
Annual Conference of the Prognostics and Health Management Society, 2011

Deriving Bayesian Classifiers from Flight Data to Enhance
Aircraft Diagnosis Models

Daniel L.C. Mack 1, Gautam Biswas 1, Xenofon D. Koutsoukos 1, Dinkar Mylaraswamy 2, and George Hadden 2

1 Vanderbilt University, Nashville, TN, 37203, USA
daniel.l.mack@vanderbilt.edu

gautam.biswas@vanderbilt.edu
xenofon.koutsoukos@vanderbilt.edu

2 Honeywell Aerospace, Golden Valley, MN 55422, USA
dinkar.mylaraswamy@honeywell.com

george.d.hadden@honeywell.com

ABSTRACT
Online fault diagnosis is critical for detecting the on-

set and hence the mitigation of adverse events that arise
in complex systems, such as aircraft and industrial pro-
cesses. A typical fault diagnosis system consists of a
reference model that provides a mathematical represen-
tation for various diagnostic monitors that provide partial
evidence towards active failure modes, and a reasoning
algorithm that combines set-covering and probabilistic
computation to establish fault candidates and their rank-
ings. However, this approach often suffers from incom-
pleteness in the reference models and simplifying as-
sumptions made by the reasoning algorithms. Incom-
pleteness in the reference models take several forms,
such as absence of evidence, errors and incompleteness
in the mapping between evidence and failure modes,
while inaccuracies in the reasoning algorithm arise from
simplifying noise models and independence assump-
tions. In this paper, we describe a Tree Augmented Naive
Bayesian Classifier (TAN) classifier that forms the ba-
sis for systematically extending reference models using
data from systems operating with and without faults. We
investigate the performance of the TAN models start-
ing from the expert supplied reference model using air-
line data, and demonstrate that the generated TAN struc-
tures can be used by the expert to identify areas of im-
provement through the addition of new causal links, and
updated thresholds for classification among the system
monitors. This is then translated into an improvement
for the reference model which in turn benefits the rea-
soner of the aircraft.

1. INTRODUCTION
An important challenge facing aviation safety is early de-
tection and mitigation of adverse events caused by sys-
tem or component failures. Take an aircraft for example,
which consists of several sub-systems such as propul-
sion, aviation, bleed, flight control, and electrical; each

This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are
credited.

of these subsystems consists of several dozens of inter-
acting components. Faults can arise in one or more air-
craft subsystem; their effects in one system may prop-
agate to other subsystems, and faults may interact. To
detect these faults, an onboard fault diagnosis solution
must be able to handle these interactions and provide an
accurate diagnostic and prognostic state for the aircraft
with minimal ambiguity.

The current state of online fault diagnosis is focused
on installing a variety of sensors onboard an aircraft
along with a reasoning software to automatically in-
terpret the evidence generated by them to indicate the
presence of faults. One such state of the art sys-
tem is the Aircraft Diagnostic and Maintenance System
ADMS (Spitzer, 2007) that is used on the Boeing B777.
ADMS can be broadly categorized as a model-based di-
agnoser that separate system-specific knowledge and the
inferencing mechanism.

Consider characteristics of some typical faults arising
in aircraft subsystems. Turbine blade erosion is a natural
part of turbine aging and wearing of the protective coat-
ing due to microscopic carbon particles exiting the com-
bustion chamber. As the erosion progresses over time,
it starts to affect the ability of the turbine to extract me-
chanical energy from the hot expanding gases. Eventu-
ally this fault manifests itself as increase in fuel flow and
gradual degradation of engine performance. This causal
propagation of faults is usually known to a domain ex-
pert and captured mathematically using a static system
reference model. As evidence get generated by aircraft
installed sensors, a reasoning algorithm “walks” the rel-
evant causal paths and concludes the current state of the
aircraft—in this case, turbine erosion of the propulsion
engine.

The ADMS uses a fault propagation system refer-
ence model that captures the interactions between air-
craft components under various operating modes. A
Bayesian belief propagation network together with the
Bayesian update rule provides an ideal framework for
this onboard diagnostic reasoning. It provides the nec-
essary transparency for certification as a safety system,
while allowing the sub-system manufacturer to encode
proprietary fault models. Having said that, it is equally
important to note that generation of this reference model

1

Annual Conference of the Prognostics and Health Management Society, 2011

is a manual process and often the most tedious step in
the practical development and deployment of an ADMS.
While most of the knowledge about fault propagation
can be derived from earlier aircraft designs, upgrades to
component design (for example using active surge con-
trol rather than passive on-off surge prevention) create
gaps in the knowledge base. As the engineering teams
“discover” such knowledge from an operating fleet, these
translate as expert heuristics rather than a systematic up-
grade to the reference model that was generated at design
time.

Many of the shortcomings of the ADMS can be at-
tributed to incomplete and incorrect information in the
system reference model. In other words, a gap ex-
ists for systematic upgrades and increments to the ref-
erence model as vast amount of operational data is col-
lected by operating airlines. We look at this problem
as a “causal structure discovery” problem. Specifically,
learning causal structures in the form of a Bayesian Net-
work wherein the nodes represent system failures (cause)
and diagnostic evidence (symptom). Unlike associa-
tions, Bayesian networks can be used to better capture
the dependencies among failures (failure cascade from
one subsystem to another) and evidence cascade (failure
mode in one system triggering a symptom in a nearby
component).

