A "closed-loop" approach for complexity maps: principle and applications

Erwan Salaün, Adan Vela, Eric Feron, John-Paul Clarke, Senay Solak[†]

Georgia Institute of Technology, Atlanta GA [†]University of Massachusetts, Amherst MA

INFORMS 2009, San Diego

In many enroute regions, air traffic is expected to exceed current capacity limits, as defined by controllers.

< ∃→

In many enroute regions, air traffic is expected to exceed current capacity limits, as defined by controllers.

Implications :

- Aircraft may be subject to more conflict avoidance maneuvers
- Requires development of (semi-) automated conflict resolution
- New traffic patterns and new routes are necessary

・ 回 ト ・ ヨ ト ・ ヨ ト

In many enroute regions, air traffic is expected to exceed current capacity limits, as defined by controllers.

Implications :

- Aircraft may be subject to more conflict avoidance maneuvers
- Requires development of (semi-) automated conflict resolution
- New traffic patterns and new routes are necessary

⇒ create **a complexity map support tool** for air traffic manager

ヘロト 人間 ト ヘヨト ヘヨト

Introduction

Requirements for complexity maps for air traffic management :

- Provide a realistic image of the current and future airspace health
- Be an "easy-to-use" tool

→ E > < E >

Introduction

Requirements for complexity maps for air traffic management :

- Provide a realistic image of the current and future airspace health
- Be an "easy-to-use" tool
- \Rightarrow Our approach :

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

æ

Introduction

Requirements for complexity maps for air traffic management :

- Provide a realistic image of the current and future airspace health
- Be an "easy-to-use" tool
- \Rightarrow Our approach :

< < >> < </>

★ E → ★ E →

Previous Works on Complexity Maps

Significant volume of research related to estimating air traffic complexity :

- [I.V. Laudeman et al., B. Sridhar et al.] : "dynamic density"
- [D. Delahaye et al.] : Lyapunov exponents map
- [M. Prandini et al.] : probability of presence
- [R. Irvine et al., H.A.P. Blom et al.] : probability of conflict

・ 同 ト ・ ヨ ト ・ ヨ ト …

Previous Works on Complexity Maps

Significant volume of research related to estimating air traffic complexity :

- [I.V. Laudeman et al., B. Sridhar et al.] : "dynamic density"
- [D. Delahaye et al.] : Lyapunov exponents map
- [M. Prandini et al.] : probability of presence
- [R. Irvine et al., H.A.P. Blom et al.] : probability of conflict

Common approach : aircraft position/intent is "known", no conflict avoidance, short-term time horizon

-∢ ≣ →

• Common "open-loop" approach

æ

< 🗇 ▶

• Common "open-loop" approach

But in reality

æ

• Common "open-loop" approach

But in reality \Rightarrow the system runs in closed-loop ! \Rightarrow desired input \equiv flows

→ Ξ → < Ξ →</p>

< 🗇 🕨

Common "open-loop" approach

But in reality \Rightarrow the system runs in closed-loop ! \Rightarrow desired input \equiv flows

New "closed-loop" approach

 $\begin{array}{l} \Rightarrow \text{ influence of conflict} \\ \text{resolution} \\ \Rightarrow \text{ input} \equiv \text{flows} \end{array}$

→ Ξ → < Ξ →</p>

Common "open-loop" approach

But in reality \Rightarrow the system runs in closed-loop ! \Rightarrow desired input \equiv flows

New "closed-loop" approach

 \Rightarrow influence of conflict resolution

$$\Rightarrow$$
 input \equiv flows

 \Rightarrow Is it possible to model?

 \Rightarrow "closed-loop" vs. "open-loop "?

ヘロト ヘワト ヘビト ヘビト

Automated Conflict Resolution

Numerous studies focused on the conflict avoidance algorithm itself ($d_{miss} \ge d$) :

- [M. Gariel et al., L. Pallottino et al.] : heading changes
- [J.-P.B. Clarke et al.] : speed & heading changes
- [Z.-H. Mao et al.] : translational shifting (offset method)

通 とくほ とくほ とう

Basic Element : Pair-wise Intersection

What is the probability of non conflict $P_{NC}(AC_1^1)$?

