A “closed-loop” approach for complexity maps: principle and applications

Erwan Salaün, Adan Vela, Eric Feron, John-Paul Clarke, Senay Solak†

Georgia Institute of Technology, Atlanta GA
†University of Massachusetts, Amherst MA

INFORMS 2009, San Diego
In many enroute regions, air traffic is expected to exceed current capacity limits, as defined by controllers.
In many enroute regions, air traffic is expected to exceed current capacity limits, as defined by controllers.

Implications:

- Aircraft may be subject to more conflict avoidance maneuvers
- Requires development of (semi-) automated conflict resolution
- New traffic patterns and new routes are necessary
In many enroute regions, air traffic is expected to exceed current capacity limits, as defined by controllers.

Implications:

- Aircraft may be subject to more conflict avoidance maneuvers
- Requires development of (semi-) automated conflict resolution
- New traffic patterns and new routes are necessary

⇒ create a complexity map support tool for air traffic manager
Requirements for complexity maps for air traffic management:

- Provide a realistic image of the current and future airspace health
- Be an “easy-to-use” tool
Introduction

Requirements for complexity maps for air traffic management:

- Provide a realistic image of the current and future airspace health
- Be an “easy-to-use” tool

⇒ Our approach:
Requirements for complexity maps for air traffic management:

- Provide a realistic image of the current and future airspace health
- Be an “easy-to-use” tool

⇒ Our approach:
Previous Works on Complexity Maps

Significant volume of research related to estimating air traffic complexity:

- [I.V. Laudeman et al., B. Sridhar et al.]: “dynamic density”
- [D. Delahaye et al.]: Lyapunov exponents map
- [M. Prandini et al.]: probability of presence
- [R. Irvine et al., H.A.P. Blom et al.]: probability of conflict
Previous Works on Complexity Maps

Significant volume of research related to estimating air traffic complexity:

- [I.V. Laudeman et al., B. Sridhar et al.]: “dynamic density”
- [D. Delahaye et al.]: Lyapunov exponents map
- [M. Prandini et al.]: probability of presence
- [R. Irvine et al., H.A.P. Blom et al.]: **probability of conflict**

Common approach: aircraft position/intent is “known”, no conflict avoidance, short-term time horizon
“Open-loop” vs. “Closed-loop” Approaches

- Common “open-loop” approach

Geometrical configuration → Model and analytical method → Probability of conflict
Aircraft Position / Intent →

⇒ the system runs in closed-loop!
⇒ desired input ≡ flows
⇒ influence of conflict resolution → input ≡ flows
⇒ Is it possible to model? “closed-loop” vs. “open-loop”?

E. Salaün
A “Closed-loop” Approach for Complexity Maps
“Open-loop” vs. “Closed-loop” Approaches

- Common “open-loop” approach

[Diagram]

Geometrical configuration → Aircraft Position/Intent → Model and analytical method → Probability of conflict

But in reality

⇒ the system runs in closed-loop!
⇒ desired input ≡ flows

New “closed-loop” approach
⇒ influence of conflict resolution
⇒ input ≡ flows
⇒ Is it possible to model?
⇒ “closed-loop” vs. “open-loop”?

E. Salaün
A “Closed-loop” Approach for Complexity Maps
Common “open-loop” approach

But in reality
⇒ the system runs in closed-loop!
⇒ desired input ≡ flows
“Open-loop” vs. “Closed-loop” Approaches

- Common “open-loop” approach

 Geometrical configuration → Model and analytical method → Probability of conflict

 Aircraft Position/Intent →

 But in reality ⇒ the system runs in closed-loop!
 ⇒ desired input ≡ flows

- New “closed-loop” approach

 Geometrical configuration → Model and analytical method → Probability of conflict
 Flow characteristics

 ⇒ influence of conflict resolution
 ⇒ input ≡ flows

E. Salaün A “Closed-loop” Approach for Complexity Maps
“Open-loop” vs. “Closed-loop” Approaches

- Common “open-loop” approach

 - Geometrical configuration
 - Aircraft Position/Intent

 Model and analytical method

 Probability of conflict

 But in reality
 ⇒ the system runs in closed-loop!
 ⇒ desired input ≡ flows

- New “closed-loop” approach

 - Geometrical configuration
 - Flow characteristics

 Model and analytical method

 Probability of conflict

 Conflict avoidance algorithm

 ⇒ influence of conflict resolution
 ⇒ input ≡ flows

 ⇒ Is it possible to model?
 ⇒ “closed-loop” vs. “open-loop”?
Numerous studies focused on the conflict avoidance algorithm itself ($d_{\text{miss}} \geq d$):

- [M. Gariel et al., L. Pallottino et al.] : heading changes
- [J.-P.B. Clarke et al.] : speed & heading changes
- [Z.-H. Mao et al.] : translational shifting (offset method)
Basic Element : Pair-wise Intersection

What is the probability of non conflict $P_{NC}(AC_1^1)$?