This paper presents a case study, an adverse event sur-
rounding an in-flight shutdown of an engine, which was
used to systematically augment an existing ADMS refer-
ence model. Section 2. describes the basic principles and
the constituents of a model-based onboard fault reasoner.
Section 3. describes the problem statement wherein we
formally define the model augmentation we seek to de-
rive using operational data. Next in section 4. we de-
scribe the historic data surrounding the adverse event.
Section 6. then discusses the data mining algorithms we
have employed for constructing the diagnostic classi-
fiers using Tree-Augmented Bayesian Networks (TANs).
Section 7. then discusses experimental results describing
how an expert would utilize aircraft data with the classi-
fiers to improve a reference model. Metrics are defined
for evaluating classifier performance, and a number of
different experiments are run to isolate where improve-
ment in the model may be possible. For these experi-
ments, the derived classifier models provide information
to the expert to update the reference model. Section 8.
presents a summary of our approach, and outlines our
directions for future work for diagnostic and prognostic
reasoning using the data mining algorithms.

2. BACKGROUND ON REFERENCE MODELS
Model-based strategies that separate system-specific
knowledge and the inferencing mechanism are preferred
for diagnosing large, complex, real-world systems. An
aircraft is no exception to this, wherein individual com-
ponent suppliers provide system-specific knowledge that
can be represented as a bipartite graph consisting of two
types of nodes: failure modes and evidence. Since this
knowledge acts as a baseline for diagnostic inferencing,
the term “reference model” is also used to describe this
information. The set F defines all distinct failure modes
defined or enumerated for the system under considera-
tion. A failure mode fmi ∈ F may be occurring or not
occurring in the system, i.e. it may exist in a 1 (occur-

ring) or 0 (not occurring) state. Often a −1 an unknown
state is also included as an initial state. We use the fol-
lowing shorthand notations regarding these assertions.

fmi = 0⇔The failure mode is not occurring
fmi = 1⇔The failure mode is occurring (1)

Every failure mode has a priori probability of occur-
ring in the system. This probability is given byP (fmi =
1). A failure mode fmk can occur (or not occur) inde-
pendently of another failure mode fmj occurring. That
is, P (fmk = 1|fmj = 1) = P (fmk = 1). This corre-
sponds to a Naive Bayes assumption for the the indepen-
dence of fault hypothesis.

To isolate and disambiguate the failure modes, com-
ponent suppliers also define an entity called “evidence”
in the system model. The jth evidence is denoted by ej
and the setE denotes all distinct monitors defined for the
system under consideration. The diagnostic monitor as-
sociated with the ith evidence can either indict or exoner-
ate a subset of failure modes called its ambiguity group.
The monitormi can take three mutually exclusive values
allowing a monitor to express indicting or exonerating or
unknown support for the failure modes in its ambiguity
group. The notations are described in equation (2).

mi = 0⇔ Exonerating evidence
mi = 1⇔ Indicting evidence

mi = −1⇔ Unknown evidence
(2)

An ideal monitor associated with evidence ei fires
only when one or more failure modes in its ambiguity
group are occurring. Given the fact that the i’th failure
mode is occurring in the system, dji denotes the proba-
bility that there will be a monitor providing an indicting
evidence under this condition.

dji ⇔ P (mj = 1|fmi = 1), (3)

dji is called the detection probability of the jth ev-
idence with respect to failure mode monitor fmj . A
monitor may fire when there is no failure mode present
in the system. False alarm probability is the probabil-
ity that an indicting monitor is present when there are no
failure modes occurring in the system. That is,

εj ⇔ P (mj = 1|fmi = 0,∀fmi ∈ F) (4)

Designing a monitor requires deep-level domain
knowledge. This inner working of the monitor is not im-
portant from a reasoning point of view. However, an ab-
stract view of the monitor helps the reasoning algorithm.
This abstraction is shown in Figure 1. With few excep-
tions, most diagnostic monitors are derived by thresh-
olding a time-series signal. This signal can be a raw
sensor value or a derived quantity. We call this a con-
dition indicator and denote it as x(t). Without loss of
generality one can assume an upper threshold such that
m ⇔ x(t) > θ. A diagnostic monitor may specify the
underlying condition indicator and the threshold or sim-
ply provide the net result of applying a hidden threshold.

Figure 2 illustrates an example reference model graph-
ically, with fault modes (hypotheses) as nodes on the
left, and diagnostic monitors (DM) on the right.Each link
would contain a detection probability, i.e., conditional
probability P (mj = 1|fmi = 1). In addition, fault

2

Annual Conference of the Prognostics and Health Management Society, 2011

Figure 1: Abstraction of Diagnostic monitor

nodes on the left contain the a priori probability of fault
occurrence, i.e., P (fmi). Probabilities on the DM nodes
indicate the likelihood that a particular monitor would in-
dicate a fault in a nominal system. Bayesian methods are
employed to combine the evidence provided by multiple
monitors to estimate the most likely fault candidates.

The reasoner algorithm (called the W-algorithm) com-
bines an abductive reasoning algorithm with a forward
propagation algorithm to generate and rank possible fail-
ure modes. This algorithm operates in two steps: (1) Ab-
ductive reasoning step: Whenever a diagnostic monitor
m1 fires, it provides either indicting (if m1 = 1) or ex-
onerating (if m1 = 0) evidence for the failure modes in
its ambiguity set, AG = {fm1, fm2, . . . fmk}. This
step assumes that the firing of a DM implies at least
one of the faults in the ambiguity set has occurred; and
(2) Forward reasoning step: For each fmi belonging
to AG, this step calculates all other diagnostic monitors
that may fire if any of the failure modes are indeed oc-
curring. These are called the evidence of interest. Let
m2,m3, · · · denote this evidence of interest set. Some of
these monitors may be in an indicating state, for exam-
ple m2 = 1 or exonerating state, for example m3 = 0.
The reasoning algorithm calculates the joint probability
P (fm1 = 1,m1 = 1,m2 = 1,m3 = 0, . . .) of a spe-
cific failure mode fm1 occurring in the system. As ad-
ditional monitors fire, the numeric values of these prob-
abilities increase or decrease, till a specific failure mode
hypothesis emerges as the “winner”. The reasoning al-
gorithm can generates multiple single fault hypothesis,
each hypothesis asserting the occurrence of exactly one
failure mode in the system.