Assumptions :

- Flows are independent
- No cross-track errors

•
$$v_1 = v_2 = v$$

• Avoidance algorithm \equiv offset method

•
$$AC_i^1 \equiv \text{last AC from flow } i$$

Basic Element : Pair-wise Intersection

The ATM can choose the Encounter and Flow Configuration (E.F.C.)

- the encounter geometrical configuration : crossing angle, minimum miss distance
- *the flow characteristics :* the PDF of the inter-arrival distance
- inter-arrival distance Δd_i

• PDF of the inter-arrival distance $f_{\Delta D_i}(\Delta d_i)$

Determining $P_{NC}(AC_1^1)$ With a "Closed-loop" Approach

 $\diamond P(AC_2^k \text{ i.e. } AC_1^1) = P(L_n \leq s_2 d_2^k - t_2^k \leq L_p), \text{ where } (L_n, s_2, L_p) = f(\theta, d).$

Determining $P_{NC}(AC_1^1)$ With a "Closed-loop" Approach

◇ $P(AC_2^k \text{ i.e. } AC_1^1) = P(L_n \le s_2 d_2^k - t_2^k \le L_p)$, where $(L_n, s_2, L_p) = f(\theta, d)$. To be determined !

Model of the PDF of the Lateral Deviation

- This model takes into account
- \Rightarrow spatial deviation due to the avoidance maneuver
- \Rightarrow dissymmetry of the lateral deviation towards right/left

 $\diamond \Rightarrow (\alpha_i, \beta_i)$ to be determined as a function of the E.F.C.

System of 4 equations as a function of the 4 parameters α_i , β_i .

$$\begin{cases} \alpha_{1} = f_{1}(E.F.C., \alpha_{2}, \beta_{2}) \\ (1 - \alpha_{1})(1 - \beta_{1}) = f_{2}(E.F.C., \alpha_{2}, \beta_{2}) \\ \alpha_{2} = f_{3}(E.F.C., \alpha_{1}, \beta_{1}) \\ (1 - \alpha_{2})\beta_{2} = f_{4}(E.F.C., \alpha_{1}, \beta_{1}) \end{cases}$$

 \Rightarrow for any E.F.C., we can determine in real time α_i, β_i .

通り くほり くほり

- Algorithm \equiv offset method
- θ = 90°
- *C* = (0, 100) NM
- 500 aircraft in each flow
- *v* = 450 kt
- *f*_{∆D_i}(∆*d*_i) ≡ exponential distribution
- $\Delta d_1^{min} = \Delta d_2^{min} = 5 \text{ NM}$
- range(Δd_i^m) = [5.5, 54.5] NM.

通 とう ほうとう ほうどう

 \Rightarrow Few differences at realistic inter-arrival distances ($\Delta d_i^m \ge 35$ NM)

 \Rightarrow Few differences at realistic inter-arrival distances ($\Delta d_i^m \ge 35$ NM)

 \Rightarrow "Open-loop" approach : similar results

 \Rightarrow Very similar CDF (P_{NC} , shape, dissymmetry)

 \Rightarrow Very similar CDF (P_{NC} , shape, dissymmetry)

 \Rightarrow Validation of the model with the avoidance algorithm

.⊒ →

 \Rightarrow Very similar CDF (P_{NC} , shape, dissymmetry)

 \Rightarrow Validation of the model with the avoidance algorithm

⇒ "Open-loop" approach : no spatial deviation !⇒ insufficient for multiple intersections

Conclusions

- Validation of the "closed-loop" model
 - Inputs designed for ATM
 - Taking into account the influence of the avoidance algorithm

・ 回 ト ・ ヨ ト ・ ヨ ト

Conclusions

- Validation of the "closed-loop" model
 - Inputs designed for ATM
 - Taking into account the influence of the avoidance algorithm
- "Open-loop approach" is insufficient for multiple intersections → new conflicts may occur !

・ 同 ト ・ ヨ ト ・ ヨ ト …

Conclusions

- Validation of the "closed-loop" model
 - Inputs designed for ATM
 - Taking into account the influence of the avoidance algorithm
- "Open-loop approach" is insufficient for multiple intersections → new conflicts may occur !
- Illustration with Cleveland center

E. Salaün A "Closed-loop

A "Closed-loop" Approach for Complexity Maps

Special thanks to our sponsors

프 🕨 🗆 프