A Local Scalable Distributed Expectation Maximization Algorithm for Large Peer-to-Peer Networks

Kanishka Bhaduri¹ Ashok N. Srivastava²

¹MCT Inc., Intelligent Data Understanding NASA Ames Research Center, Moffett Field CA-94035

²Intelligent Data Understanding NASA Ames Research Center, Moffett Field CA-94035

IEEE ICDM 2009

Roadmap

Introduction

2 Motivation

3 Problem statement, contribution

4 Locality

5 Background

- Expectation maximization
- Notations

6 P2P EM algorithm

Experimental results

Conclusion

Introduction

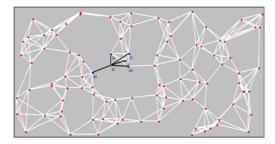


Figure: A P2P network

- Highlights:
 - Highly scalable
 - Asynchronous
 - Completely decentralized
 - Ad-hoc connections

Introduction

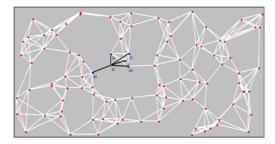


Figure: A P2P network

- Highlights:
 - Highly scalable
 - Asynchronous
 - Completely decentralized
 - Ad-hoc connections

Data mining in P2P networks?

- Millions of peers (Skype \sim 50 million)
- Dynamic topology and data peers can join/leave at any time
- No global clock completely asynchronous
- Same features across all peers
- Communication reliable, bandwidth-limited, asynchronous, asymmetric
- Impracticalities / impossibilities
 - global communication
 - global synchronization

An example

Figure: Centralized vs. in-network computation

- EM very useful for variety of data mining tasks
- Can be deployed in P2P networks for
 - clustering
 - anomaly detection
 - target tracking
 - inferencing
- Centralizing data expensive/impractical; collaborative computing *e.g.* cloud computing can harness power of multiple processors/storage

- EM very useful for variety of data mining tasks
- Can be deployed in P2P networks for
 - clustering
 - anomaly detection
 - target tracking
 - inferencing
- Centralizing data expensive/impractical; collaborative computing *e.g.* cloud computing can harness power of multiple processors/storage

Can we develop an EM algorithm for P2P networks?

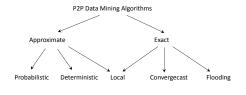


Figure: Distributed data mining algorithms

- S. Datta, K. Bhaduri, C. Giannella, R. Wolff, H. Kargupta. Distributed Data Mining in Peer-to-Peer Networks. IEEE Internet Computing Vol. 10(4), 2006.
- S. Datta, H. Kargupta. Uniform Data Sampling from a Peer-to-Peer Network. ICDCS 2007.
- S. Mukherjee, H. Kargupta. Distributed Probabilistic Inferencing in Sensor Networks using Variational Approximation. JPDC Vol. 68(1), 2008.
- K. Bhaduri, R. Wolff, C. Giannella, H. Kargupta. Distributed Decision Tree Induction in Peer-to-Peer Systems. Statistical Analysis and Data Mining. Vol. 1(2) 2008.

• Consider large P2P network

- each node has local data which change over time
- each node can exchange messages with immediate neighbors

Goal

Fit and monitor a gaussian mixture model (gmm) via EM to global data

- Constraints:
 - communication-efficient and scalable
 - asynchronous
 - able to handle dynamic data and network
 - provably correct result compared to centralized computation

- Algorithm for monitoring gmm parameters using EM in large P2P networks
 - local and highly scalable
 - asynchronous
 - provably correct
 - seamlessly handles changes in the data and network

What is locality?

- Every node communicates with only fixed number of other nodes
- Bounded total query size
- Advantages:
 - Scalable
 - Fault-tolerant
 - Robust

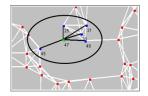


Figure: Locality of distributed algorithms

What is locality?