The reasoning algorithm may not not reduce the am-
biguity group to a single fault element. This can hap-
pen for various reasons. A modest aircraft has over
5000 monitors and failure modes; estimating the detec-
tion probabilities dji for a modest aircraft is a challeng-
ing offline design task. Errors in dji or more specif-
ically lack of a link between an evidence and a fail-
ure mode can adversely affect the reasoner performance.
Further, to keep things simple, a modeler may assume
monitor firing events to be independent. This elimi-
nate the modeler from calculating the joint probability

P (mj = 1,mk = 1|fmi = 1) and approximate it as
P (mj = 1|fmi = 1) × P (mk = 1|fmi = 1). De-
signing a good set of monitors is yet another challenging
task. For example, the modeler may have overlooked a
new monitor mp that could have differentiated between
failure modes fm1 and fm2.

Given the complexity of large systems such as an air-
craft, incompleteness in the reference model is expected.
However, as one collects more operational data, some of
these gaps can be addressed. The independence assump-
tion implies that the reasoning algorithm treats the ref-
erence model as a Naı̈ve Bayes classifier. Consequently,
the direct correspondence between the reference model
and the simple Bayesian structure provides opportunities
to use a class of generative Bayesian model algorithms to
build these missing links structures from data. It is this
systematic approach for updating the system reference
model is the theme of this paper. We now formally de-
fine the problem statement.

3. PROBLEM STATEMENT

The reference model when viewed as a single fault diag-
noser can be interpreted as a Noisy-OR classifier, which
is a simplified form of a standard Bayesian Network.
A number of Machine Learning techniques for building
Bayesian networks from data have been reported in the
literature (Friedman, Geiger, & Goldszmidt, 1997). For
example, state-based hidden Markov Models (HMMs)
and even more general Dynamic Bayesian Network
(DBN) formulations can be employed to capture the dy-
namics of aircraft behavior and effects of faults on sys-
tem behavior and performance. However, rather than ad-
dressing the problem as a traditional data mining prob-
lem, we approached it as an extension to the exist-
ing ADMS. In other words, the data mining algorithms
should be designed to provide information that supple-
ments existing expert-generated reference models, as op-
posed to providing different formulations and different
reasoner structures. Verifying the model enhancements
by experts becomes relatively straightforward.

A systematic approach (unlike looking for a needle in
haystack approach) to data mining to precisely define the

3

Annual Conference of the Prognostics and Health Management Society, 2011

Figure 2: Example Reference Model

missing elements in the reference model that we need to
learn. Specifically:

1. Updating the relations between monitors and fail-
ure modes. Specifically updating dji for monitor-
failure mode pairs that already exist, as well as as-
signing a non-zero number for dji if the link did not
exist.

2. Updating the threshold θ associated with a diagnos-
tic monitor given a trace of condition indicators. In
other words, the data mining is indirectly updating
the detection probability and the false alarm rate εj
associated with a monitor.

3. Creating new monitors that combines m1 and m2
such that either that assert the combination asserts a
stronger evidence for a specific failure mode fmi.
That is, calculate a stronger value for P (mj =
1,mk = 1|fmi = 1) which is greater than
P (mj = 1|fmi = 1)× P (mk = 1|fmi = 1).

Besides formulating the output of the data mining as
an extension to the existing reference model, the compu-
tational complexity of the data mining algorithms should
be manageable, so that they can be used as exploratory
analysis tools by the domain experts. We envision a
successive refinement process, where the expert may re-
quest a number of experimental runs, each using a spe-
cific data set from an operating fleet of aircrafts and the
results from the nth experiment augments the reference
model from the (n−1)th experiment. This will result in a
continuous learning loop wherein the observations from
the fleet are incorporated systematically to understand
the causal relations between failure modes, their mani-
festations (monitors) and, also to study the dependence
amongst failure modes under various adverse event sit-
uations. Over time, this learning loop will increase the
accuracy (while reducing false positives) in the diagnos-
tic reasoner.

Having established this framework, we stay within the
Bayes net paradigm, and describe the data available to
us for enhancing an existing expert-supplied reference
models for the next step.

4. AIRCRAFT FLIGHT DATA
Demonstrating and validating the proposed upgrades to
the system reference model needs data. A good data set
would span several contiguous flights as well as contain
multiple aircrafts. This data set will contain the statisti-
cal richness arising from aircraft-to-aircraft variation as
well as heterogeneity of flight patterns. One such data set
came from a fleet of regional airlines operating in North
America. The fleet consisted of 30+ identical aircrafts,
each aircraft operating 2–3 flights each day. Data span-
ning three years was made available to to support our
work.

The Aircraft Condition Monitoring System (ACMS)
is an airborne system that collects data to support fault
analysis and maintenance. The Digital ACMS Recorder
(DAR) records airplane information onto a magnetic tape
(or optical) device that is external to the ACMS. This
data is recorded in raw, uncompressed form. The DAR
can record information a maximum of 512 12-bit words
per second via a serial data stream modulated in either
Harvard Bi-Phase or Bi-Polar Return-to-Zero code. The
recorded data is then saved permanently to a compact
flash card. The ACMS can be programmed to record
parameter data from the propulsion subsystem, the air-
frame, the aircraft bleed subsystem, and the flight man-
agement system at a maximum rate of 16Hz. It is this
raw time-series data that we use for designing the refer-
ence model and the reasoner enhancements.

