Using Tree Augmented Naive Bayesian Classifiers to Improve
Engine Fault Models

Daniel L.C. Mack
EECS Dept.
Vanderbilt University
Nashville, TN 37212

Gautam Biswas
EECS Dept.
Vanderbilt University
Nashville, TN 37212

Abstract

Online fault diagnosis is critical for detecting
the onset and hence the mitigation of adverse
events that arise in complex systems such as
aircraft and industrial processes. A typical
fault diagnosis system consists of a reference
model that provides a mathematical repre-
sentation for various diagnostic monitors that
provide partial evidence towards active fail-
ure modes and a reasoning algorithm that
uses a set-covering scheme to establish fault
candidates and their rankings. However, this
approach often suffers from incompleteness
in the reference models and simplifying as-
sumptions made by the reasoning algorithms.
Incompleteness in such models take several
forms, such as absence of evidence, errors
and incompleteness in the mapping between
evidence and failure modes, while inaccura-
cies in the reasoning algorithm arise from
simplifying noise models and independence
assumptions. In this paper, we describe a
a Tree Augmented Naive Bayesian Classifier
(TAN) approach to systematically extend a
reference model using data from a system op-
erating with and without faults. We compare
the performance of the TAN models against
the expert-supplied Naive Bayes models us-
ing data generated by simulation of an air-
craft engine, and demonstrate that the TAN
improves classification accuracy by finding
new causal links among the system monitors.

1 Introduction

Aircraft are complex systems containing several in-
teracting components and subsystems such as propul-
sion, electrical, flight management, avionics, bleed etc.
Smooth operations of these components are essential
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to maintain aviation safety. However, any operating
system degrades over time and aircraft components
are no exceptions. Monitoring the system online for
detecting the onset of unfavorable conditions and on-
set of intrinsic faults is essential for increasing aviation
safety.

The current state of online fault diagnosis is focused
on installing a variety of sensors onboard an aircraft
along with a reasoning software to automatically in-
terpret the evidence generated by them to access the
presence of faults. One such state of the art system
is the Aircraft Diagnostic and Maintenance System
(ADMS) (Spitzer, 2007) that is used on the Boeing
B777. The ADMS uses a fault propagation system ref-
erence model that captures the interactions between
aircraft components under various operating modes.
This expert-derived model is called the system refer-
ence model. Generation of this reference model is a
manual process and often the most tedious step in the
practical development and deployment of an ADMS.

Many of the shortcomings of the ADMS can be at-
tributed to incomplete and incorrect information in
the system reference model. As the engineering teams
acquire additional knowledge from an operating fleet,
these translate as expert heuristics rather than a sys-
tematic upgrade to the reference model that was gen-
erated at design time. In other words, a gap exists for
systematic upgrades and increments to the reference
model as vast amount of operational data is collected
by operating airlines. Closing this gap using advances
in data mining is the focus of this paper. In this paper
we describe a specific data mining approach for aug-
menting an existing aircraft engine reference model as
an alternative to ad hoc approaches.

Statistical analysis and designing classifier for discov-
ering knowledge from real-world data is extensively
studied. For example, Witten (Witten & Frank, 1999)
describe several data mining approaches for produc-
ing black box models. Unfortunately, such models are
extremely difficult to verify making them almost im-



possible to certify for airworthiness. Further, the lack
of transparency in these models make it difficult to
append this new knowledge to existing ADMS refer-
ence models. Hence for practical success, these data
mining approaches have to “build upon” existing ref-
erence model structures rather than create something
new and incur considerable engineering overhead cost.