- Every node communicates with only fixed number of other nodes
- Bounded total query size
- Advantages:
 - Scalable
 - Fault-tolerant
 - Robust

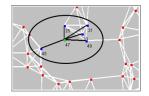


Figure: Locality of distributed algorithms

Local algorithms

For data dependent algorithms, there exist problem instances whose resource consumption is constant, independent of network size

 $\pi_1, \overrightarrow{\mu_1}, \mathbf{C}_1$

P2P EM

Figure: Expectation Maximization

Figure: Expectation Maximization

• Given
$$\mathbf{X} = \{\overrightarrow{x_1}, \overrightarrow{x_2}, \dots, \overrightarrow{x_n}\}$$
, where $\overrightarrow{x_i} = \mathcal{N}(\overrightarrow{\mu}, \mathbf{C}_s)$

- Goal: estimate parameters $\Theta = \{ \overrightarrow{\mu_1}, \dots, \overrightarrow{\mu_k}, \mathbf{C}_1, \dots, \mathbf{C}_k, \pi_1, \dots, \pi_k \}$
- Approach: maximize log-likelihood of parameters given X

Update equations

E-step (estimate the contribution of each point towards each gaussian):

$$q_{s,a} = \frac{\pi_s \mathcal{N}(\overrightarrow{x_a}; \overrightarrow{\mu_s}, \mathbf{C}_s)}{\sum_{r=1}^k \pi_r \mathcal{N}(\overrightarrow{x_a}; \overrightarrow{\mu_r}, \mathbf{C}_r)}$$

no communication

M-step (recompute the parameters of each gaussian):

$$\pi_{s} = \frac{\sum_{a=1}^{n} q_{s,a}}{n}$$

$$\overrightarrow{\mu_{s}} = \frac{\sum_{a=1}^{n} q_{s,a} \overrightarrow{x_{a}}}{\sum_{a=1}^{n} q_{s,a}} \quad \text{communication}$$

$$\mathbf{C}_{s} = \frac{\sum_{a=1}^{n} q_{s,a}(\overrightarrow{x_{a}} - \overrightarrow{\mu}_{s})(\overrightarrow{x_{a}} - \overrightarrow{\mu}_{s})^{\mathrm{T}}}{\sum_{a=1}^{n} q_{s,a}}$$

- P_1, \ldots, P_p a set of peers
- Data stream at P_i

$$S_i = \left[\overrightarrow{x_{i,1}}, \overrightarrow{x_{i,2}}, \dots, \overrightarrow{x_{i,m_i}}\right]$$

• Global input
$$\mathcal{G} = \bigcup_{i=1,...,p} S_i$$

• $X_{i,j}$: messages sent by P_i to P_j

- P_1, \ldots, P_p a set of peers
- Data stream at P_i

$$S_i = \left[\overrightarrow{x_{i,1}}, \overrightarrow{x_{i,2}}, \dots, \overrightarrow{x_{i,m_i}}\right]$$

• Global input
$$\mathcal{G} = \bigcup_{i=1,...,p} S_i$$

•
$$X_{i,j}$$
: messages sent by P_i to P_j

Goal

Build and monitor gmm model on ${\mathcal G}$ without collecting ${\mathcal G}$

Thresholding problem

- Problem 1: Compute gmm parameters
 - O(n) communication for exact computation imes
- Problem 2: Given pre-computed parameters, monitoring them vs. ${\cal G}$
 - Less than O(n) communication...very efficient ✓

Thresholding problem

- Problem 1: Compute gmm parameters
 - O(n) communication for exact computation ×
- Problem 2: Given pre-computed parameters, monitoring them vs. ${\cal G}$
 - Less than O(n) communication...very efficient ✓
- Sufficient statistics
 - Knowledge: $\mathcal{K}_i = S_i \bigcup_{P_j \in \Gamma_i} X_{j,i}$
 - Agreement: $A_{i,j} = X_{i,j} \cup X_{j,i}$
 - Withheld: $\mathcal{W}_{i,j} = \mathcal{K}_i \setminus \mathcal{A}_{i,j}$