The second source of information we need are adverse
event annotations. One such source is the FAA devel-
oped Aviation Safety Information Analysis and Sharing
(ASIAS) system. ASIAS is a database collection of ad-

4

Annual Conference of the Prognostics and Health Management Society, 2011

verse events reported by various airline operators. A
simple cross check with this database revealed an en-
gine shutdown event. One of the engines aboard the
aircraft shutdown automatically and the flight crew de-
clared emergency; returning back to the airport where
the flight originated with no casualties. It is this event
that forms the focus of our reasoner and the data mining
exercise.

Typically an adverse event such as an engine shut-
down is the culmination of several things, our objec-
tive was to analyze the ACMS data surrounding this
event and hence suggest improvements to the existing
ADMS—the primary intent is to detect the root cause
earlier and possibly avoid the onset of the adverse event.
Investigation with the airline maintenance crew revealed
the root cause as a faulty fuel metering hydro-mechanical
unit. The fuel metering unit is a controller-actuator that
meters fuel into the combustion chamber so that the
engine produces the aircraft desired thrust. While the
ASIAS database defined the date when the adverse event
was detected, and the maintenance crew identified the
root cause, we needed a rough estimate when the fault
initiated. Dialogues with the expert indicates that early
indication of a failing fuel metering unit could be visi-
ble as early as 50 flights before the flight crew observed
the engine shutdown adverse event. We used a [−50, 0]
flight interval for our analysis, here 0 indicates the flight
when the adverse event occurred and −50 indicates 50
flights before this one.

As noted in the Introduction, most modern planes are
equipped with an Aircraft Diagnostic and Maintenance
System or ADMS. We further noted that evidence are
provided by diagnostic monitors, which in turn are de-
rived by setting appropriate threshold to condition indi-
cators. The following condition indicators and diagnos-
tic monitors were available from this aircraft.

StartTime This CI provides the time duration till the
engine reaches its idling speed. Appropriate thresh-
old generates the no start diagnostic monitor.

IdleSpeed This CI provides the idling steady state
speed. Appropriate threshold generates the hung
start diagnostic monitor.

peakEGTC This CI provides the peak exhaust gas tem-
perature within an engine start-stop cycle. Appro-
priate threshold generates the overtemp diagnostic
monitor.

N2atPeak This CI provides the speed of the engine
when the exhaust gas temperature achieves its peak
value. Appropriate threshold generates the over-
speed diagnostic monitor.

timeAtPeak This CI provides the dwell time when the
exhaust gas temperature was at its peak value. Ap-
propriate threshold generates the overtemp diagnos-
tic monitor.

Liteoff This CI provides the time duration when the en-
gine attained stoichiometry and auto-combustion.
Appropriate threshold generates the no lightoff di-
agnostic monitor.

prelitEGTC This CI provides the engine combustion
chamber temperature before the engine attained sto-
ichiometry. Appropriate threshold generates the hot
start diagnostic monitor.

phaseTWO This CI provides the time duration when
the engine controller changed the fuel set-point
schedule. There are no diagnostic monitors defined
for this CI.

tkoN1, tkoN2, tkoEGT, tkoT1, tkoPALT These CI
provides the fan speed, engine speed, exhaust gas
temperature, inlet temperature and pressure altitude
respectively, averaged over the time interval when
aircraft is operating under take off conditions.
There are no diagnostic monitors defined for these
CI.

tkoMargin This CI provides the temperature margin for
the engine during take off conditions. Appropriate
threshold generates the medium yellow and low red
diagnostic monitors.

Rolltime This CI provides the time duration of the en-
gine’s roll down phase. Appropriate threshold gen-
erates the abrupt roll diagnostic monitor.

resdTemp These CI provide the engine exhaust gas
temperature at the end of the engine’s roll down
phase. Appropriate threshold generates the high
rtemp diagnostic monitor.

N2atDip, dipEGTC These CI provide the engine
speed, exhaust gas temperature at the halfway point
in the engine’s roll down phase. There are no diag-
nostic monitors defined for these CI.

N2cutoff These CI provide the rate of change of the en-
gine speed at the halfway point in the engine’s roll
down phase. There are no diagnostic monitors de-
fined for these CI.

With this data set, we set out to achieve our reasoner
enhancements as described earlier in section 3.. While
this large volume of data provides with opportunities to
study a number of different operating scenarios in much
greater depth and detail, the data is not in a form that be
directly processed by machine learning algorithms. Cu-
ration methods, therefore, have to be developed to pre-
pare the data sets that can be analyzed by machine learn-
ing algorithms. This data curation step is discussed next.

5. DATA CURATION
An important requirement for the success of data driven
techniques is the need for relevant and well-organized
data. Well-organized typically implies getting rid of un-
wanted details, being able to structure the data on a time-
line or a sequence of events, and applying filtering algo-
rithms if the sensors used are known to be noisy. Rele-
vance is a very important concept, since it is important
to extract sequences of data, which contain information
about the particular situation being modeled. For exam-
ple, if the goal is to design a classifier that can identify a
faulty situation from one in which there is no fault, it is
important to provide the two sets of data, so that the clas-
sifier can learn the discriminating features from the data.
The systems under study are complex, they operate in
different modes and under different circumstances. This
information is likely to be important for the classification
tasks, and the data needs to be appropriately annotated
with this information. Overall, unreliable data quality
makes it difficult improve an already effective reference
model. The data curation problem is often as complex as

5

Annual Conference of the Prognostics and Health Management Society, 2011

and sometimes even more complex than running a clas-
sifier or a clustering algorithm. It requires having a good
understanding of the nature of the data and how it was
acquired, before the analysis methods can be established.

