time res-
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olutions. Antolik (2000) of the National Weather Ser-
vice (NWS) mentions that future research needs to ex-
plore methods that combine the 48-km Eta NWP model
outputs with ‘‘stage III’’ Weather Surveillance Radar-
1998 Doppler (WSR-88D) data. Stage III is a radar–
gauge analysis that has undergone manual quality con-
trol (Fulton et al. 1998). This study focuses on QPF at
lead times of 1–6 h, for high-resolution hydrologic ap-
plications. A hybrid strategy that combines NWP model
outputs and radar measurements leads to an improve-
ment in distributed QPF.

The paper uses the WSR-88D network, which covers
the continental United States providing hourly precip-
itation measurements at 4 km 3 4 km resolutions, and
the Eta Model, which generates forecasts for precipi-
tation and other atmospheric variables at 48-km and 6-
h resolution. Note that the Eta Model forecast resolution
was 48 km during the study period. At the time of writ-
ing, the operational resolution is 12 km. Also, the Eta
Model is now run 4 times daily (0000, 0600, 1200, and
1800 UTC). The proposed hybrid strategy is summa-
rized in the following paragraphs.

The distributed QPF problem has been decomposed
into four component processes. The motivation for the
decomposition was to optimize the use of available in-
formation from radar and NWP, and to make the best
use of the available process physics and data-dictated
tools. The processes are modeled in succession, with
each component superimposed on the results of the pre-
vious components. A schematic flowchart for the pro-
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FIG. 1. A schematic flowchart for the proposed hybrid modeling
strategy of the distributed QPF problem which has been decomposed
into four components: radar extrapolation, large-scale physics, lo-
calized evolution, and residual structures.

posed hybrid modeling strategy is shown in Fig. 1. The
output of the proposed approach is distributed QPF and
probabilistic QPF (PQPF), that is, forecasts for rainfall
in space and time, and a measure of the uncertainty
associated with these forecasts.

The first component is radar extrapolation, handled
through advection of the hourly radar maps. Velocity
scales at each time in the past are estimated using two-
dimensional spatial correlation by comparing the current
map with the map at the previous time step. An ex-
ponential smoothing–based time series formulation is
used for estimating the velocity scales in the future. This
formulation applies relative weights to the past estimates
of velocity scales with the weights decaying as one goes
further into the past.

The second component is large-scale physics, as rep-
resented by NWP-based QPF. NWP-based QPF is grid
averaged and cumulative (48 km and 6 h for NWP Eta).
Disaggregation in time is performed by linear interpo-
lation for QPF and other NWP model outputs. Temporal
disaggregation is followed by an autoregressive (AR)-
based error correction for the grid-averaged QPF, by
comparing it with aggregated radar rainfall. The tem-
porally disaggregated error-corrected, grid-averaged
QPF is ‘‘superimposed’’ on the results of advection. The

distributed structure obtained from advection is retained,
but the values of the pixels with nonzero rainfall are
scaled to reflect the large-scale mean from NWP-based
QPF.

Localized evolution is modeled at radar pixel reso-
lutions as a function of NWP atmospheric forecasts and
the distributed precipitation ‘‘state,’’ which, in turn, is
the result of radar extrapolation followed by NWP-based
QPF disaggregation. The NWP-based QPF ‘‘simple dis-
aggregation’’ models the grid average precipitation fore-
cast based on advection, while the ‘‘localized evolution’’
models the perturbations from this ‘‘mean’’ structure.
Evolution models localized precipitation processes that
cannot be handled well by the lower-resolution NWP
model physics (e.g., convective processes). The as-
sumption is that evolution is a function of the rainfall
at a pixel and its neighbors, as well as, the large-scale
NWP atmospheric forecasts. Because this functional
form is highly nonlinear, data-dictated artificial neural
network (ANN)–based tools are used for the approxi-
mation.

The final component is residual structures or errors
at both distributed and aggregate scales. Distributed er-
rors are handled at higher resolutions by an ANN-based
strategy that combines the results of the two component
processes described earlier. Low-resolution errors at ag-
gregate scales are handled by combining the spatial
means of the rainfall intensities from the individual
component processes.

The proposed approach is compared to existing meth-
ods like persistence, advection, and a combination of
advection and QPF from NWP models. Results with six
precipitation events in the Arkansas–Red River Basin
River Forecast Center (ABRFC) region demonstrate that
this approach has the potential to improve forecast skills.

2. Recent advances in distributed QPF

a. Extrapolation and statistical methods

The commonly used methods for DQPF remain ex-
trapolation techniques. Simple persistence assumes that
rainfall intensities at forecast lead times are identical to
the most recent measurements. Advection or Lagrangian
persistence translates the measured rainfall fields using
an estimate of the velocity scales, which in turn could
be derived from spatial correlation (Grecu and Kra-
jewski 2000) or wind vectors. Predictability from ad-
vection has been studied in detail by recent researchers
(e.g., Germann and Zawadzki 2002).