It is this engineered approach to data mining that
makes our approach somewhat unique. In other words,
the data mining does not start from a clean sheet of
paper, but from an existing ADMS reference model
structure. In section 2, we describe a typical refer-
ence model structure along with the reasoning algo-
rithm (called the W-algorithm). Next, we systemati-
cally enumerate the missing or partially correct infor-
mation in this state of the art reference model. These
gaps that formalize the data mining problem is de-
scribed in section 3. Then we discusses the use of
Tree-Augmented Bayesian Networks (TANSs) as a data
driven modeling structure that for diagnosis with ca-
sual probabilistic models in section 4. The data min-
ing approach is illustrated using data from a high fi-
delity simulator. Section 5 discusses the CMAPS-S
simulator and the data selection task for our exper-
iments. Section 6 describes the experimental results
using the CMAPS-S data set, and a comparison of a
naive Bayesian model that replicates a reference model
against a model derived using the TAN classifier learn-
ing algorithm. Metrics are defined for evaluating clas-
sifier performance, and a number of different exper-
iments are run to examine different stages of flight.
Section 7 presents a summary of our approach, and
outlines our directions for future work for diagnostic
and prognostic reasoning using the data mining algo-
rithms.

2 Background on Reference Models

Model-based strategies for diagnosing large, complex,
real-world systems rely on domain experts to craft
the reference models used for monitoring and isolating
faults. The complexity of the system makes it almost
impossible to create complete physics-based models
with reasonable resources; a more pragmatic solution
is to rely on expert-generated cause-effect models. In
simple terms, the reference model of the system be-
ing monitored can be represented as a bipartite graph
consisting of two types of nodes: failure modes and
evidence. The set F' defines all distinct failure modes
defined or enumerated for the system under consider-
ation. A failure mode fm; € F may be occurring or
not occurring in the system. This is defined as the
state of the failure mode. In our model, we allow only
binary (occurring or not-occurring) states for the fail-
ure mode. We use the following shorthand notations

regarding these assertions.

fm; = 0 &The failure mode is not occurring

fm; =1 &The failure mode is occurring

Every failure mode has a priori probability of oc-
curring in the system. This probability is given by
P(fm; =1). A failure mode fmy, can occur (or not oc-
cur) independently of another failure mode fm; occur-
ring. That is, P(fmy = 1|fm; =1) = P(fm, =1).

To isolate and disambiguate the failure modes, the
model also defines an entity called “evidence”. The
jth evidence is denoted by e; and the set E denotes
all distinct monitors defined for the system under con-
sideration. The diagnostic monitor associated with the
ith evidence can either indict or exonerate a subset of
failure modes called its ambiguity group. The monitor
m; can take three mutually exclusive values allowing
a monitor to express indicting or exonerating or un-
known support for the failure modes in its ambiguity
group. The notations are described in equation (2).

m; = 0 & Exonerating evidence
m,; = 1 < Indicting evidence (2)

m; = —1 < Unknown evidence

Ideally we want a monitor associated with evidence e;
to fire only when the failure modes in its ambiguity
group are occurring. Given the fact that the i’th fail-
ure mode is occurring in the system, d;; denotes the
probability that there will be a monitor providing an
indicting evidence under this condition.

dji < P(m; = 1|fm; = 1), (3)

d;; is called the detection probability of failure mode
monitor fm; with respect to the ith evidence. A mon-
itor may fire when there is no failure mode present in
the system. False alarm probability is the probability
that an indicting monitor is present when there are no
failure modes occurring in the system. That is,

€; < P(mz = 1|fmj = O,mej € F) (4)

In summary, a reference model describes the relation
between failure modes and monitors. The reference
model is a 6-tuple defined as: [E, F, D, Pr,e] where:
FE is evidence set, F' is failure mode set, D is detec-
tion probabilities, Pr is a priori probability of failure
modes, € is false alarm rate for monitors.

Figure 1 illustrates an example reference model graph-
ically, with fault modes (hypotheses) as nodes on the
right, and diagnostic monitors (DM) on the left.Each
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Figure 1: Example Reference Model

link would contain a detection probability, i.e., condi-
tional probability P(m; = 1|fm,; = 1). In addition,
fault nodes on the right contain the a priori probabil-
ity of fault occurrence, i.e., P(fm;). Probabilities on
the DM nodes indicate the likelihood that a particular
monitor would indicate a fault in a nominal system.
Bayesian methods are employed to combine the evi-
dence provided by multiple monitors to estimate the
most likely fault candidates.

