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Introduction

Figure: A P2P network

∙ Highlights:
∙ Highly scalable
∙ Asynchronous
∙ Completely decentralized
∙ Ad-hoc connections

Data mining in P2P networks?
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P2P setup

∙ Millions of peers (Skype ∼ 50 million)

∙ Dynamic topology and data — peers can join/leave at any time

∙ No global clock — completely asynchronous

∙ Same features across all peers

∙ Communication — reliable, bandwidth-limited, asynchronous,
asymmetric

∙ Impracticalities / impossibilities
∙ global communication
∙ global synchronization
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An example

Figure: Centralized vs. in-network computation
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Motivation

∙ EM very useful for variety of data mining tasks

∙ Can be deployed in P2P networks for
∙ clustering
∙ anomaly detection
∙ target tracking
∙ inferencing

∙ Centralizing data expensive/impractical; collaborative computing e.g.
cloud computing can harness power of multiple processors/storage

Can we develop an EM algorithm for P2P networks?
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Related work

Approximate Exact

P2P Data Mining Algorithms

Probabilistic Deterministic Local Convergecast Flooding

Figure: Distributed data mining algorithms

∙ S. Datta, K. Bhaduri, C. Giannella, R. Wolff, H. Kargupta. Distributed Data Mining in Peer-to-Peer Networks. IEEE
Internet Computing Vol. 10(4), 2006.

∙ S. Datta, H. Kargupta. Uniform Data Sampling from a Peer-to-Peer Network. ICDCS 2007.

∙ S. Mukherjee, H. Kargupta. Distributed Probabilistic Inferencing in Sensor Networks using Variational Approximation.
JPDC Vol. 68(1), 2008.

∙ K. Bhaduri, R. Wolff, C. Giannella, H. Kargupta. Distributed Decision Tree Induction in Peer-to-Peer Systems.
Statistical Analysis and Data Mining. Vol. 1(2) 2008.
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Problem statement

∙ Consider large P2P network
∙ each node has local data which change over time
∙ each node can exchange messages with immediate neighbors

Goal

Fit and monitor a gaussian mixture model (gmm) via EM to global data

∙ Constraints:
∙ communication-efficient and scalable
∙ asynchronous
∙ able to handle dynamic data and network
∙ provably correct result compared to centralized computation
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Contribution

∙ Algorithm for monitoring gmm parameters using EM in large P2P
networks
∙ local and highly scalable
∙ asynchronous
∙ provably correct
∙ seamlessly handles changes in the data and network
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What is locality?

∙ Every node communicates with
only fixed number of other
nodes

∙ Bounded total query size

∙ Advantages:
∙ Scalable
∙ Fault-tolerant
∙ Robust

Figure: Locality of distributed algorithms

Local algorithms

For data dependent algorithms, there exist problem instances whose
resource consumption is constant, independent of network size
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Expectation maximization

Figure: Expectation Maximization

∙ Given X = {−→x1 ,
−→x2 , . . . ,

−→xn}, where −→xi =N (−→� , Cs)

∙ Goal: estimate parameters Θ = {−→�1, . . . ,
−→�k ,C1, . . . ,Ck , �1, . . . , �k}

∙ Approach: maximize log-likelihood of parameters given X
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Expectation maximization

Update equations

E-step (estimate the contribution of each point towards each gaussian):

qs,a =
�sN (−→xa ;−→�s ,Cs)∑k
r=1 �rN (−→xa ;−→�r ,Cr )

no communication

M-step (recompute the parameters of each gaussian):

�s =

∑n
a=1 qs,a

n

−→�s =

∑n
a=1 qs,a

−→xa∑n
a=1 qs,a

communication

Cs =

∑n
a=1 qs,a(

−→xa −−→� s)(
−→xa −−→� s)

T∑n
a=1 qs,a
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Notations

∙ P1, . . . ,Pp — a set of peers

∙ Data stream at Pi

Si =
[−→xi ,1,−→xi ,2, . . . ,−−→xi ,mi

]
∙ Global input G =

∪
i=1,...,p

Si

∙ Xi ,j : messages sent by Pi to Pj

Goal

Build and monitor gmm model on G without collecting G
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Thresholding problem

∙ Problem 1: Compute gmm parameters
∙ O(n) communication for exact computation ×

∙ Problem 2: Given pre-computed parameters, monitoring them vs. G
∙ Less than O(n) communication...very efficient ✓

∙ Sufficient statistics

∙ Knowledge:

Ki = Si
∪

Pj∈Γi

Xj,i

∙ Agreement:
Ai,j = Xi,j ∪ Xj,i

∙ Withheld:
Wi,j = Ki ∖ Ai,j

Figure: Set statistics
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Geometric interpretation

Conflicting objectives:

∙ For correct computation, Ki = G
∙ For communication efficient solution, Ki ∕= G

Solution
∙ Decompose domain into several non-overlapping convex regions such

that any function computed on G remains invariant inside each
convex region

∙ Even if Ki ∕= G, ℱ(Ki ) = ℱ(G) inside any such region
∙ Example: Is ∣∣G∣∣ < �?

∙ Still nobody knows G...
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Local criterion

∙ Need conditions on local set statistics to infer about G

Theorem

For each peer and each of its neighbors, if all its set statistics Ki , Ai ,j ,
Wi ,j are in same convex region, then so is G

A12

G

K1

W12

A21

W21

K2

W23

A23

P1 P2

A32

W32

K3

P3

Figure: An example
P2P EM P2P EM algorithm 16/23



Local criterion

∙ Allows a peer to terminate computation and communication whenever
stopping condition is satisfied irrespective of other conditions

∙ Still guarantees eventual correctness

∙ Remarkably efficient in pruning messages

∙ Allows a peer to sit idle until an event occurs:
∙ send or receive message
∙ change in local data
∙ change in immediate neighborhood
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Back to EM

Monitoring algorithm:

1 Input: local dataset, precomputed parameters, error threshold �
2 Goal: monitor ℒ(Θ), �, −→� , C
3 Initialization

∙ Si =
{
qi,s,a

(−→xi,a − −̂→� s

)}
∙ Compute sufficient statistics vectors
∙ Define convex regions

Input Start

Initialization

Convex
Rule

Not satisfied?

Do nothing

Satisfied?

Messages
Send

Update vectors

Event detection

Yes

Event?

No

Figure: Flowchart of algorithm
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Computing EM models

∙ Monitoring algorithm raises an alarm on correct detection

∙ For closed-loop solution, sample data, rebuild model

∙ Non-local solution — correctness of monitoring algorithm minimizes
false dismissals and false alarms

Figure: Convergecast

P2P EM P2P EM algorithm 19/23



Monitoring results

∙ Simulated data consists of multivariate correlated gaussians with
arbitrary parameters

∙ Parameters changed at fixed simulator intervals
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Figure: Experimental results in monitoring mode

P2P EM Experimental results 20/23



Closed loop results
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Figure: Experimental results in closed loop mode
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Scalability results
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Figure: Scalability results
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Conclusion

∙ First work on developing a local algorithm for gmm monitoring

∙ Algorithm provably correct, communication efficient, highly scalable,
in-network and asynchronous

∙ Extensive experimental results show low communication cost and
correctness of results

Resources:

∙ http://ti.arc.nasa.gov/profile/kbhaduri/

∙ Distributed Data Mining Bibliography:
http://www.csee.umbc.edu/˜hillol/DDMBIB/
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