The raw data is contained in binary files, each file con-
taining the ACMS recording for the entire flight from a
specific aircraft tail number. Several thousands of these
files were organized first by the aircraft tail number.
Within each aircraft, the data was then organized chrono-
logically using the flight timestamp. Further, since our
case study involves an engine shutdown, we further clas-
sified the data based on the engine serial number. While
this organization supports the specific case-study, we did
want this case-study to restrict the data curation step.

For practical reasons, given the size of the data, and
the need to extract specific sub-sequences for the data
mining task, it makes sense to include the formatted
and organized data into a centralized database with a
table structure that makes for easy retrieval. A typical
data analysis session involves formulating the appropri-
ate data base queries and collecting the resulting data
segments. With a general structure in place, the data can
be processed more efficiently and cleansed, if necessary.
Cleansing data is not exact and requires a definition of
an anomalies. For our analysis, all ground-test (then the
aircraft is on the ground and the maintenance crew does
some test) were defined as anomalies and removed dur-
ing the cleansing step.

At the end of the curation process, the original air-
craft data is ready for wide-spread distribution and more
specifically for applying the data mining. We discuss this
next.

6. TREE AUGMENTED NAIVE BAYESIAN
NETWORKS

The choice of the data driven techniques to apply to par-
ticular problems is very much a function of the nature
of the data and the problem(s) to be solved using the
data. As mentioned previously, the diagnostic models
employed in hierarchical framework lend themselves to
Bayesian Methods. As was also noted, the independence
assumption used in the VIPR model is one that can be
systemically relaxed to capture more information that
will be useful for diagnosis. There are several interest-
ing alternatives, but one that fits well with our reference
model structure is the Tree Augmented Naive Bayesian
Method (Friedman et al., 1997) abbreviated as the TAN
algorithm. The TAN network is a simple extension to
the Naive Bayesian network formulation. The Root (the
fault mode) is casually related to every evidence node.
However, as a slight relaxation of the independence as-
sumption, the evidence nodes have limited causality with
respect to one another. The limitation is that every node
may have at most one evidence node as its parent. This
maintains the directed acyclic graph requirements and
produces a more nuanced tree that captures relationships
among some of the variables (i.e., the system sensors and
monitors). Generation of this structure is not as compu-
tationally expensive as a general Bayes network.

An example TAN structure is illustrated in Figure 3.
The root node, labeled class, is the fault hypothesis un-
der consideration. The other nodes represent supporting
evidence for the particular fault hypotheses. In this par-
ticular structure, Rolltime, associated with the shutdown

Figure 3: Example TAN Structure

phase of the aircraft is the root observational node. Note
that like a Nave Bayesian classifier, the fault hypothesis
node, class, is linked to all of the observational monitor
nodes. Dependencies among some of the monitors, e.g.,
Rolltime and dipEGTC, are captured as additional links
in the Bayesian network.

The TAN Structure can be generated in several dif-
ferent ways, such as a greedy search that constrains the
graph from building ”illegal” edges (i.e., a node having
more than one parent from the evidence nodes)(Cohen,
Goldszmidt, Kelly, Symons, & Chase, 2004). The other
procedure and the one adopted for this work is to build a
Minimum Weighted Spanning Tree (MWST) of the Evi-
dence Nodes and then connect the fault mode to all of the
evidence after the tree has been constructed (Friedman
et al., 1997). In either case, a decision has to be made
about the anchor node (i.e., the observational root) of
the derived tree structure: (1) whether it is an evidence
node, or (2) it is the fault mode, which has no parents.
Lastly, since this structure is still static, it doesn’t have
an explicit temporal component. One can address this in
a few different ways, as we discuss later.

A standard algorithm (e.g., Kruskal’s
algorithm(Kruskal, 1956)) is applied to generate
the Minimum Weighted Spanning Tree. This algorithm
could be substituted by any other that generates similar
output, but within the specified theoretical bounds. The
values that are used as the edge weights all utilize a form
of a log-likelihood such as a Bayesian value (Chickering,
Heckerman, & Meek, 1997) or a Bayesian Information
Criterion (BIC) (Schwarz, 1978). If the values are
discrete (either by nature or discretized continuous
values), the use of the Bayesian likelihood metric is
preferred. This is a simple metric that can quickly
calculate the likelihood that a variable is dependent on
another. If the values are continuous, then the BIC is
better since it deals with continuous distributions (like a
Gaussian Normal) easily. The values are calculated for
every pair of evidence nodes and stored in a matrix. The
order of the nodes matter, since the graphs are directed.
Kruskal’s algorithm is used to construct the tree.

The choice of the observational root node is impor-
tant; the rest of the MWST linked from this node will be

6

Annual Conference of the Prognostics and Health Management Society, 2011

Algorithm 1 TAN Algorithm Using MWST
1: INPUT:Dataset D of N Features and a label C
2: INPUT:Observational Root Node FRoot
3: INPUT:CorrelationFunction
4: OUTPUT:TAN Structure with Adjacency Matrix,

CLassAdjMat, describing the Structure
5: OUTPUT:Probability Values ProbVec for each

Node {Note: Corr is a matrix of the likelihood
that feature i is causally related to feature j (dif-
ferent values can be found for i to j and j to i)}
{Count(Node,ClassAdjMat,D) is a counting func-
tion, that takes the Data, the Class, the Full Adja-
cency Matrix of the TAN and for the Node finds
either the CPT for discrete-valued features, or the
set of means and covariances to describe the Gaus-
sian Normal Distributions of the Node for continu-
ous valued variables.} {AdjMat describes the par-
ents so that correct data slices can be isolated and
used in the counting. }

6: for featurei = 0 to featurei = N do
7: for featurej = 0 to featurei = N do
8: if featurei 6= featurej then
9: Corr (i,j) = CorrelationFunction(fi, fj ,D)