The reasoner algorithm (called the W-algorithm) com-
bines an abductive reasoning algorithm with a forward
propagation algorithm to generate and rank possible
failure modes. This algorithm operates in two steps:
(1) Abductive reasoning step: Associated with each
DM is an ambiguity set, AG = {fmq, fma,--- fmy}.
This step assumes that the firing of the DM implies
at least one of the faults in the ambiguity set has oc-
curred; and (2) Forward reasoning step: For each fm;
belonging to AG, we extract all of the other DMs that
support fm;. We call this the list of supporting DMs,
or the monitors of interest, i.e., S — DM, for fm,.
As additional monitors fire, AG reduces in size, and
ideally, to a single element. Additional details about
the reasoning algorithm is described in (Honeywell,
2010). The reasoning algorithm generates multiple
single fault hypothesis, each hypothesis asserting the
occurrence of exactly one failure mode in the sys-
tem. The basic probability update rules assume in-
dependence of monitor firing events. In other words,
P(mj,mg|fm;) = P(mj|fm;) P(my|fm;) for all mon-
itors m; and my. The independence assumption im-
plies that the reasoning algorithm treats the reference

model as a Naive Bayes classifier. The direct corre-
spondence between the reference model for diagnosis
and the simple Bayesian structure provides opportuni-
ties to use a class of generative Bayesian model algo-
rithms to build these model structures from data and
enhance the existing structures produced by a domain
expert. We discuss the problem statement next.

However, in cases of incompleteness or errors in the
reference models, data mining approaches that use his-
torical data from previous aircraft flights can be used
to improve the model accuracy and precision. It is im-
portant that the data used by the learning algorithms
include both nominal and faulty flights to extract the
correct relations between the DMs and fault modes.
We discuss this in greater detail in a subsequent sec-
tion.

3 The Data mining problem

The reasoning algorithm nay not not reduce the ambi-
guity group to a single fault element. For example, all
of the evidence (i.e., DMs) required to isolate the single
fault may not fire, leaving the size of the ambiguity set
to be greater than 1. In this case, the reference model
is incomplete. This gap can be addressed by employing
heuristics rules or systematically discovering new diag-
nostic monitors from vast amount of historical data.

The second source of error arises from the “indepen-
dence assumption”. This assumption of independence
may lead to certain hypotheses being assigned higher
likelihood than the evidence truly implies. This as-



sumption is made primarily because, causality (or cor-
relation) between evidence in the system is extremely
difficult to derive while the system is being designed
and assembled. Such knowledge can only derived from
an operating fleet. unknown but assumed to be either
irrelevant or insignificant.

As implied above, the reference model when viewed as
a single fault diagnoser can be interpreted as a Noisy-
OR classifier, which is a simplified form of a standard
Bayesian Network. A number of Machine Learning
techniques for building Bayesian networks from data
have been reported in the literature (Friedman, Geiger,
& Goldszmidt, 1997) We have studied a number of
these approaches in the framework of diagnostic and
prognostic reasoning. Some important considerations
have been the notion of independence among the mon-
itors that support the diagnostic reasoning, and the
incorporation of temporal relations through monitor
variables as well as the causal structure implied by the
reference model. We have also considered state-based
hidden Markov Models (HMMs) and even more gen-
eral Dynamic Bayesian Network (DBN) formulations
to capture the dynamics of aircraft behavior and ef-
fects of faults on system behavior and performance.
However, our initial set of choices has been governed
by two important factors:

1. The data mining algorithms should be designed
to provide information that supplements existing
expert-generated reference models, as opposed to
providing different formulations and different rea-
soner structures. It is very important that the ex-
perts be able to interpret the results of the data
mining algorithms, and characterize them as:

(a) new relations between monitors and fault
hypotheses that will improve the reference
model;

(b) additional monitors (both simple and ad-
vanced) that help differentiate and provide
support for specific diagnostic hypotheses;
and

(c) refinements to the conditional probability
values between hypotheses and monitors.

