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Abstract
This paper presents a new methodology for rapidly

generating complexity maps for various configurations
taking into account the influence of some conflict avoid-
ance algorithm at a pair-wise intersection level. The
complexity maps are based on analytical expressions,
validated through simulations, of the probability of con-
flict and the spatial distribution of aircraft. This “closed-
loop” analysis explicitly considers the role of the conflict
resolution algorithm, here the offset method. It gives
therefore a more realistic image of the current and future
health of the considered airspace as a function of the en-
counter and aircraft flows characteristics. Some results
of the usual “open-loop” approach are also validated,
while highlighting their limitations.

Introduction
Air traffic is predicted to grow worldwide in the

coming decades. In many enroute regions air traffic
is expected to exceed current capacity limits, i.e. the
maximum number of aircraft allowed in a given airspace,
as defined by controllers. To accommodate high levels
of throughput, while maintaining safety, semi-automated
and fully-automated conflict resolution algorithms will
be required as a support tool for the air traffic con-
trollers [1]. One of the principle goals of the research
in defining complexity maps is to objectively and ac-
curately determine the capacity of a given element of
an airspace (sector), since there are significant costs
associated with miscalculating airspace capacity: an
underestimated capacity leads to underutilized airspace
and unnecessary holds and rerountings, whereas an
overestimated capacity may lead to congestion delays
or safety breaches with respect to minimum aircraft
separation. This study is a first step aimed at deter-
mining the complexity of an airspace under automated
conflict resolution control. In this study, we consider
then with the airspace as a “closed-loop” system, where

the automated conflict resolution control can be seen as
the feedback loop. This method should allow air traf-
fic managers/controllers to predict in real-time airspace
complexity for a given traffic configuration (routes and
flow rates characteristics), and then could be considered
as an easy-to-use airspace health prediction tool for the
air traffic managers.

Past research on airspace complexity and auto-
mated conflict avoidance algorithms may be considered
as follows:

On the one hand, there has been a significant vol-
ume of research related to estimating air traffic com-
plexity. In [2, 3], dynamic density is defined as a
complexity metric, listing several factors that must be
taken into account to evaluate the complexity of an
airspace (e.g. the local density of aircraft, the number
of heading, altitude and speed changes). In [4, 5], an
intrinsic measure of complexity is proposed, analyzing
the nonlinear dynamical system that generates the con-
sidered traffic pattern. A sectorization of the airspace
based on the air traffic controller workload leads the
authors of [6] to generate another kind of complexity
maps. Conflict probability is certainly the complexity
measure that received the most of interest in the past
research studies. For instance, several tools are pre-
sented in [7, 8, 9, 10, 11, 12] to determine the probability
of conflict for a given traffic geometrical configuration
and flow characteristics, with and without uncertainty
on the aircraft position. However, the proposed methods
to compute these probabilities do not explicitly account
for the existence of a conflict avoidance algorithm in the
feedback loop.

On the other hand, numerous studies focused on
the conflict avoidance algorithm itself, that prevent the
minimum miss distance between two aircraft to be
less than a given distance d (typically d = 5NM). If
a conflict occurs, the considered algorithm allows the
aircraft to do only translational shiftings (known as the



“offset method”, [13, 14]), or heading changes (consid-
ering degradation in the communication, navigation and
surveillance systems [15] or not [16]), or speed changes
([17, 18, 16]).

Nevertheless, very few studies deal with both as-
pects, i.e. generating complexity maps while accounting
for the fact that the system runs in closed-loop, ie,
relies on some form of conflict resolution algorithm.
In [19, 20], an “input-output” approach is proposed that
generates complexity maps based on the control activity
required to accommodate disturbances such as the en-
trance of another aircraft into the airspace. However, the
results presented in these papers rely on extensive sim-
ulations for the current position of aircraft and remain
prohibitively time-consuming. This method is therefore
not well adapted for the air traffic managers. In this
paper, we propose to fill the gap between generating
complexity maps in “open-loop” and considering an
automated conflict resolution, as shown in Figures 1
and 2. Or in other terms, we propose to answer the
two following questions: how different is the behavior
of the “closed-loop” system from the behavior of the
“open-loop system”? Is there a way to accurately model
the influence of the conflict avoidance algorithm on the
conflict? Since this paper is only a first step to answer
these fundamental questions, we consider only a pair-
wise intersection between aircraft flows flying along two
straight lines. Further developments will extend this
approach to a more realistic airspace with N intersecting
flows.