Researchers have attempted to obtain mathematical
or stochastic formulations for the description and fore-
casting of rainfall. An example is the cluster model of
Rodriguez-Iturbe and Eagleson (1987), where statistical
distributions are used to describe the evolution of rain-
fall cells. McLaughlin et al. (1990) demonstrated how
the parameters of these models could be determined
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from data through the use of a discrete Kalman filter
formulation.

b. QPF from NWP models and combination with
extrapolation

Currently achievable NWP resolutions are not ade-
quate for generating QPF at hydrologic scales (Antolik
2000), although it is conceivable that forecast resolu-
tions might approach these scales in the future (Droe-
gemeir et al. 2000). There is a belief that improvements
to NWP model physics and resolutions could be the best
way to enhance distributed QPF. Given the complex
nature of the distributed precipitation processes and the
limited understanding of the precipitation physics at
those scales, this assumption remains to be proven.

Recent developments include hybrid approaches that
statistically combine QPF from NWP and extrapolation.
Golding (2000) mentions that improving QPF at 1–6-h
lead time is a key requirement, and this could be
achieved by statistically combining radar and NWP in-
formation. The operational Nimrod system in the Met
Office, designed for 1–6-h QPF, combines radar advec-
tion with NWP-based QPF using relative weights. Smith
and Austin (2000) describe this as a great step forward
in improving QPF.

There is some indication that the future of QPF might
be directed toward the convergence of statistical and
numerical modeling procedures (Wilson et al. 1998),
that is, the development of statistical methodologies for
rapid initialization or update of high-resolution physical
numerical methods. For example, there are approaches
that relocate ‘‘storms’’ and restart numerical models
based on the relocated storms (Brewster 1998). Other
approaches adjust the forcing in numerical models to
follow the precipitation dynamics (Hou et al. 2001).

c. Utilizing NWP model outputs other than QPF

NWP model output statistics (MOS) studies, which
linearly regress NWP outputs with point rainfall, have
discovered that QPF from NWP is not the most im-
portant predictor of precipitation (Antolik 2000), as
compared with other atmospheric variables produced by
the numerical models, like temperature, pressure, and
humidity (Mesinger 1996). These results suggest that
while a simple disaggregation of NWP-based QPF
might have limited predictability, forecasts of atmo-
spheric state variables and instability indices from NWP
could have additional information content, especially in
convective situations. This possibility is also suggested
from the results of Perica and Foufoula-Georgiou
(1996), Nakakita et al. (1996), and Sugimoto et al.
(2001). Some researchers have also suggested param-
eterized, physically based models, and estimated the pa-
rameters thereof from NWP model outputs (Lee and
Georgakakos 1996). These are conceptually appealing,
but the inherent physics or statistics are typically a crude

parameterization, and the applicability is often limited
to specific situations for which these models were de-
signed (Smith and Austin 2000).

d. Complex statistical approaches like artificial
neural networks

Estimation and forecasting based on ANN have
shown promise for geophysical applications, including
quantitative precipitation estimation (QPE) and QPF
(Kuligowski and Barros 2001; Elshorbagy et al.
2002a,b; Hsu et al. 1999). ANNs are complex data-
dictated tools that have been shown to act as ‘‘universal
function approximators,’’ and converge faster than other
traditional approximators. However, there is a need for
caution and the applicability of ANN for a specific sit-
uation needs to be determined from statistical data anal-
ysis and domain knowledge. This is demonstrated in the
QPF context by contrasting the applications of Toth et
al. (2000) where ANN improved forecasts, and Grecu
and Krajewski (2000) where no significant improve-
ments were observed.

3. Data

a. Eta NWP model outputs

Model outputs from the 48-km Eta NWP are archived
for the continental United States by the NWS. Black
(1994) provides a detailed description of the model. Of
the NWP model outputs, QPF is usually the one with
the highest variability in space and time, and is thought
to be least accurate (Mesinger 1996). This could be due
to the inherent variability of precipitation, presence of
thresholds and intermittence, and the fact that QPF is a
derived quantity (Antolik 2000). Other NWP model out-
puts, corresponding to forecasts of atmospheric vari-
ables [e.g., lifted index (LI), temperature (T)], are more
uniform in space and time, and more accurate. The Eta
NWP model was run twice daily during the study period,
at 0000 and 0012 UTC. Archived model outputs are
available at selected stations in the United States as
Forecast Outputs for the United States (FOUS). This
paper uses 6-h precipitation amounts and model outputs
at a spatial resolution of 48 km. At this time, though,
some versions of the Eta are updated at 6-h intervals,
and 3-h precipitation accumulations are available in grid
format at a 12-km spatial resolution.

b. WSR-88D rainfall

We have used radar rainfall from the WSR-88D net-
work, which consists of S-band WSR-88D, radars. The
geographical coverage includes the continental United
States. There is continuous spatial and temporal cov-
erage. Detailed analysis is performed on the Hydrologic
Rainfall Analysis Project (HRAP) grid. The grid size in
the HRAP region is approximately 4 km 3 4 km, the
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TABLE 1. The precipitation events used for calibration and verifi-
cation. The details of the six cases or precipitation events (hours used
for calibration and validation) used for model building and verifi-
cation are listed. Sixteen hours of stage-III data were used for each
storm. The first 10 h were used for calibration and model building,
while the last 6 h were used for verification and forecast generation.