2. The computational complexity of the data mining
algorithms should be manageable, so that they
can be used as exploratory analysis tools by the
domain experts. We envision a successive refine-
ment process, where the expert request a sequence
of experimental runs, each built from their obser-
vations and interpretations from previous results
generated by the algorithms, in a way that they
can interpret the causal relations between faults
and monitors, and discover the dependence among

the monitors for different fault situations. The ex-
pert may also consider different analysis scenarios
to estimate methods for increasing the accuracy
(while reducing false positives) in the diagnostic
reasoner.

Having established this framework, we stay within the
Bayes net paradigm, and add additional criterion that
the models derived by applying the data mining algo-
rithms have similar structure and correspondence with
the initial expert-supplied reference models.

4 Data Mining with Tree Augmented
Naive Bayesian Networks

The choice of the data driven techniques to apply to a
particular class of problems is very much a function of
the nature of the data and the problem(s) to be solved
using the data. For example, using data we can sys-
tematically test and relax the independence assump-
tions employed in the reference model, especially if it
is useful for diagnosis. There are several interesting
alternatives, but one that fits well with our reference
model structure is the Tree Augmented Naive Bayesian
(TAN) Method (Friedman et al., 1997) . The TAN
structure is a simple extension of the Naive Bayes net-
work. Like Naive Bayes, the Root node, corresponding
to one or more fault modes, is casually connected to
every evidence (monitor) node. In addition, the TAN
structure relaxes the assumption of independence be-
tween the evidence nodes, and allows most evidence
nodes to have a second parent, which can be a related
evidence node. This maintains the directed acyclic
graph requirements and produces a more nuanced tree
that captures relationships among the monitors. Gen-
eration of this structure is not as computationally ex-
pensive as a general Bayesian network.

An example TAN structure is illustrated in Figure 2.
The root node, labeled class, is the fault hypothesis
under consideration. The other nodes represent sup-
porting evidence for the particular fault hypotheses.
In this particular structure, Rolltime, associated with
the shutdown phase of the aircraft is the root obser-
vational node. Dependencies among some of the mon-
itors, e.g., Rolltime and dipEGTC, are captured as
additional causal links in the TAN structure.

The TAN Structure can be generated in several dif-
ferent ways that includes (1) a greedy search with
the constraint that illegal edges (i.e., a node hav-
ing more than one parent from the evidence nodes)
are disallowed(Cohen, Goldszmidt, Kelly, Symons, &
Chase, 2004); and (2) a Minimum Weighted Spanning
Tree (MWST) approach that builds a minimum span-
ning tree to capture the dependencies among monitors,



Figure 2: Example TAN Structure

and then connects the Root (fault mode) to all of the
monitor nodes (Friedman et al., 1997). In either case,
a decision has to be made about the monitor node to
use as the observational root node in the derived tree
structure. The derived TAN structure is static, i.e., it
does not include temporal information explicitly.

A standard algorithm (e.g., Kruskal’s
algorithm(Kruskal, 1956)) is applied to generate
the MWST. The values that are used as the edge
weights all utilize a form of a log-likelihood, such as
a Bayesian value (Chickering, Heckerman, & Meek,
1997) or a Bayesian Information Criterion (BIC)
(Schwarz, 1978). If the values are discrete (either
naturally or through a discretization process), the
use of the Bayesian likelihood metric is preferred.
This is a simple metric that can quickly calculate the
likelihood that a variable is dependent on another. If
the values are continuous, then the BIC is better since
it deals with continuous distributions (like a Gaussian
Normal) more easily. The values are calculated by
every pair of evidence nodes and the order of the
nodes matter, since the graphs are directed. This
is typically stored in a matrix, and then Kruskal’s
algorithm is used to construct the tree using a simple
search algorithm.