Figure 1: “Open-loop” System Analysis

The paper is organized as follows. First, we present
the encounter modeling and the considered conflict
avoidance algorithm (the offset method). In the next
section, we present an “open-loop” analysis to rapidly
determine the probability of conflict as a function of
the encounter and flows characteristics and compare the
results with the “closed-loop” results from simulations.
Then, we propose a simplified model to capture the main
behaviors of the “closed-loop” system and validate this
model through extensive simulations. And at last, we

Figure 2: “Closed-loop” System Analysis

present our conclusions and future works.

Encounter Modeling and Conflict
Avoidance Algorithm

To model the encounter between two aircraft, as
well as the automated conflict avoidance algorithm (the
“offset method”), we use an approach similar to the
work presented in [21] and [14]. The reader is therefore
referred to [21, 14] for further justifications on the
assumptions we make in this article. We consider the
intersection between two aircraft streams: the stream 1
from West, and the stream 2 in a given circular control
surface C corresponding to the conflict management
area (see Fig. 3). All the aircraft we consider are in
the conflict area (either entering C or already inside C ).
However, to improve readability, we often do not specify
it. The two straight-line tracks intersect at the point O
with an angle θ . Prior to the conflict management area,
the aircraft fly aligned along one of the two straight-
line tracks. For i = 1,2, let ACk

i be the kth aircraft of
the flow i, where k = 1 corresponds to the last aircraft
entering the conflict area. Each flow is characterized by
the velocity vector vi of each aircraft (we assume that
all aircraft from stream 1 and stream 2 are flying at the
same speed v), and by the probability density function
f∆Ti(∆ti) of the inter-arrival time ∆ti between aircraft
from flow i.

Considering any pair of aircraft ACk
i and ACl

j, there
is a conflict if the minimum miss distance between these
two aircraft is strictly less than d (typically d = 5NM).
To avoid conflict between aircraft in the same flow
before crossing C , we assume that f∆Ti(∆ti) is such that
∆ti ≥ d

v . According to [13], aircraft ACk
i and ACl

j from



Figure 3: Encounter and Avoidance Algorithm Modeling

different flows (i 6= j) are not in conflict if and only if

− xk
i tanφ + yk

i ≥−xl
j tanφ + yl

j +
d

cosφ
(1)

−xk
i tanφ + yk

i ≤−xl
j tanφ + yl

j− d
cosφ

(2)

where φ is the angle between the relative vector vi−vj
and vi, i.e. φ = π

2 −
θ

2 . If we consider AC1
1 entering in

the conflict management area, a conflict occurs if there
is any aircraft from stream 2 located between the straight
lines Du and Dd (see Fig. 3). If a conflict occurs, only
the aircraft entering C can be subject to an avoidance
maneuver. We consider in this article the offset model
for conflict avoidance: ACk

i performs a lateral maneuver
of amplitude dk

i at the conflict management area entrance
(dk

i = 0 if there is no conflict) while its speed and its
heading remain the same before and after the position
change. In [13], it is established that the lateral deviation
of any aircraft of stream 1 or stream 2 is bounded above
by dmax, i.e.∣∣dk

i

∣∣≤ dmax, with dmax =
d

cosφ
=

d
sin θ

2

. (3)

At any given time, its position (xk
i ,y

k
i ) is then a function

of its initial position (xi0,yi0), which is the same for
all the aircraft in a given flow, its speed v, its lateral
deviation dk

i and the time tk
i between the current instant

and the instant when it entered the conflict area and did
its avoidance maneuver.