10: end if
11: end for
12: end for
13: AdjMat = MWST(Corr, FRoot){ Build a Minimum

Weighted Spanning Tree using the Correlation Ma-
trix and the Root chosen}

14: for featurei = 0 to featurei = N do
15: ClassAdjMat(featurei, C) = 1 {Connect ev-

ery feature to the Class Node to build the TAN}
16: end for
17: ProbVec(C) = Count(C,ClassAdjMat,D) {Estimate

the parameters, starting with the class}
18: for featurei = 0 to featurei = N do
19: ProbV ec(featurei) =

Count(featurei, ClassAdjMat,D)
20: end for
21: RETURN: (AdjMat, ProbV ec)

Figure 4: TAN Structure with idlespeed root

conditioned both in structure and the conditional prob-
ability based on this root. Given similar data, the na-
ture of the values used to identify stronger causal links
should not change drastically on the choice of the ob-
servational root, but the choice may reorganize the tree.
Therefore, choice of the root can influence the structure
of the generated TAN. The pattern of nodes will be simi-
lar but their general ordering will be the difference in the
structure. For example in Figure 4, when the data is cen-
tered on flights near a fault, the root node is idlespeed.
This then connects to the starttime feature, to which the
rest of the nodes are connected. In Figure 5 with data
further away from the incident, we see PeakEGTC as the
root node; however, notice the similar structure of idle-
speed causally related to starttime with a further connec-
tion to a large group of nodes. This structure is similar,
but is not as focused near the top of the observational
tree. These shifts in the structure requires that a domain
expert examine the TAN structure and look for similar
structures in the tree of observational nodes. The lessons
that can be learned from these changes to the structure
will be discussed in Section 7.

Figure 5: TAN Structure with peakEGTC Root

As this structure shifts, one of the more important
changes is in the CPTs or Sets of Gaussian distributions
learned from the data. This shift makes the node cho-
sen as the observational root to have only one parent;
the class. This means this split is what initially biases
the TAN towards one label or another. This shift also
changes some causal relationships and may impact how
the counting algorithm for parameter estimation groups
the data and produces probabilities for the evidence. As
will be discussed in a later section, these choices can be
used by the domain expert to more effectively improve a
reference model for the AHM.

This choice of the root node for the observation por-
tion of the tree as shown in the pseudocode is an in-
put parameter to the algorithm. This choice is nor-
mally based on a ranking computed using a heuristic.
In a strict data driven method approach, using a heuris-
tics that are purely statistical in nature is an effective
method. In fact, among the implementations discussed
below, Weka (Hall, Eibe, Holmes, Reutemann, & Wit-
ten, 2009) uses just such a method. In discovering the
appropriate root node, it builds a TAN with every feature
as the root node of the MWST. It compares them using
a scoring metric, such as a log-likelihood for the train-
ing data. The structure with the best score is then used
as the classifier. However, it is possible to use domain

7

Annual Conference of the Prognostics and Health Management Society, 2011

knowledge to choose this node instead. For example, us-
ing expert knowledge of the system one may choose the
sensor that is closest to the fault under consideration be-
cause it is not likely to be causally dependent on other
sensors. The implication in the classifier is that it will be
closest to indicating a fault.

6.1 Implementations Used for Building TANs
Two different implementations can be employed for the
TAN algorithms used in the experiments. The first is
one that attempts to maintain the continuous nature of
the features and build Gaussian Normal distributions for
the nodes. It is implemented in MATLAB using the
Bayesian Network Toolkit (Murphy, 2011).

The second implementation included in the data min-
ing toolkit is called Weka (Hall et al., 2009) It does not
handle continuous values and instead uses a discretiza-
tion algorithm which looks to bin each of the features
into sets that unbalance the classes to provide as much
of a split as possible. This produces better classifiers,
but it may create very fine splits for features that results
in excessive binning(thus building very large conditional
probability tables).

7. EXPERIMENTS
To evaluate our data mining techniques and check their
abilities to improve the reference models, we have con-
ducted a case study that includes a systematic applica-
tion of the data mining algorithms to find information
that may be used to enhance the reference model. To
set up the systematic analysis, we have established an
initial set of metrics that reflect the structure and perfor-
mance requirements from the reference models and the
reasoners. The experiments focus on the case study of
the FuelHMA problem discussed earlier, and was con-
ducted from the curated aircraft data .

7.1 Experiment 1
Our first task was to investigate how effective the clas-
sifier structures would be in isolating the fault condition
using the condition indicator data. We used condition in-
dicators (CIs) rather than the health indicators (HIs) in
this analysis, because the intuition was that the expert-
chosen thresholds were too conservative, and therefore
result in unnecessary delays in the fault detection and
isolation. With the fault isolated to being present be-
tween the incident and 50 flights prior, the initial dataset
consisted of these features being calculated over each
flight in this range. Since the indicators operate over a
single engine, one could look at the features for each
engine together (100 features with 50 samples), or look
at the engines as each providing a sample for the flight
(25 features and 200 samples). We chose this approach,
since only one engine was showing degradation caused
by the fault under study. We labeled the other three
engines as nominal with respect to the faulty engine.
The classifiers were trained and evaluated using 10-Fold
Cross validation (180 samples for training, and 20 for
testing) with engine data being agnostic of which engine
produced the data. We utilized the TAN algorithms from
the Weka implementation to produce the necessary clas-
sifiers. The fact that the TANs are discretized will be
useful in identifying thresholds for otherwise continuous
values. This is important in Section 7.3. This fault ver-
sus no fault classifier used all of the condition indicators

described in 4. The resultant TAN structure is illustrated
in Figure 6.