The MWST version of this algorithm is implemented
in the data mining toolkit called Weka (Hall, Eibe,
Holmes, Reutemann, & Witten, 2009) It does not han-
dle continuous features, and instead uses a discretiza-
tion algorithm which looks to bin each of the features
into sets that best discriminate among classes. This
produces better classifiers, but it may create very fine
splits for features that results in excessive binning(thus
building very large conditional probability tables).

Sensor Notes
Altitude real number; unit is
feet

Mach Number Real number, the

unit is Mach

Throttle Angle Real number, mea-

sured in degrees

Fuel Flow Real number, mea-
sure in percent

Stall Margin of | CI

HPC

Stall Margin of | CI

LPC

Stall Margin of Fan | CI

Temperature of | Real number, mea-
High Pressure | sured in Centigrade

Turbine Outlet

Real number, mea-
sured in centigrade

Temperature of the
Fan Inlet

Real number, mea-
sured in centigrade

Temperature of the
Low Pressure Tur-
bine Outlet

Pressure of the Fan
Inlet
Physical Fan Speed

Real number, mea-
sured in PSI

Real number, mea-
sured in RPM

Real number, mea-
sured in RPM

Physical Core

Speed

Table 1: Sensor values and Monitors (Conditional In-
dicators) for the CMAPS-S Engine Data

5 The CMPAS-S Data

The CMAPS-S data set is generated from a simulator
developed at NASA’s Glenn Space Center (Frederick,
DeCastro, & Litt, 2007). The engine simulator takes
into account the wear and tear on a turbine engine
over multiple flights, and it can produce data for a
number of sensors for climb, cruise, and descent modes
of operation. The simulator parameters can be set to
run in nominal and faulty modes of operation.

As a first step, we select appropriate sensor measure-
ments and transform them into a sequence of monitor
values for the data mining task. Since the reference
model structure and the reasoner do not directly in-
clude temporal information, the data is separated into
the different modes of operation. For this study all
of the data for fault analysis was extracted from the
cruise mode of operation. In this mode, most sen-
sor values remain at about the same level, except for
the measurement noise. Therefore, for this study each
flight was represented by a vector of monitor values,
and the entire data was made up of n data points



corresponding to n flights, and each flight vector in-
cluded a number of condition indicators (CIs). Table
1 shows the different features in the CMAPS-S data
set. Some features are marked as a “condition indi-
cator” (CI), which is a term for complex features that
can be used to indicate when an engine is experienc-
ing abnormal behavior. A threshold on these values
would produce the health indicator (also called a di-
agnostic monitor, DM) that a reference model would
relate to a fault mode. These features are used in lieu
of a reference model since this data didn’t come with
one explicitly. The rest of the features are not the
complete set from the data, but represent the sensors
and thus features that would be most likely available
in the data of other complex systems of this nature.
These would be the features initially added to see if
the algorithms could incorporate them successfully. A
condition indicator is either a single sensor measure-
ment set, or a combination of multiple sensor values.

The CMAPS-S data was generated in a way that the
fault(s) and their time of introduction was known, so
it was easy to assign the nominal and faulty labels for
each data stream. The CMAP-S data models three
faults: (1) a fan fault (Fan), (2) a High Pressure Com-
pressor fault (HPC), and (3) a High Pressure Turbine
fault (HPT). The data with its many faults allows for
several possible models. One could construct different
models for the three different faults with each model
differentiating between the fault in question and a
nominal mode. It could also be treated as a multi class
learning problem, and build one model that attempts
to distinguish between different faults and nominal op-
erations. This multi-fault scenario is useful, as the
model built may produce insight on how to differenti-
ate between several ambiguous faults as they appear
in the reference model. These different models are all
worth building and the CMAPS-S data makes it eas-
ier to look at these combinations than real data that
may not have as much faulty data that covers multiple
faults.