“Open-loop” Modeling of the Encounter
Behavior

In this section, we present an analytical method to
determine the probability of conflict between aircraft as
a function of the flows characteristics only, i.e. the cross-
ing angle and the inter-arrival time probability density
function (PDF) of each flow, without considering the
conflict avoidance algorithm presented in the preceding
section. This approach is then similar to previous works
such as [7, 8, 9, 10, 11], even if it is a simplified
approach. We call it an “open-loop” approach since no
controller influence is taken into account to determine
the probability of conflict. On the contrary, the “closed-
loop” approach consider the avoidance algorithm in the
feedback loop to determine this probability: this is what
happens in the real life or in simulations. The interest of
this section is to compare both approaches (as illustrated
by Figures 1 and 2).

Probability of Conflict
We consider an aircraft AC1

1 entering the conflict
management area at time t0. We want to determine the
probability that AC1

1 has no conflict with any aircraft as
a function of the geometry of the encounter (i.e. the
crossing angle) and the characteristics of the flows (i.e.
the aircraft speed v and the probability density function
of the inter-arrival time between aircraft f∆Ti(∆ti)). Let
PNC(AC1

1) be this probability of no conflict (or probabil-
ity of absence of conflict). We only detail the case of AC1

1
entering the conflict management area C , but a similar
argument would apply to AC1

2 entering C and would lead
to PNC(AC1

2).
Since the aircraft AC1

1 just entered C , its position
is (x10,y10). Many aircraft from flow 2 (and flow 1)
have already entered the conflict area, and some of them
have already left it. Indeed, there is no chance that
AC1

1 be in a conflict with an aircraft from its own flow.
Therefore, the probability density function f∆Ti(∆ti) is
such that ∆ti has a minimum value ∆tmin

i , with ∆tmin
i ≥ d

v .
Since no avoidance maneuver is allowed, PNC(AC1

1) is
then the probability that there is no aircraft from flow 2
in the segment S0

2. From now on, we use the notation
(ACk

2 i.c. AC1
1) for “ACk

2 is in conflict with AC1
1” and

(ACk
2 n.i.c. AC1

1) for “ACk
2 is not in conflict with AC1

1”.
If AC1

2 n.i.c. AC1
1 , there is no chance that ACk

2 i.c. AC1
1 ,

k ≥ 2. Only AC1
2 needs to be taken into account to



determine PNC(AC1
1). Determining PNC(AC1

1) is then
equivalent to determining P(AC1

2 n.i.c. AC1
1), or in an-

other term

PNC(AC1
1) = P(AC1

2 n.i.c. AC1
1)

= P(AC1
2 /∈ S0

2).

The “age” t1
2 of the aircraft AC1

2 is the time elapsed
between its entry in the conflict management area and
t0. Regarding AC1

2 , the probability density function of
its age t1

2 , fT 1
2
(t1

2), is given by the following expression
(see [22] for details):

fT 1
2
(t1

2) =
{

λ m
2 when 0≤ t1

2 ≤ ∆tmin
2

λ m
2 (1−F∆T2) when ∆tmin

2 ≤ t1
2 ,

(4)

where
1

λ m
2

is the mean of f∆T2(∆t2) and F∆T2 is the

distribution function of the inter-arrival time of flow 2
associated to f∆T2 .

Using the conditions on the absence of conflict (1)–
(2), the probability P(AC1

2 /∈ S0
2) can be written

P(AC1
2 /∈ S0

2)

= 1−P(−x10 tanφ + y10−
d

cosφ
≤−x1

2 tanφ + y1
2

≤−x10 tanφ + y10). (5)

The position of the aircraft AC1
2 , (x1

2,y
1
2), is a func-

tion of the encounter configuration and its age:

x1
2 = x20 + vcosθ t1

2 (6)

y1
2 = y20− vsinθ t1

2 . (7)

Replacing (6)–(7) into (5), we obtain

P(AC1
2 n.i.c. AC1

1) = 1−P(Ln ≤−t1
2 ≤ Lz), (8)

where

Ln =
(x20− x10) tanφ + y10− y20−dmax

v(cosθ tanφ + sinθ)

Lz =
(x20− x10) tanφ + y10− y20

v(cosθ tanφ + sinθ)
.