Primary date Calibration—Start hour Verification—End hour

27 Apr 1988
4 May 1999

16 Jun 1999
20 Feb 1997
5 Oct 1998

17 Oct 1998

04269823UTC
05049915UTC
06169908UTC
02209712UTC
10049822UTC
10179811UTC

04279814UTC
05059906UTC
06169923UTC
02219703UTC
10059813UTC
10189801UTC

temporal resolution is 1 h. In the United States, the
highest quality gauge-corrected radar precipitation es-
timates are archived in the ABRFC, especially for the
regions in and around Oklahoma. Stage-III data are cal-
ibrated using ground-based rain gauges. Young et al.
(2000) evaluate WSR-88D data for operational hydro-
logic forecasting. To ensure that the calibration and val-
idation was limited to the ABRFC area of responsibility,
a central portion of the domain was considered during
the analysis.

c. Precipitation events

Calibrated stage-III WSR-88D radar data were used
for six storms in the ABRFC. The three ‘‘winter’’ events
were for 20 February 1997, 5 October 1998, and 17
October 1998. The three ‘‘summer’’ events were for 27
April 1998, 4 May 1999, and 16 June 1999. A total of
16 hourly maps were used for each event, 10 for cali-
bration, the 10th for initialization, and the rest for 1–
6-h forecast generation and verification. Table 1 lists the
details of these cases (hours used in calibration and
validation).

4. Hybrid model

a. Overview

The distributed QPF problem has been decomposed
into four component processes. The motivation for the
decomposition was to optimize the use of available in-
formation from radar and NWP, and to make the best
use of the available process physics and data-dictated
tools. These were guided by a detailed literature review,
physical insights, and preliminary data analyses (not
shown here). A schematic flowchart for the proposed
hybrid modeling strategy is shown in Fig. 1, while Fig.
2 depicts the individual component processes.

The component processes are modeled in succession,
with each component superimposed on the results of the
previous components. The first component is radar ex-
trapolation, which is handled through advection of the
hourly radar maps. The second component is large-scale
physics, which disaggregates NWP-based QPF in space
and time using the results from extrapolation. The third

component is localized evolution, which models the
change in rainfall intensity at individual pixels using an
ANN-based approach. This component handles the evo-
lution in intensity that occurs over and above large-scale
physics and advection processes. The final component
is residual structures, which combines the forecasts from
the individual components using error statistics. The
output of the proposed approach is a distributed QPF
and a PQPF, that is, forecasts for rainfall intensities in
space and time and a measure of the uncertainty asso-
ciated with these forecasts. Details of each component
follow.

1) RADAR EXTRAPOLATION COMPONENT

Figure 2a depicts the radar extrapolation component.
A radar map at a given time t is compared to the lagged
map at time (t 2 1). A two-dimensional spatial corre-
lation is calculated, by ‘‘moving’’ the current map over
the lagged map. The maximum correlation obtained in
this fashion provides an estimate for the velocity scale
at any time t. The metric (for 2D covariance) to be
maximized takes the form

S 5 {[X(i 2 i , j 2 j , t) 2 ^X(t)&]O g g

· [X(i, j, t 2 1) 2 ^X(t 2 1)&]}. (1)

In (1), X(t) represents the rainfall intensity at pixel
(i, j) in time t, and ^X(t)& represents the spatial average
of X(t), over all radar pixels. The two-dimensional cor-
relation in space is calculated in terms of the metric S.
The values of (ig, jg) that maximize the metric S are
denoted by (igM, jgM). These provide estimates of the
velocity scales for time t.

Velocity could similarly be estimated for all times t
in the past, in the context of the precipitation event. The
time series of estimated velocities are used for fore-
casting into the future, using a single exponential
smoothing formulation:

i 5 ai (t) 1 a(1 2 a)i (t 2 1) 1 · · ·gMF gM gM

n1 a(1 2 a) i (t 2 n), (2)gM

j 5 a j (t) 1 a(1 2 a) j (t 2 1) 1 · · ·gMF gM gM

n1 a(1 2 a) j (t 2 n). (3)gM

The parameter a is the exponential smoothing param-
eter. It determines the decay applied to the weights for
estimates further in the past. The parameter is less than
unity, so that the most recent velocity estimate gets the
highest relative weight. Note that in the single expo-
nential smoothing strategy (Mills 1990), the velocity
scale remains identical for all lead times. This parameter
was estimated using the calibration portion of the data.

The radar forecasts are initiated with the current map,
which is translated in the future for each radar pixel,
using the forecasts for the velocity scales:
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FIG. 2. Details of the four component processes of the proposed hybrid strategy for: (a) radar extrapolation,
(b) Spatial disaggregation aspect of the large-scale physics component, (c) the artificial neural network strategy
used for localized evolution, and (d) overview of the residual structures component.

gX (i, j, t 1 t ) 5 X(i 1 i , j 1 j , t)L gMF gMF

for all (i, j). (4)

The extrapolation strategy does not use NWP wind
forecasts. Preliminary studies indicated that the wind
available from FOUS at a single level and at 6-h res-
olutions have no significant correlation with the cal-
culated advection velocities and do not improve velocity
forecasts.