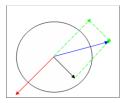


Figure: Set statistics

Conflicting objectives:

- For correct computation, $\mathcal{K}_i = \mathcal{G}$
- For communication efficient solution, $\mathcal{K}_i \neq \mathcal{G}$

Conflicting objectives:

- For correct computation, $\mathcal{K}_i = \mathcal{G}$
- For communication efficient solution, $\mathcal{K}_i \neq \mathcal{G}$

Solution

- Decompose domain into several non-overlapping convex regions such that any function computed on ${\cal G}$ remains invariant inside each convex region
- Even if $\mathcal{K}_i \neq \mathcal{G}$, $\mathcal{F}(\mathcal{K}_i) = \mathcal{F}(\mathcal{G})$ inside any such region
 - Example: Is $||\mathcal{G}|| < \epsilon$?
- Still nobody knows \mathcal{G} ...

Local criterion

- Need conditions on local set statistics to infer about $\ensuremath{\mathcal{G}}$

Theorem

For each peer and each of its neighbors, if all its set statistics \mathcal{K}_i , $\mathcal{A}_{i,j}$, $\mathcal{W}_{i,j}$ are in same convex region, then so is \mathcal{G}

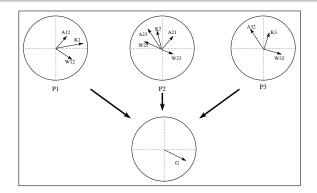


Figure: An example

- Allows a peer to terminate computation and communication whenever stopping condition is satisfied irrespective of other conditions
- Still guarantees eventual correctness
- Remarkably efficient in pruning messages
- Allows a peer to sit idle until an event occurs:
 - send or receive message
 - change in local data
 - change in immediate neighborhood

Back to EM

Monitoring algorithm:

- 1 Input: local dataset, precomputed parameters, error threshold ϵ
- **2** Goal: monitor $\mathcal{L}(\Theta)$, π , $\overrightarrow{\mu}$, **C**
- 8 Initialization

•
$$S_i = \left\{ q_{i,s,a} \left(\overrightarrow{x_{i,a}} - \overrightarrow{\overrightarrow{\mu}_s} \right) \right\}$$

- Compute sufficient statistics vectors
- Define convex regions

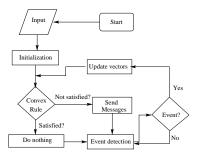


Figure: Flowchart of algorithm

Computing EM models

- Monitoring algorithm raises an alarm on correct detection
- For closed-loop solution, sample data, rebuild model
- Non-local solution correctness of monitoring algorithm minimizes false dismissals and false alarms

- Simulated data consists of multivariate correlated gaussians with arbitrary parameters
- · Parameters changed at fixed simulator intervals

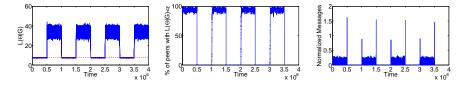


Figure: Experimental results in monitoring mode

Closed loop results

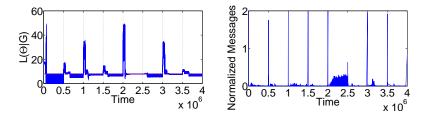


Figure: Experimental results in closed loop mode

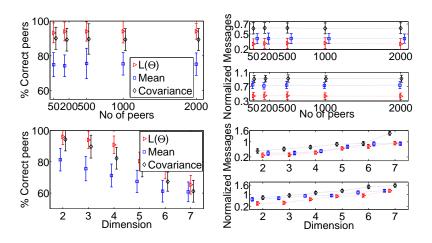


Figure: Scalability results

- First work on developing a local algorithm for gmm monitoring
- Algorithm provably correct, communication efficient, highly scalable, in-network and asynchronous
- Extensive experimental results show low communication cost and correctness of results

Resources:

- http://ti.arc.nasa.gov/profile/kbhaduri/
- Distributed Data Mining Bibliography: http://www.csee.umbc.edu/~hillol/DDMBIB/