The classification accuracy for the TAN classifier was
quite high. The TAN achieved on average 99.5% accu-
racy, with a .7% false positive rate and no false nega-
tive rate. These initial results were encouraging and to
better understand them, we extended this experiment to
determine that it was the fault and not a particular en-
gine characteristic that was being implicitly coded into
the classifier (e.g. the classifier structure implied dif-
ferences between engine 2 and engine 4). To do this,
the training was done with one Nominal Engine and the
Faulty Engine. Then the other two nominal engines were
used as the test data. If the engine data was split be-
tween the nominal engine and the faulty, that would indi-
cate whether the classifier identified sympathetic effects
due to the engine placement on the aircraft and not be-
tween nominal and faulty behavior. Experimental com-
binations run with all three nominal engines show that
the behavior most likely being discovered was faulty be-
havior with a nominal baseline. These results allowed us
to move along and try and help the domain expert better
understand the fault and the relationship to the CIs.

7.2 Experiment 2
The success of the classification task led to the next
step of working with the domain expert to understand
and refine the model that accounted for the evolving
degradation phenomena. To start, the expert examined
the TAN created over the 50 flight set used in Experi-
ment 1 and shown in Figure 6. He noted the complex
relationship between CIs (rolltime,dipEGTC) from the
Shutdown phase of the flight and the CIs (PeakEGTC
and Starttime) from the Startup phase. He determined it
likely there was a cycle starting in the shutdown at flight
n, and leading to the startup of flight n+ 1.

To investigate this possibility, we designed an exper-
iment to track how the causal structure and accuracy
changed as the data used to train the classifier got fur-
ther away from the incident. The idea was that the ef-
fects that would most explicitly show a failure would be
less emphasized. The 50 flights were divided into 5 bins
of 10 flights each. A test set was constructed of the re-
maining 40 flights (nominal and faulty labels) as well as
the samples of engine 3s CIs from every flight after the
incident labeled as nominal, since no other occurrence
of this fault was found in the ASIAS database. From
this test set, we measured the accuracy, the false positive
rate(FP%), as well as the Observational Root Node, and
its immediate children. Table 1 shows the results gener-
ated from this experiment.

The domain expert expected the accuracy to be high
for bins closer to the incident and false positives to be
lower as compared to the bins further away from the inci-
dent. The results for both show partial agreement. Bin 1
indeed has the highest accuracy, and also the lowest false
positive rate, the next lowest is indeed further away from
the incident but also has accuracy that compares with Bin
1. The domain expert’s opinion was that it was best to
look at the results between Bin 1 and Bin 4, where the
accuracy and false positive rates are the best. From this,
he then proceeded to look at the structure of the TAN
for each bin. The results showed two CIs that seemed
to be causally related to one another, startTime and the
peakEGTC. This connection is observed directly in Bin

8

Annual Conference of the Prognostics and Health Management Society, 2011

Figure 6: TAN Structure from the 50 Flights

Bin Training Flights Acc.on Holdout Set FP% Obs. Root Node Children of ORN Notes
1 1 to 10 97.65% 2.30% IdleSpeed StartTime Thresholds Chosen

from this Bin due to
low FP

2 11 to 20 93.90% 5.70% peakEGTC liteOff,dipEGTC peakEGTC Impor-
tant Node

3 21 to 30 94.65% 5.30% peakEGTC liteOff,dipEGTC peakEGTC Impor-
tant Node

4 31 to 40 96.62% 3.50% startTime peakEGTC Links startTime and
PeakEGTC

5 41 to 50 96.06% 4.10% liteOff phaseTwo,RollTime Links Startup and
Rolldown CI

Table 1: Accuracy, False Positive Rate and Notes on the Different Classifiers

9

Annual Conference of the Prognostics and Health Management Society, 2011

4, but startTime is a highly ranked node in Bin 1 and
PeakEGTC is the root node in Bins 2 and 3. From this
information, the domain expert believes that their causal
connection, implemented as a new monitor, would lead
to improvements in the reference model performance.

7.3 Experiment 3
The results from Experiment 2 provided the domain ex-
pert with explicit changes in the form of updates to the
threshold values as well as additional links that the expert
could add to the current reference model. The threshold
values were applied to generating the HIs from the CIs.
The CPTs generated by the learned classifier were dis-
cretized bins that use split points that correspond to the
threshold. Looking at the bins, the lowest false positive
rate occurred in Bin 1. For updating the thresholds, the
originals are compared with the CPT splits in the TAN.
For the rest, their causality with respect to a observa-
tional parent is removed by marginalizing the table to
remove that dimension. From that point, the table will
list the probability that the values based on the split in-
dicates a nominal versus a faulty split. These splits are
collected and a domain expert could elect to add them
to the reference model, thus updating the thresholds and
potentially improving the accuracy of catching the fault
without becoming too noisy.

From this data, the domain expert discovered some-
thing else about the health indicators. While there was a
Slow Start HI, the problem with this fault is that the start-
Time during start up wasn’t that it was too slow; it’s that
there was a split that showed the fault occurring if the
time was also too fast. From this, a new HI was made
and added to the reference model. The fastStart HI looks
to see if it is below the threshold outlined by the effect
startTime has on the TAN for this fault.

Also, as mentioned in Experiment 2 above, there was
a causal relationship appearing between startTime and
peakEGTC. The domain expert suggested adding this as
a “super monitor”. This new HI would effectively use
logic to see when the fastStart HI and the HighTemp HI
both indict the failure mode in the reference model. If
they both fired, then this new monitor would also fire
implying that there was a simple causality that could be
captured. It is worth noting that due to the type of mon-
itors and when they are evaluated, this type of “super
monitor” could contain even more complex interactions.
In other words, joint occurrence of these two monitors
provides stronger evidence of the fault than if one con-
siders the effect of the two monitors individually. For
example, in the original structure that showed a possi-
ble relationship between monitors in flight N and flight
N+1, the causality might cause this new monitor to fire
only when the two HI involved fire with that explicit tim-
ing. This would help capture that both HI are useful in
indicting the failure mode, but that they also have a cycle
which is useful to capture.