2) LARGE-SCALE PHYSICS COMPONENT

(i) Temporal disaggregation

The QPF from NWP represents a cumulative forecast
for 6 h, so this needs to be converted to hourly rainfall

intensities. The first step is to temporally disaggregate
the NWP-based QPF from 48-km and 6-h resolution to
48-km and 1-h resolution in the following manner:

r(t 1 k 3 Dt)

5 {[(N 1 DN ) 2 (t 1 k 3 Dt)][R(N 1 DN )/6]T T T T

1 [(t 1 k 3 Dt) 2 N ][R(N )/6]}/DT. (5)T T

In (5), r represents disaggregated 1-h precipitation
prediction from the NWP over the NWP grid, 48 km
3 48 km pixels. In (5), t is the current time, Dt the
radar time step (1 h), and k an integer. The left-hand
side of the equation represents the aggregate forecasts
for time steps at lead k. On the right-hand side, NT is
the current (or last available) NWP time, (NT 1 DNT)
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is the next available NWP time, and R is the average
(6 h) NWP-based QPF. This assumes that the forecast
lead times lie within the intervals for which NWP out-
puts are available. The hourly QPF obtained from (5)
are compared with spatially aggregate radar rainfall. The
errors are modeled and forecast as an AR time series.
The time series of the spatially aggregated errors is Z(t)
5 [^X(t 2 iDt)& 2 r(t 2 iDt)], where i is the index for
times in the past, t 5 (t 2 iDt), and ^X& is the spatial
mean of the observed radar rainfall. The AR model for
error correction (at lead k) is Zt1k ù a1Zt1k21 1 a2Zt1k22

1 · · · 1 apZt1k2p.
Note that Dt 5 1 h, and forecasts generated at each

lead time could be used in the AR formulation for fore-
casts at successive lead times. The forecasts for the spa-
tially averaged hourly forecast following error correc-
tion, F, becomes

F(t 1 k) 5 r(t 1 k) 1 Zt1k

5 r(t 1 k) 1 a Z . (6)O i t1k2i

The value of the autoregressive window size and the
corresponding parameters need to be estimated from the
calibration portion of the data. In this study, the window
size (p) was restricted to a value of two from prelim-
inary data analyses, while the parameters are estimated
dynamically. Note that error correction is used only if
the forecasts are improved at analysis time, which is
checked by forecasting the errors at cross-validation
time steps.

The correction described in (6) is an additive correc-
tion and is used to adjust raining pixels (i.e., pixels with
nonzero rainfall intensities based on advection) only, as
described next.

(ii) Spatial disaggregation

The temporally aggregated and error-corrected QPF
obtained from (6) is used to scale the distributed map
obtained from radar advection (Fig. 2b). The pixels with
advected radar rainfall below a minimum threshold (the
value used in this study is 0.001 mm) are left unaltered,
while those with nonzero rainfall are changed to reflect
the grid average QPF. Note that only pixels with nonzero
values are considered when computing the grid average
QPF value. To preserve the nature of grid-averaged
NWP-based QPF, the nonzero pixels are modified equal-
ly using the average deficit or excess grid average rain-
fall, as indicated by (7),

gIf X (i, j, t 1 k 3 Dt) . «

DX (i, j, t 1 k 3 Dt)
g5 X (i, j, t 1 k 3 Dt)

gN [F(t 1 k 3 Dt) 2 ^X (t 1 k 3 Dt)&]pixel
1 . (7)

Nwet-pixel

In (7), Npixel is the total number of radar pixels, Nwet-pixel

is the total number of radar pixels with nonzero rainfall,

and XD is the distributed rainfall forecast from this dis-
aggregation strategy. To prevent the occurrence of unrea-
sonably large or small changes, the corrected results were
restricted to fixed ratios (0.5 to 2.0 for the cases in this
study) of the original.

3) LOCALIZED EVOLUTION COMPONENT

We assume that there is a functional form that can
model the evolution of the distributed rainfall state (after
advection and scaling), as shown in Fig. 2c,

(V) (V)dX/dt 5 F (X, X , Q , V) 1 h. (8)N

In (8), X represents the vector of the distributed state
in a Lagrangian reference frame conditioned on and
scaled by NWP-based QPF. This evolution of X is as-
sumed to be a function of the state X, and the state at
neighboring pixel states, XN. We assume that the func-
tional form is static for each NWP grid for each pre-
cipitation event, and is dependent on the large-scale
atmospheric state V. Finally, we assume a set of pa-
rameter vectors Q (V) , also a function of V, derived from
NWP model outputs. The term h denotes model errors,
which account for the processes that occur at resolutions
greater than radar observations.

To model the evolution in (8), we use data-dictated
ANN techniques that do not make a priori assumptions
about the functional form or the parameters relating the
input vectors to the outputs. The ANN model is ex-
pressed as (Fig. 2c)

E D D DX 2 X 5 f ( X, X ; LI, P, T, RH, u, y , v) 1 h.ANN N

(9)

In (9), EX denotes the effects of evolution and DX
denotes the pixel state in a Lagrangian frame of refer-
ence conditioned on large-scale NWP-based QPF [from
Eq. (7)]. The term DXN denotes the state of the neigh-
boring pixels of the scaled advection map.