6 Experiments

To evaluate the ability of our data mining techniques
to improve the reference models, we have conducted
a set of experiments using the simulated data from
the CMAPS-S engine system to establish whether
the TAN-based model produces a better diagnostic
classifier than a reference model that is implemented
as Naive Bayesian Classifiers(our experience indicates
that most expert models are in the form of a Naive
Bayes Classifier). Our experiments compare the per-
formance results of the Naive Bayes versus the TAN
models.

In the CMAPS-S data, there are several features that
represent advanced sensors. These may not be avail-
able in other datasets for a variety of reasons (i.e., sen-
sors may not exist on systems from with these datasets
were created; the ability to build complex features may
be limited). The first experiment uses the feature set
defined in the baseline reference model, and extracts
a classifier structure by running our machine learning
algorithms. The next experiment adds additional sen-
sors that are not conditional indicators, to see if using
these sensors can improve diagnostic accuracy while
reducing false alarms.

A system study of the performance of the algorithms
requires running of n-Fold Cross Validation experi-
ments. Dividing the data into n equally sized and dis-
tinct sets of samples, each with the balance of classes
maintained like the original set allows for the creation
of n — 1 training sets with the last set being held out
as the test set. This can be done n times, and the
metrics values generated are then averaged over each
of the n runs. This experimental style helps test the
robustness of the classifier and keeps the metrics from
being overly optimistic or pessimistic depending on the
random construction of one hold out set. The experi-
ments are broken down by the different types of fault
in the CMAPS-S, as well as the multi fault case, where
one model is built to distinguish between multi fault
modes as well as the nominal case.

6.1 Experimental Results

The data generated for the experimental study in-
cluded the three faults discussed before, and the anal-
ysis was conducted in the cruise mode with the aircraft
flying at an altitude of 35,000 feet. The data mining
algorithms were run to derive individual models for the
three single fault modes, as well as a combined model
of all the three faults. Tables 2 and 3, summarize our
experimental results in terms of the accuracy metrics,
i.e., overall accuracy (Acc), false positives (FP), and
false negatives (FN).

The Naive Bayes model with only the CIs is consid-
ered representative of a reference model for analysis
of core engine anomalies. A TAN structure includ-
ing new causal relations results in a better reference
model. The results in Tables 2 and 3 demonstrate the
higher accuracy results for the TAN Structure for the
FAN Fault and the multi-fault classifier. Their supe-
rior performance shows that even with a small number
of features(3), introduction of two new causal links,
the results improved considerably(99.4% to 67.9% for
the Fan and 97.4% to 82.1% for mutli-fault). Figure 3
shows the representative TAN used in the multi-fault
scenario. The CI corresponding to stall margin for the
Low Pressure Compressor provided the best discrim-



Fan HPC HPT All THree
Acc \ FP \ FN | Acc \ FP \ FN | Acc \ FP \ FN | Acc \ FP \ FN
Naive Bayes Network | 67.9 | 15.4 | 36.7 | 71.4 0 35.3 1942 | 0 | 93| 821 | 155 | 19.6
TAN 99.4 | 0.4 | 0.7 | 80.8 | 36.7 0 94.7 1 89| 29 | 974 | 1.1 | 3.8

Table 2: Cruise Mode: Model with Only Conditional Indicators

Fan HPC HPT All THree
Acc \ FP \ FN | Acc \ FP \ FN | Acc \ FP \ FN | Acc \ FP \ FN
Naive Bayes Network | 68.8 | 12.5 | 49.5 | 72.9 0 56.7 1 93.8 | 3.6 | 9.9 | 849 | 1.1 | 23.2
TAN 99.8 0 0.4 | 87.96 | 23.0 0 96.6 | 5.4 | 0.5 | 98.0 | 0.8 | 0.7