A simple geometrical analysis leads to

(x20− x10) tanφ + y10− y20 = 0.

Equation (17) can then be written as

P(AC1
2 n.i.c. AC1

1) = 1−P(Ln ≤−t1
2 ≤ 0), (9)

where

Ln =
−dmax

v(cosθ tanφ + sinθ)
.

Considering the random variable M with its associated
PDF fM(m) and two scalars a,b, we recall the PDF of
the new variable N = aM +b (see [22]):

fN(n) =
1
|a|

fM(
m−b

a
). (10)

Using (10) and (4), we can determine the probability
density function of “−t1

2 ”, f−T 1
2
(−t1

2). The probabil-
ity P(AC1

2 n.i.c. AC1
1) can then be determined using

P(AC1
2 n.i.c. AC1

1) =
∫ Lp

Ln

f−T 1
2
(−t1

2)d(−t1
2).

Knowing PNC(AC1
1) (or PNC(AC1

2)) and the flows charac-
teristics, it is easy to compute the probability of conflict
for the considered intersection I within a time frame T ,
PT

C (I).

Comparison With Simulations
We compare the probability of no conflict

PNC(AC1
1) and PNC(AC1

2) determined by the preceding
analysis (“open-loop” approach) with the probabilities
of conflict given by the simulation results considering
the automated conflict resolution presented in the mod-
eling section (“closed-loop” approach). The PDF of the
inter-arrival time is modeled as an exponential distri-
bution with a minimal value, which is a quite realistic
model (see for instance [23, 24]):

f∆Ti(∆ti)=
{

λ m
i e−λ m

i (∆ti−∆tmin
i ) when ∆ti ≥ ∆tmin

i
0 when 0≤ ∆ti < ∆tmin

i ,
(11)

i=1,2. For clarity, we deal in this results analysis with
inter-arrival distance ∆di instead of inter-arrival time ∆ti,
i.e. we consider ∆dmin

1 = v∆tmin
i and dm

i =
v

λ m
i

. We run

the simulations with the following encounter and flows
characteristics:
• θ = 90◦

• C ≡ circle(O,100NM)
• 500 aircraft in each flow
• v = 450kt
• ∆dmin

1 = ∆dmin
2 = 5NM

• range(dm
1 ) = range(dm

2 ) = [0.5,49.5]NM.



We plot the probabilities of no conflict PNC(AC1
1) and

PNC(AC1
2) from the preceding analysis and from simula-

tions on Figures 4 and 5: these probabilities are func-
tions of the mean inter-arrival distance between aircraft
from the same flow dm

i . Considering realistic values
of dm

i (dm
i ≥ 35NM), we see that both methods give

very similar results: this statement justifies the usual
“open-loop approach” developed in this section, which
does not take into account the influence of the conflict
avoidance algorithm. It also validates other works that
follow that the same kind of “open-loop” method, such
as [8, 9, 10, 11, 7]. Complexity maps can then be rapidly
generated for the considered encounter configuration
and flow characteristics : these complexity maps give the
probability of non conflict (or conflict) at the intersection
point. The same approach can easily deal with multiple
flows intersections, even in three dimensions, leading
to complexity maps of realistic airspaces (see [7] for
instance). With this approach, we can also see imme-
diately the consequences of the chosen configuration
(routes and flow rates) on the probability of conflict,
considered as a measure of the airspace complexity.
Moreover, human factors can be taken into account
quite easily with this approach. Indeed, an important
limitation when considering human air traffic controllers
is the number of conflicts that can be solved per unit
of time: time is needed to see that there is a conflict,
to choose the right maneuver, to contact the aircraft
involved in the conflict, to give them the maneuver order
and to be sure that it is well understood and followed.
The probability of conflict at the intersection I per T
minutes PT

C (I) is expressed easily as a function of the
encounter characteristics. For instance, Figures 4 and 5
directly show how increasing the flow rate increases
the probability of conflict. If necessary, the air traffic
manager can modify the flow rates or the crossing angle
to decrease the controller workload.