To show that these two new monitors as well as the
updated thresholds are useful, traces were made of these
50 flights, including 10 nominal flights after the prob-
lem was caught and corrected. The first is only a record-
ing of the original monitors. The second trace includes
the new material as well the updated information. Run
separately, they can tell us if the reasoner finds the fault
sooner in the trace and indicates that maintenance is
more than likely needed for the aircraft.

The results from the reasoner simulations are shown
in Figures 7 and 8. The traces illustrate the reasoner’s
conclusions at different points in time as it gets closer to
the incident. These points indicate how far away before
the adverse event the reasoner would be able to indicate
that there is a problem and preventive maintenance could
be applied. With the original reference model the rea-
soner was unable to disambiguate between three poten-
tial fault candidates at any point leading up to the event.
All of the fault candidate hypotheses were waiting for
more evidence to support the isolation task. This out-
come would be the same as the situation from which the
data was extracted, where the engine would suffer from
an unfortunate shutdown and in-flight emergency. Fig-
ure 8 describes the trace of the reasoner using the new
reference model. Using the updated thresholds and the
two new monitors suggested by the data mining algo-
rithms brought a correct isolation of the fault as a fuel
HMA problem. In this case, the reasoner originally hy-
pothesized five fault conditions: four of these were at the
faulty engine and one was at the vehicle level. As further
monitor information became available, fuel metering re-
mained the only plausible candidate, which means that
the reasoner was able to disambiguate. That this isola-
tion by the reasoner occurred 30 flights before the inci-
dent is significant. Not only does the aircraft capture this
problem, but with enough time to give the maintenance
crews time to fix the problem before an emergency has
to occur.

This experiment provides encouraging results in the
area of model improvement through data mining. It indi-
cates that it may be possible to uncover new information
about the relationship between components on a vehi-
cle and how they can be harnessed to increase diagnostic
reasoning. Not only can it help isolate faults, but also
potentially catch them earlier in the cycle. These three
experiments provide a general direction to assisting a do-
main expert in improving their work, and giving them
access to new or missing information.

8. CONCLUSIONS AND FUTURE WORK
The overall results the single case study conducted on the
data indicate positive results and show the promise of the
methodology and process we have been developing. To
further validate our work, we have identified a number
of directions and tasks we need to pursue as we move
forward in this project.

• Validate the approach and classifier structures gen-
erated by looking at additional engine data sets
from data that report the same and related adverse
events. To establish the robustness of our work, it is
important to extend our analysis to looking at mul-
tiple occurrences of the same adverse event, and
comparing the thresholds, relations, and monitor
structures generated by the extended data analysis.

• Need to extend the analysis beyond single systems
and subsystems. A rich source of information about
fault effects involves looking at the interactions be-
tween subsystems, especially after fault occurrence.
Of particular interest is looking at cascades of mon-
itors and cascades of faults. In this framework,
studying the response of the avionics systems un-
der different fault conditions would be very useful.

10

Annual Conference of the Prognostics and Health Management Society, 2011

Figure 7: Trace of the Reasoner on the Original Reference Model

Figure 8: Trace of the Reasoner with the improved Reference Model

11

Annual Conference of the Prognostics and Health Management Society, 2011

• Similarly, use data mining techniques to extract
causal relations between avionics and other subsys-
tem reports, as well as correlating the avionics and
engine reports to adverse vehicle events, such as the
in-flight engine shutdown and bird strikes would be
very useful.

ACKNOWLEDGMENTS
The Honeywell and Vanderbilt researchers were partially
supported by the National Aeronautics and Space Ad-
ministration under contract NNL09AA08B. We would
like to acknowledge the support from Eric Cooper from
NASA; Joel Bock and Onder Uluyol at Honeywell for
help with parsing and decoding the aircraft raw data.

REFERENCES
Chickering, D. M., Heckerman, D., & Meek, C. (1997).

A Bayesian approach to learning Bayesian net-
works with local structure. In In Proceedings of
Thirteenth Conference on Uncertainty in Artificial
Intelligence. Morgan Kaufmann.

Cohen, I., Goldszmidt, M., Kelly, T., Symons, J., &
Chase, J. S. (2004). Correlating instrumentation
data to system states: a building block for auto-
mated diagnosis and control. In Proceedings of
the 6th conference on Symposium on Opearting
Systems Design & Implementation - Volume 6 (pp.
16–16). Berkeley, CA, USA: USENIX Associa-
tion.

Friedman, N., Geiger, D., & Goldszmidt, M. (1997).
Bayesian Network Classifiers. Machine Learning,
29, 131–163.

Hall, M., Eibe, F., Holmes, B., Geoffrey amd Pfahringer,
Reutemann, P., & Witten, I. H. (2009). The
WEKA Data Mining Software: An Update.
SIGKDD Explorations, 11(1), pp. 10-18.

Kruskal, J., Joseph B. (1956). On the Shortest Span-
ning Subtree of a Graph and the Traveling Sales-
man Problem. Proceedings of the American Math-
ematical Society, 7(1), pp. 48-50.

Murphy, K. (2011). Bayesian Net Tool-
Box @ONLINE. Available from
http://code.google.com/p/bnt/

Schwarz, G. (1978). Estimating the Dimension of a
Model,. Annals of Statistics, 6.

Spitzer, C. (2007). Honeywell Primus Epic Aircraft Di-
agnostic and Maintenance System. Digital Avion-
ics Handbook(2), pp. 22-23.

12