Table 3: Cruise Model: Model with Conditional Indicators + Sensor Measurements

inating evidence between different faults when only
conditioned by the class variable. For the single fault
classifiers, the Fan and HPC TANSs outperformed the
Naive Bayes, but the HPT classifier provided minimal
improvement. The HPT Classifier seems to require a
simple classifier and both models achieved over 90%
accuracy. The HPC fault however with only fault in-
dicators was the lowest performing set. Although the
TAN did better by over 8%, this would indicate that
the reference model for the engine may not be able to
catch this fault, particularly from cruise data. This
makes it an interesting case for further analysis.

@
@

Figure 3: TAN Model for Multi-Fault Scenario with
Only Conditional Indicators

For the second experiments where we consider addi-
tional sensors, there is an improvement in the accu-
racy numbers for all of the TAN models. This is high-
lighted by the HPC fault scenario, which was problem-
atic in experiment 1, but the accuracy increased sig-
nificantly. This improved the False Positive rate, while
not increasing the corresponding false negative metric.
This change made it significantly better than its Naive
Bayesian counterpart as well as the over both models
in the first experiment. This improvement without a
negative cost to the error rates is true for the TAN
models across all scenarios. When compared to the
Naive Bayes models, the TANs improve not just with
respect to the Naive Bayes learned with the same fea-

tures, but also with the original models themselves.
This is magnified by the additional information hav-
ing a small negative impact in a few cases of the Naive
Bayes models. Fault detection and isolation is already
efficient with only the CIs available to the Naive Bayes
classifier. This new information provided an advantage
to the TANs where additional causal relations and in-
formation improve diagnostic accuracy.

Looking at the HPC scenario with the new informa-
tion, Figure 4 displays the model structure generated
in that scenario. In this case, the HPC accuracy im-
proved with the TAN to 88% compared to the original
HPC TAN at 80.8%, the Naive Bayes Model using the
additional sensors at 72.9%, and the original Naive
Bayes model at 71.4%. The accuracy results clearly
indicate: (1) additional sensor information increases
diagnostic accuracy and (2) Switching from a Naive
Bayes to a TAN model improves diagnostic accuracy.

This improvement can be examined visually in 4,
where in place of the three Cls, the Mach Number
sensor becomes the observational root node. The new
causal structure, captured in Figure 4 shows the Fuel
Flow sensor as a parent to two of the CIs. Network
structures such as the one for the HPC fault explic-
itly illustrate how additional sensor information can
be included to enhance the accuracy of the reference
model. In general, the new causal relations suggested
can be examined by a domain expert who in turn can
construct new and improved indicators to use in a ref-
erence model. The results generated by these data
driven models can provide numbers on how the new in-
formation can improve the accuracy of the diagnoser,
and how it may impact the error rates.

7 Conclusions and Future Work

The results on experiments conducted over the
CMAPS-S data illustrate the promise of the method-
ology and process we have been developing. To fur-
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Figure 4: TAN Model for HPC Scenario with Conditional Indicators and Extra Sensors

ther validate our work, we have identified a number
of directions and tasks we need to pursue as we move
forward in this project.

e Using a Naive Bayes Classifier is an approxima-
tion of a hand built reference model. We would
like to construct a model with a domain expert,
implement a simple reasoner and test against the
data driven models our data mining algorithms
produce. Then we compare the new structure gen-
erated to enhance the existing reference model by
adding new DMs.

e Simulation systems, such as CMAPS-S study par-
ticular systems, like the core engine functions
in greater detail than any information that can
be derived from sensors and monitors in current
aircraft configurations. We are looking to de-
velop methods by which detailed simulation data
may be combined with actual aircraft flight data
to carry on extensive analyses of diagnostic and
prognostic events and their propagation through
the aircraft system.
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