Nevertheless, the preceding “open-loop” approach
suffers from some limitations. First we can notice a
difference between the analytical and the simulations
results at high flow rates: the probability of conflict
determined by both methods are quite different (see
Figures 4 and 5 when the mean inter-arrival distances dm

1
and dm

2 are small). Moreover, the “open-loop” approach
does not take into account how the conflict resolution
area may affect the area surrounding the considered
intersection. Indeed, aircraft make a lateral deviation
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Figure 4: Probability of Absence of Conflict for Flow 2
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Figure 5: Probability of Absence of Conflict for Flow 1

when a conflict occurs, thereby spreading the initial flow
until aircraft resume their initial trajectory. The spread of
the aircraft flow may create others conflicts with adjacent
flows that do not exist if we only consider the initial
track. To illustrate this point, we plot the Cumulative
Distribution Function (CDF) of the lateral deviation for
each flow as a function of the inter-arrival distance (see
Figures 6 and 7). From these plots, we recover the

maximum lateral deviation dmax =
d

cosφ
= 7NM. Even

considering the “best scenario” (θ = 90◦), the lateral
deviation is important and needs to be taken into ac-
count in the encounter modeling. We also recover the
probability of absence of conflict (see Figures 4 and 5)
that corresponds to the vertical lines (i.e. a 0NM lateral



deviation since there is no conflict). A dissymmetry can
also be noticed between the positive and negative lateral
deviation. In other terms, the aircraft tend to move to the
other flow to prevent a conflict.
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“Closed-loop” Modeling of the En-
counter Behavior

In this section, we present an analytical method
to model the “closed-loop” behavior of the encounter,
taking into account the automated conflict resolution,
and then bypassing the previous limitations of the “open-
loop” approach. The model determines the probability
of conflict and gives a good idea of the spatial dis-
tribution of the aircraft as a function of the encounter

configuration and flows characteristics.

Probability of conflict
As in the “open-loop” section, we consider the

aircraft AC1
1 entering the conflict management area at

time t0. We use the same notations. Due to the conflict
avoidance algorithm (the offset method), AC1

1 is subject
to a lateral deviation d1

1 (d1
1 = 0 if there is no conflict).

Only a few aircraft need to be taken into account to
determine PNC(AC1

1). Indeed, there is no chance that
AC1

1 be in a conflict with an aircraft from its own flow
and with an aircraft from flow 2 as soon as it reached the
straight line Dd defined in Fig. 3. From Fig. 3, we find
that the maximum number of aircraft N2 (only from flow
2) that AC1

1 may be in conflict with is

N2 =
d

v∆tmin
2 sinφ

.

Let Nmax
2 be the number of aircraft that have entered

the conflict area at the considered time t0. The “age” tk
2

of the aircraft ACk
2, k = 1, . . . ,Nmax

2 , is the time elapsed
between its entry in the conflict area (and then its conflict
avoidance maneuver) and t0. The probability density
function of the age of AC1

2 , fT 1
2
(t1

2), is given by (4).
Considering two independent random variables M,N
with their associated PDF fM(m), fN(n), we recall the
PDF of the new variable Z = M +N:

fZ(z) = fM ∗ fN(z) =
∫

∞

−∞

fM(y) fN(z− y)dz. (12)

Considering now the aircraft ACk
2, the probability density

function of its age tk
2 , fT k

2
(tk

2), can then be determined
by the convolution between fT k−1

2
and f∆T2 , for k ≥ 2

(applying Equation (12), since the inter-arrival time
between any two aircraft are independent variables). In
other terms, we have

fT k
2

= fT k−1
2
∗ f∆T2 . (13)

The probability of conflict we want to determine,
PNC(AC1

1), can be expressed as follows:

PNC(AC1
1) = P(∀k,ACk

2 n.i.c. AC1
1)

'
N2

∏
k=1

P(ACk
2 n.i.c. AC1

1).