NWP model outputs other than QPF were also dis-
aggregated in time. Spatial disaggregation was not at-
tempted for these outputs because there were no high-
resolution forecasts or measurements to serve as bases
for disaggregation, and the atmospheric outputs are
more uniform in space than QPF (Antolik 2000; Mes-
inger 1996). The NWP model outputs used are the LI,
sea level pressure (P), average air temperature (T), av-
erage relative humidity (RH), and wind vector com-
ponents (u, y, and v). We include all of these as ANN
inputs because we cannot reject a priori the hypothesis
that these do not have information pertinent for distrib-
uted rainfall. The implicit assumption is that the manner
in which these variables influence rainfall can be de-
duced in a data-dictated fashion by the ANN.

The ANN used was a modified form of the Nonlinear
Autoregressive moving average (NARMA) model (Con-
nor et al. 1994). NARMA models handle the autore-
gressive and moving average components of a tradi-
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tional Autoregressive Moving Average (ARMA) time
series model (Mills 1990), using nonlinear ANN func-
tions instead of linear formulations. We extended the
NARMA implementation such that the nonlinear au-
toregressive (NAR) and nonlinear moving average
(NMA) components were separated out and modeled
using individual multilayer perceptron (MLP; see Bish-
op 1996). This implies a linear separation of the auto-
regressive and the moving average components, which
results in some loss of generality but still includes mod-
els like the Autoregressive-Integrated Moving Average
(ARIMA) and the nonlinear Threshold Autoregressive
(TAR) as special cases. The NMA is used only if fore-
casts are improved at analysis times on a cross-vali-
dation data.

The ‘‘Bayesian ANN’’ methods of MacKay (1994)
and the implementation strategy suggested therein are
used and slightly extended to generate ‘‘most probable’’
rainfall forecasts (which is not necessarily the mean of
the forecast ensemble) and corresponding error bars.
This method first trains an ANN on calibration (stage-
III rainfall) data and calculates the error statistics on
cross-validation data, and then uses these statistics to
generate an ensemble of identically distributed random-
error simulations. Realizations from the random simu-
lations are then summed with the observed output var-
iables to generate ‘‘pseudo outputs.’’ An ensemble of
ANN models is obtained by retraining the originally
trained ANN with each of the pseudo outputs. This en-
semble of models provide ensemble forecasts at each
verification time step, which could then be used to cal-
culate the expected error statistics and, hence, the con-
fidence bounds. Training individual members of the en-
semble is not too computationally expensive, because
these members are initialized with previously calibrated
ANN. However, to reduce forecast generation time, only
the most likely forecasts (obtained from the original
ANN), and the upper and lower confidence bounds, were
used for forecast generation at successive time steps.
The number of training time steps, the neighboring win-
dow size (i.e., the number of neighboring pixel states
used as inputs), and the optimal MLP architecture were
chosen from trial and error using subsets of the data.
The selected training times were lower for winter storms
compared to summer storms, reflecting the higher de-
gree of nonlinearity in the latter. The functional form
to be modeled by the ANN was assumed to remain
invariant within the context of the localized evolution
event for the training and forecast generation times in
the domain of interest. The pixels in space at each train-
ing time step were divided randomly into ‘‘training’’
and ‘‘cross validation’’ data, with the ratio of roughly
2:1.

To summarize, the localized evolution model calcu-
lates the rainfall intensities at individual pixels through
an ANN-based nonlinear function approximation. This
function approximation is conditioned on the advected
radar map scaled with spatially averaged NWP-based

QPF. The inputs to the ANN model are the NWP fore-
casts of atmospheric variables and the scaled and ad-
vected rainfall intensities.

4) RESIDUAL STRUCTURES COMPONENT

Figure 2d depicts the residual structures component.
This component attempts to combine the complemen-
tary skills of the large-scale physics and localized evo-
lution components.

Scaling the advection maps with low-resolution
NWP-based QPF yields a set of distributed forecasts for
precipitation. Superimposing the localized evolution
component provides another. The first procedure is re-
ferred to as a ‘‘disaggregation model,’’ while the second
is an ‘‘evolution model.’’ This ANN-based model han-
dles localized evolution conditioned on the disaggre-
gation model. Both approaches consider advection as a
baseline. The first strategy preserves the distributed ra-
dar structure, as well as the aggregate information from
NWP, while the second tries to capture the localized
evolution at smaller scales in a Lagrangian frame of
reference. If the localized evolution component were to
consistently improve forecasts, then the evolution model
would always outperform the disaggregation model. As
indicated in Fig. 3, however (ignoring the results of the
‘‘proposed’’ strategy for the purposes of this discus-
sion), the evolution component results in significant im-
provement in certain forecast scenarios, but results in
loss of information in others. This behavior is not un-
expected, and is elaborated on later.