Assumptions:
- Flows are independent
- No cross-track errors
- $v_1 = v_2 = v$
- Avoidance algorithm \equiv offset method
- $AC_i^1 \equiv$ last AC from flow i
Basic Element: Pair-wise Intersection

The ATM can choose the Encounter and Flow Configuration (E.F.C.)

- **the encounter geometrical configuration**: crossing angle, minimum miss distance
- **the flow characteristics**: the PDF of the inter-arrival distance

- Inter-arrival distance Δd_i
- PDF of the inter-arrival distance $f_{\Delta D_i}(\Delta d_i)$
Determining $P_{NC}(AC_1^1)$ With a “Closed-loop” Approach

- Aircraft AC_2^k may be subject to lateral displacement d_2^k

- t_2^k is the “age” of $AC_2^k \implies$ PDF of t_2^k is known

\[P_{NC}(AC_1^1) = P(\forall k, AC_2^k \text{ n.i.c. } AC_1^1) \approx \prod_{k=1}^{N_2} (1 - P(AC_2^k \text{ i.c. } AC_1^1)) \]

- $P(AC_2^k \text{ i.c. } AC_1^1) = P(L_n \leq s_2 d_2^k - t_2^k \leq L_p)$, where $(L_n, s_2, L_p) = f(\theta, d)$.

E. Salaün A “Closed-loop” Approach for Complexity Maps
Determining $P_{NC}(AC^1_1)$ With a “Closed-loop” Approach

Diamond Aircraft AC^k_2 may be subject to lateral displacement d_2^k

Diamond t_2^k is the “age” of $AC^k_2 \Rightarrow$ PDF of t_2^k is known

$P_{NC}(AC^1_1) = P(\forall k, AC^k_2 \text{ n.i.c. } AC^1_1)$

$\approx \prod_{k=1}^{N_2} (1 - P(AC^k_2 \text{ i.c. } AC^1_1))$

Diamond $P(AC^k_2 \text{ i.c. } AC^1_1) = P(L_n \leq s_2 d_2^k - t_2^k \leq L_p)$, where $(L_n, s_2, L_p) = f(\theta, d)$. To be determined!
This model takes into account
⇒ spatial deviation due to the avoidance maneuver
⇒ dissymmetry of the lateral deviation towards right/left
⇒ \((\alpha_i, \beta_i)\) to be determined as a function of the E.F.C.
Determining α_i, β_i as a Function of the E.F.C.

System of 4 equations as a function of the 4 parameters α_i, β_i.

\[
\begin{align*}
\alpha_1 &= f_1(E.F.C., \alpha_2, \beta_2) \\
(1 - \alpha_1)(1 - \beta_1) &= f_2(E.F.C., \alpha_2, \beta_2) \\
\alpha_2 &= f_3(E.F.C., \alpha_1, \beta_1) \\
(1 - \alpha_2)\beta_2 &= f_4(E.F.C., \alpha_1, \beta_1)
\end{align*}
\]

\Rightarrow for any E.F.C., we can determine in real time α_i, β_i.

E. Salaün A “Closed-loop” Approach for Complexity Maps
Comparison With Simulations

- Algorithm \equiv offset method
- $\theta = 90^\circ$
- $C = (0, 100) \text{ NM}$
- 500 aircraft in each flow
- $v = 450 \text{ kt}$
- $f_{\Delta D_i}(\Delta d_i) \equiv$ exponential distribution
- $\Delta d_{i}^{min} = 5 \text{ NM}$
- $\text{range}(\Delta d_{i}^{m}) = [5.5, 54.5] \text{ NM}$.
Few differences at realistic inter-arrival distances
($\Delta d_i^m \geq 35$NM)
⇒ Few differences at realistic inter-arrival distances ($\Delta d_i^m \geq 35\text{NM}$)

⇒ “Open-loop” approach: similar results
Comparison With Simulations

⇒ Very similar CDF (P_{NC}, shape, dissymmetry)
Very similar CDF (P_{NC}, shape, dissymmetry)

Validation of the model with the avoidance algorithm
Comparison With Simulations

⇒ Very similar CDF (P_{NC}, shape, dissymmetry)

⇒ Validation of the model with the avoidance algorithm

⇒ “Open-loop” approach: no spatial deviation! ⇒ insufficient for multiple intersections
Conclusions

- Validation of the “closed-loop” model
 - Inputs designed for ATM
 - Taking into account the influence of the avoidance algorithm
Conclusions

- Validation of the “closed-loop” model
 - Inputs designed for ATM
 - Taking into account the influence of the avoidance algorithm
- “Open-loop approach” is insufficient for multiple intersections → new conflicts may occur!
Conclusions

- Validation of the “closed-loop” model
 - Inputs designed for ATM
 - Taking into account the influence of the avoidance algorithm
- “Open-loop approach” is insufficient for multiple intersections → new conflicts may occur!

- Illustration with Cleveland center
Acknowledgment

Special thanks to our sponsors