The last equation assumes the independence of the con-
sidered probabilities. This assumption seems reasonable



from a physical viewpoint, since there is no possible
conflict between aircraft within the same flow and in-
dependence of inter-arrival time. So we have

PNC(AC1
1) =

N2

∏
k=1

(
1−P(ACk

2 i.c. AC1
1)
)
. (14)

The N2 aircraft from flow 2, ACk
2, k = 1, . . . ,N2, that need

to be taken into account to determine PNC(AC1
1) have

already performed a lateral deviation dk
2. So the position

of the aircraft ACk
2 at time t0 is

xk
2 = x20 + vcosθ tk

2 +dk
2 sinθ (15)

yk
2 = y20− vsinθ tk

2−dk
2 cosθ . (16)

Replacing (15)–(16) into (5), we obtain

P(ACk
2 i.c. AC1

1) = P(Ln ≤ s2dk
2− tk

2 ≤ Lp), (17)

where

s2 =
−sinθ tanφ − cosθ

v(cosθ tanφ + sinθ)

Ln =
−dmax

v(cosθ tanφ + sinθ)

Lp =
dmax

v(cosθ tanφ + sinθ)
.

The probability density function of the age of the
aircraft, fT k

2
(tk

2), is known. The probability density
function of the lateral deviation fDk

2
(dk

2) is modeled
as illustrated by Figure 8: fDk

2
(dk

2) is a function of
two parameters α2 (≡ probability of non conflict) and
β2 (balance between the positive and negative lateral
deviation). According to the associated distribution
function depicted in Figures 6 and 7, this model seems
adequate. Indeed, the PDF obtained by computing the
derivative of the CDF from simulations can be quite well
approximated by the proposed model. In particulary, the
dissymmetry between the positive and negative lateral
deviation that appears in Figures 6 and 7 (i.e. each flow
tends to move towards the other flow to avoid a conflict,
especially at high flow rates difference) would be taken
into account using this model.

Introducing the new variable zk
2 = s2dk

2 − tk
2 and

applying Equation (12), its PDF writes then

fZk
2
= fs2Dk

2
∗ f−T k

2
, (18)

Figure 8: Model of the Lateral Deviation PDF of Flow 2

where fs2Dk
2
(s2dk

2) and f−T k
2
(−tk

2) can be determined
using (10) and assuming that the lateral deviation and
the age of the aircraft are independent variables. Ac-
cording to (14), the probability of absence of conflict
P(ACk

2 i.c. AC1
1) is then written

P(ACk
2 i.c. AC1

1) =
∫ Lp

Ln

fZk
2
(zk

2)d(zk
2). (19)

In order to compute α2 and β2, we decompose the
PDF of the lateral deviation fDk

2
(dk

2) into 3 sub-PDFs
defined by

fDk
2p

(dk
2) =

{
1 when 0 < dk

2 ≤ dmax

0 otherwise

fDk
2δ

(dk
2) = δ (dk

2) (20)

fDk
2n
(dk

2) =
{

1 when −dmax ≤ dk
2 < 0

0 otherwise.

We then define 3 corresponding PDF f k
Z2γ

(zk
2),

γ = {n,δ , p}, where zk
2 = s2dk

2 − tk
2 . According to

the model depicted on Figure 8, Equation (19) can be
rewritten

P(ACk
2 i.c. AC1

1) =
(1−α2)(1−β2)

dmax

∫ Lp

Ln

fZk
2n
(zk

2)d(zk
2)

+α2

∫ Lp

Ln

fZk
2δ

(zk
2)d(zk

2)

+
(1−α2)β2

dmax

∫ Lp

Ln

fZk
2p

(zk
2)d(zk

2).

(21)



Since the probability of non conflict for PNC(AC1
1) is in

fact equal to α1, we have the equation

α1 =
N2

∏
k=1

(
1−P(ACk

2 i.c. AC1
1)
)
, (22)

where P(ACk
2 i.c. AC1

1) is a function of α2,β2 (see (21)).
Similarly, we find from Fig. 8

(1−α1)(1−β1) = 1−
N2

∏
k=1

(
1−P(ACk

2 ∈A up
2 )
)
, (23)

where P(ACk
2 ∈ A up

2 ) is the probability that the aircraft
ACk

2 belongs to the area A up
2 shown in Figure 3. This

probability can be written

P(ACk
2 ∈A up

2 ) =
(1−α2)(1−β2)

dmax

∫ Lp

0
fZk

2n
(zk

2)d(zk
2).