Figure 3 shows the skills from the individual com-
ponent processes as a function of lead time. These are
discussed in detail later; however, the complementary
skills from the large-scale physics and the localized
physics components are useful for the purposes of this
discussion. We observe from our preliminary data anal-
yses (not shown) and from Fig. 3 that the strategy that
combines extrapolation and NWP-based QPF does rel-
atively better in the winter in terms of aggregate statis-
tics, and for longer lead times. The approach that models
high-resolution evolution using NWP atmospheric var-
iables and ANN exhibits relatively better skills in the
summer (not shown), at distributed scales, and for short-
er lead times (;1–3 h). This indicates that there are
dominant residual structures, both at distributed and at
aggregate scales, as a result of each strategy. We hy-
pothesize that an approach that captures the distributed
errors and preserves the aggregate information, by com-
bining the results of both these individual strategies,
could be an improvement over either.

To achieve a distributed combination, we use a data-
dictated ANN approach that regresses the observed rain-
fall on the results of both the disaggregation model and
the evolution model. The combination might need to be
nonlinear, so the use of ANN precludes the necessity to
assign a functional form a priori.
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FIG. 3. The QPF skills as a function of lead time are shown. The proposed QPF strategy has been compared
with existing methods and component processes. QPF from persistence (asterisks), advection (squares), large-
scale physics (dashed lines), localized evolution (dotted-dashed lines), and the proposed strategy (bold lines).
The performance in terms of a selected skill score is shown for (a) 1/NMSE, (b) normalized spatially averaged
errors, (c) numerical bias, (d) spatial coverage bias, (e) POD, and (f ) FAR.

DE AX(i, j, t) 2 X(i, j, t)

D A5 g {[ X(i, j, t) 2 X(i, j, t)],ANN

E A[ X(i, j, t) 2 X(i, j, t)]} 1 h. (10)

In (10), AX is the result of advection alone, DX the
scaled advection, and EX the localized evolution. The
result of pure advection is removed prior to the ANN-

based function approximation, and added back to the
outputs later. This preprocesses the data to make the
ANN-based function approximation task easier, and im-
proves performance. The details of the ANN formula-
tion were similar to the one used for localized evolution.
Note that DEX denotes the ‘‘distributed combination’’ of
the disaggregation and the evolution strategies.

To retain the optimal spatial aggregate information,
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we combine the spatial mean from the disaggregation
and evolution models by assigning relative weights.
These weights are calculated from the aggregate error
statistics of the individual components:

D DE[(1/s ) 3 ^ X& 1 (1/s ) 3 ^ X&]D DEO^ X& 5 . (11)
[(1/s ) 1 (1/s )]D DE

In (11), ^OX& is the overall spatial aggregate, DX rep-
resents scaled advection, DEX represents the combined
map that accounts for distributed errors, sD is the ag-
gregate error (rmse) for the scaled advection, sDE is the
aggregate error of the distributed combination obtained
from the Bayesian ANN strategy, described earlier.

The distributed QPF map obtained by combining the
results of the disaggregation and evolution models in
(10) is assumed to best account for the errors at dis-
tributed scales. The weighted aggregate forecast in (11)
is assumed to best preserve the information at spatially
aggregated scales. We combine these by scaling the dis-
tributed map with the estimate for the aggregate spatial
mean. The details of the scaling algorithm are similar
to the spatial disaggregation strategy for NWP-based
QPF described earlier in (7).

The scaling takes the form

DEIf X(i, j, t 1 k 3 Dt) . 0 (or, a small threshold «),

CX (i, j, t 1 k 3 Dt)

DE5 X(i, j, t 1 k 3 Dt)
O DEN [^ X(t 1 k 3 Dt)& 2 ^ X(t 1 k 3 Dt)&]pixel

1 .
Nwet-pixel

(12)

In (12), XC represents the final combined map.

5. Distributed QPF skill metrics

We considered several skill measures that might be
of interest for hydrologists or meteorologists during
forecast evaluation. Besides statistical measures of skill,
it might be of interest to visually inspect the improve-
ment in distributed QPF from the precipitation maps.

The following statistical measures of skill were con-
sidered and averaged across the precipitation events:

1) The inverse of the normalized root-mean-square er-
rors, or 1/NMSE, for pixels with nonzero rainfall. A
perfect forecast gives 1/NMSE 5 `. For a stationary
process, 1/NMSE 5 1 implies the forecast is no bet-
ter than the mean of the verification data. However,
hourly precipitation processes usually exhibit sig-
nificant nonstationarities. The root-mean-square er-
rors were normalized with the standard deviation of
the verification (forecast) datasets. Only pixels with
nonzero-observed rainfall were considered in the cal-
culations. This statistic provides a measure for the
distributed skill in an averaged sense.

2) The normalized spatially averaged errors as a func-

tion of lead time. Higher errors indicate lower skills.
This provides an estimate of the spatially averaged
forecast bias. This is not to be confused with the
numerical bias skill score, which is usually calcu-
lated as a ratio, and is considered next.

3) The numerical bias of the forecasts defined as the
mean forecast value divided by the mean observed
value based on values within all pixels. Values closer
to unity indicate lower bias, while higher or lower
values indicate greater bias and worse forecasts.

4) Spatial coverage bias defined as the number of fore-
cast pixels with rainfall greater than, or equal to, 0.2
mm divided by the number of observed pixels with
rainfall greater than, or equal to, 0.2 mm. Values
closer to unity indicate lower coverage bias, while
higher or lower values indicate greater coverage bias
and worse forecasts.