(24)
The equations (22) and (23), with the considered prob-
abilities defined by (21) and (24), give a system of
two equations as a function of the 4 parameters αi,βi,
i = 1,2.

Following the same approach and considering the
dual case, i.e. AC1

2 entering the conflict area, we obtain
the following equations:

α2 =
N1

∏
k=1

(
1−P(ACk

1 i.c. AC1
2)
)

(25)

with

P(ACk
1 i.c. AC1

2) =
(1−α1)(1−β1)

dmax

∫ Lp

Ln

fZk
1n
(zk

1)d(zk
1)

+α1

∫ Lp

Ln

fZk
1δ

(zk
1)d(zk

1)

+
(1−α1)β1

dmax

∫ Lp

Ln

fZk
1p

(zk
1)d(zk

1),

(26)

and

(1−α2)β2 = 1−
N1

∏
k=1

(
1−P(ACk

1 ∈A up
1 )
)

(27)

with

P(ACk
1 ∈A up

1 ) =
(1−α1)β1

dmax

∫ Lp

0
fZk

1n
(zk

1)d(zk
1). (28)

Comparison With Simulations
The preceding equations yield a system of four

equations as a function of the 4 parameters αi,βi, i = 1,2
we want to determine. This system can be solved in
real time using commonly available numerical solvers.
We use the fsolve function of Matlab with the default
optimization parameters. In order to compare our ana-
lytical results with simulations results, we use the same
simulation setup as in the “open-loop” section.

We plot the probabilities as a function of the mean
inter-arrival distance between aircraft from the same
flow dm

i . In Figures 9 and 10, we see that the plots from
the simulations and the analytical method are very sim-
ilar for realistic flow rates characteristics (dm

i ≥ 35NM).
Even if there is still a difference at high flow rates,
the plots tend to match better than in the “open-loop”
section, as illustrated in Fig. 11.
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Figure 9: Probability of Absence of Conflict for Flow 2

We plot the distribution function of the lateral de-
viation for each flow as a function of the inter-arrival
distance on Figures 12 and 13. The graphs from the
analytical method and the simulations are very similar.
Especially, we recover the dissymmetry between the
positive and negative lateral deviation, and the shape of
how the flows spread around their initial tracks: this is
the main advantage in comparison to the “open-loop”
approach.

Conclusion and Future Works
In this paper, we have presented a new methodol-

ogy to rapidly generate probability density functions of
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Figure 10: Probability of Absence of Conflict for Flow 1
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aircraft position under “closed-loop” control policies at a
pair-wise intersection level, as functions of the encounter
and flow rates characteristics. This method can lead to
determine complexity maps built from the probability
of conflict between aircraft, as well as the flow spread
due to avoidance maneuvers. Through simulations, we
also highlighted how our “closed-loop” model bypasses
the limitations of the usual “open-loop” approach that
considers only on the structure of the conflict.

Considering the influence of the conflict avoidance
algorithm to estimate the probability of conflict and
then to compute complexity maps is really important
at the sector level. Indeed, deconflicting a pair-wise
intersection may affect the surrounding area and then
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Figure 12: CDF of the Lateral Deviation of Flow 2
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Figure 13: CDF of the Lateral Deviation of Flow 1

create new conflicts that must be taken into account. To
illustrate this point, we consider the Cleveland sector
as shown in Figures 14 and 15 and we draw at each
intersection the circles with centers the crossing points
and with radius dmax (the real aircraft spatial distribution
at the intersection level should be one rectangle for each
flow, but we draw circles for clarity). We see that several
circles overlap, even if the crossing points of the corre-
sponding intersections are far. These overlapping areas
mean that an avoidance maneuver at one intersection
may cause a secondary conflict with an aircraft involved
in the other intersection.