5) Statistics on the probability of detection (POD) with
respect to 0.2-mm precipitation. The POD is defined
as the ratio of the number of ‘‘hits’’ (forecast of rain
given rain occurred) to the total number of hits and
‘‘misses’’ (forecast of no rain given that rain oc-
curred). The POD varies from 0 to 1, with 0 rep-
resenting no skill in detection (no hits) and 1 rep-
resenting perfect skill (no misses).

6) Statistics on the false alarm ratio (FAR) with respect
to 0.2-mm precipitation. The FAR is defined as the
ratio of the number of ‘‘false alarms’’ (forecast of
rain given that no rain occurred) to the total number
of false alarms and hits (forecast of rain given that
rain occurred). The FAR varies from 1 to 0, with 1
representing no skill (high rate of false alarms) and
0 representing perfect skill (no false alarms).

6. Results and discussion

The proposed strategy for distributed QPF comprises
four components, which are applied in sequence. This
section summarizes the performance of the individual
component processes in terms of the distributed and
aggregate error statistics, and/or measures of skills. For
comparison, results from persistence are also presented.
Each error or skill measure (shown in Figs. 3a–f) quan-
tifies a slightly different aspect of the forecast perfor-
mance. In general, extrapolation appears to perform
marginally better than persistence. Large-scale physics
and localized evolution appear to exhibit complemen-
tary skills (other than for the POD and FAR). Within
the 1–6-h lead times, localized evolution appears to per-
form better than large-scale physics at lower (1–2 or 3
h) leads, while the latter performs better for higher lead
times. The proposed hybrid approach improves over the
existing DQPF strategies and component processes
compared in this study. For the cases considered in this
study, the proposed strategy demonstrates the ability to
successfully blend the complementary skills from large-
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scale physics and localized evolution, which in turn re-
sults in improvements over advection and persistence.

Occasional outliers were removed during the calcu-
lations of errors or skill measures. For a given lead time,
if the skill or error metrics deviated sharply from the
overall trend, and if that deviation was caused by just
one storm, the specific value was treated as an outlier.
Typical adjustments entailed substituting the outliers
with the average values from the adjacent time steps.
For example, in the winter, the distributed skills from
persistence at 2-h leads were unexpectedly high, and
this was caused by one storm. This aberration in the
skills from persistence caused the other strategies to
exhibit a similar aberrant behavior. The distributed skills
at 2-h leads in the winter, from all the forecasting strat-
egies, were adjusted by replacing with the average of
the skills at 1- and 3-h leads. A similar adjustment was
done for the distributed skills in the summer at 3-h leads.
The results from one storm (16 June 1999) were ignored
from the 1/NMSE calculations at leads greater than 1
h. This storm decayed suddenly in intensity at certain
locations after about 1 h, which caused the distributed
skills to exhibit anomalous behavior.

a. 1/NMSE

As shown in Fig. 3a, the average distributed skill (in
terms of 1/NMSE) for all seasons combined exhibits a
low but nearly steady rate of decay with lead time in
the 1–6-h range. The existing methods show some skills,
especially at short lead times. In terms of this skill met-
ric, 1-h advection does not improve over persistence,
primarily due to occasionally missed cells and patterns
not being preserved for hourly rainfall. The large-scale
physics method that combines advection and NWP-
based QPF usually improves over pure advection or
persistence in terms of aggregate skill (Fig. 3b), but the
difference is marginal in terms of distributed skill (Fig.
3a). For 1-h resolutions and 1–6-h leads, the skills from
1-h advection and NWP-based QPF have been found to
be comparable (Golding 2000). Further, the process of
distributing the low-resolution NWP-based QPF in
space and time introduces significant errors. The local-
ized evolution strategy appears to exhibit greater skill
than large-scale physics until about 2–3 h, and decays
sharply thereafter. The relative skills from the large-
scale physics and localized evolution components vary
by forecast leads, resolution, and season. The proposed
method significantly improves over existing techniques,
like persistence, advection, and advection combined
with NWP-based QPF in terms of the distributed skill
measured by 1/NMSE.

b. Spatially averaged errors

Figure 3b shows the spatially aggregated normalized
errors as a function of lead time averaged for all seasons.
Advection marginally improves over persistence, while

large-scale physics improves over advection. On the av-
erage, localized evolution marginally improves over
large-scale physics for all seasons only until about 2–
3-h lead time, but performs worse (relative to large-
scale physics) thereafter. The proposed strategy beats
all other approaches at 1–6-h leads.

c. Numerical bias

Figure 3c shows the spatially aggregated numerical
bias as a function of lead time. For about 1–3-h lead,
all of the DQPF strategies perform equally well relative
to each other. However, after around 3-h lead, the skill
from persistence and advection quickly grow worse, and
localized evolution follows this trend. The skill from
large-scale physics is better at 4–6-h leads, relative to
persistence, advection, and localized evolution. The skill
from the proposed strategy closely follows that of large-
scale physics.

d. Spatial coverage bias

The bias in the spatial coverage is shown in Fig. 3d.
For 1–2-h leads, both large-scale physics and localized
evolution appear to show improvements over advection,
which, in turn, is better than persistence. In terms of
this measure, forecast skill from localized evolution is
significantly worse at 5- and 6-h leads. The proposed
method appears to perform better than all existing DQPF
strategies considered in this study, as well as the indi-
vidual component processes.

e. POD

Figure 3e shows the POD as a function of lead time.
Large-scale physics does not improve over persistence
or advection. At 4–6-h leads, advection appears to per-
form marginally better than persistence. Both the lo-
calized evolution and the proposed hybrid strategy per-
form significantly better than the other strategies, which
demonstrate the ability of these methods to predict rain
versus no-rain areas. The proposed strategy performs
the best overall.

f. FAR

Figure 3f shows the FAR as a function of lead time.
The performance from persistence, advection, large-
scale physics, or localized evolution does not exhibit a
significant or consistent difference relative to each other
in terms of this measure. The proposed method exhibits
improvements over all existing strategies in terms of
this measure. However, the behavior at 1-h lead (where
both localized evolution and the proposed strategy per-
form slightly worse compared to the other three meth-
ods) appear to be a slight anomaly.
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FIG. 4. The region within the ABRFC used for the case studies;
the spatial extent of the study region lies within the ABRFC area of
responsibility.

g. Qualitative performance

We have used hourly rainfall maps for model devel-
opment and calibration, and hourly maps for verification
and forecast generation. Previous research and data
analysis indicate that the spatially distributed structure
is not very well preserved for hourly rainfall. The spatial
extent of the study region within the ABRFC region is
indicated in Fig. 4. Figure 5 illustrates that the proposed
strategy still misses much of the detailed spatial struc-
ture, but improves over persistence and advection. It
should be noted, though, that contouring can be mis-
leading.

7. Conclusions

Distributed QPF has diverse and important applica-
tions. In the area of flood forecasting, this has the po-
tential of saving human lives and property. Improving
distributed QPF also happens to be among the most
challenging problems in hydrology and meteorology.
Availability of better NWP models and high-quality ra-
dar observations, as well as emerging data-dictated
tools, offer a window of opportunity for improving dis-
tributed QPF. The presented hybrid modeling strategy
improves distributed QPF by making the best use of
information from radar measurements and NWP model
outputs, as well as the available precipitation physics
and data-dictated tools. The overall strategy consists of
four elements that need to be applied in sequence. These
are described as (i) radar extrapolation, (ii) large-scale
physics, (iii) localized evolution, and (iv) residual struc-
tures.

High-quality WSR-88D data were used in conjunc-
tion with 48-km Eta NWP model outputs to demonstrate
improvements in distributed QPF. The proposed hybrid
model improves distributed QPF over techniques like
radar extrapolation alone, NWP-based QPF alone, and
hybrid models that combine radar extrapolation with

NWP-based QPF. This is indicated through skill scores
and error measures. Case studies (not shown) also in-
dicated that the hybrid model would perform better than
pure data-dictated tools or parameterized physically
based models.

Although not discussed, it is important to note that
this research confirmed the seasonal dependence of the
ability to quantitatively predict rainfall. Predictability is
higher in the winter than in the summer. In the winter,
QPF from NWP has more information content than other
NWP model outputs at aggregate scales, and linear mod-
eling strategies seem to perform relatively well. The
predictability of the space–time-distributed QPF, and the
spatially aggregated QPF at short leads, could be im-
proved in the summer using nonlinear strategies that
exploit the information content in the NWP forecasts of
atmospheric variables, like in the suggested hybrid strat-
egy.

The hybrid strategy proposed in this paper postpro-
cesses the information already available from NWP and
radar, and uses statistical approaches to model distrib-
uted physical processes that cannot be easily handled
by the current generation of NWP models. It has been
argued that no method has succeeded in consistently
improving distributed QPF (at scales useful for hydro-
logic applications) over and above Lagrangian persis-
tence at very short (e.g., 1–2 h) lead times, although
QPF from NWP has been found to be useful at slightly
higher leads (e.g., 3–6 h). Based on the results presented
here, the new hybrid strategy appears to have the po-
tential to improve over these approaches, even though
further validation is necessary.

Researchers have speculated that the future of QPF
lies in numerical modeling at increasing resolution.
There is a need to investigate the value of these ap-
proaches to generate DQPF at hydrologic scales and to
compare them to methods like the proposed hybrid strat-
egy that attempt to statistically combine observations
and numerical model outputs. Statistical methods for
initialization, nudging, assimilation, or validation of nu-
merical weather models are somewhat complementary
to statistical postprocessing approaches, and it is pos-
sible that significant improvements in DQPF can be re-
alized by strategies that blend these approaches.
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FIG. 5. Contour plots showing observed radar rainfall and QPF at 1-h lead for the storm of 27 Apr 1998. The x and y axes are in pixel
units while rainfall intensity is in millimeters per hour. Contours higher than 10 mm are indicated with vertical stripes, while contours lower
than 2 mm are indicated with horizontal stripes. The contours represent either observed or forecasted rainfall: (a) observed stage-III radar
rainfall, (b) QPF from persistence, (c) QPF from advection, (d) QPF from the proposed strategy, (e) forecasted upper bounds, and (f )
forecasted lower bounds.
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