We currently work on extending the approach pro-
posed in this paper to the sector level. The first step will
be to give a similar complexity map at the intersection



Figure 14: Cleveland Center

Figure 15: Zoom-in on the Considered Sector

level considering N flows, as it may appear in a real
routes configuration. Then we will need to compute
the probability of presence of two aircraft from two
different intersections in the overlapping areas (shown
in Fig. 15). It will be interesting and useful to fol-
low the same methodology considering another conflict
resolution method (heading or/and speed change), and
to compare the generated complexity maps for a given
traffic configuration.

References
[1] Joint Planning and Development Office. Next gen-

eration air transportation system integrated work
plan: A functional outline. Technical report, Joint

Planning and Development Office, Washington,
DC, September 2008.

[2] I.V. Laudeman, S.G. Shelden, R. Branstrom, and
C.L. Brasil. Dynamic density: An air traffic man-
agement metric. Ames Research Center-112226,
1998.

[3] B. Sridhar, K.S. Sheth, and S. Grabbe. Airspace
complexity and its application in air traffic man-
agement. In 2 nd USA/Europe Air Traffic Manage-
ment R&D Seminar, 1998.

[4] D. Delahaye, S. Puechmorel, J. Hansman, and
J. Histon. Air traffic complexity based on non
linear dynamical systems. In USA-Europe ATM
R&D Seminar, 2003.

[5] D. Delahaye, S. Puechmorel, J. Hansman, and
J. Histon. Air traffic complexity map based on
non linear dynamical systems. Air Traffic Control
Quarterly, 12(4):367–390, 2004.

[6] A. Yousefi and G.L. Donohue. Temporal and Spa-
tial Distribution of Airspace Complexity for Air
Traffic Controller Workload-Based Sectorization.
In AIAA Guidance, Navigation, and Control Conf.,
San Francisco, CA, pages 6455–6468, 2004.

[7] M. Prandini, V. Putta, and J. Hu. A proba-
bilistic measure of air traffic complexity in three-
dimensional airspace. Int. J. Adapt. Control Signal
Process, 1:1–25, 2009.

[8] R.A. Paielli and H. Erzberger. Conflict probability
estimation for free flight. Journal of Guidance,
Control, and Dynamics, 20(3):588–596, 1997.

[9] R. Irvine. A simplified approach to conflict prob-
ability estimation. In Proc. of the 20th Digital
Avionics Systems Conference, volume 2, pages
7F5/1–7F5/12, 2001.

[10] R. Irvine. A geometrical approach to conflict prob-
ability estimation. Air Traffic Control Quarterly,
10(2):85–113, 2002.

[11] H.A.P. Blom, G.J. Bakker, M.H.C. Everdij, and
M.N.J. Van der Park. Collision risk modeling of
air traffic. In Proceedings of European Control
Conference, 2003.



[12] H.A.P. Blom and G.J. Bakker. Conflict probability
and incrossing probability in air traffic manage-
ment. In Proc. of the 41st IEEE Conference on
Decision and Control, volume 3, pages 2421–
2426, 2002.

[13] Z.-H. Mao and E. Feron. Stability and performance
of intersecting aircraft flows under sequential con-
flict resolution. In Proc. 2001 American Control
Conference, 2001.

[14] K. Treleaven and Z.-H. Mao. Conflict Resolution
and Traffic Complexity of Multiple Intersecting
Flows of Aircraft. IEEE Transactions on Intelligent
Transportation systems, 9(4):633–643, 2008.

[15] M. Gariel and E. Feron. Graceful Degradation
of Air Traffic Operations: Airspace Sensitivity to
Degraded Surveillance Systems. Proceedings of
the IEEE, 96(12):2028–2039, 2008.

[16] L. Pallottino, E. Feron, and A. Bicchi. Conflict
resolution problems for air traffic management
systems solved with mixed integer programming.
IEEE Transactions on Intelligent Transportation
Systems, 3, 2002.

[17] A. Vela, S. Solak, W. Singhose, and J.-P. Clarke. A
mixed integer program for flight-level assignment
and speed control for conflict resolution. In Proc.
of the 2009 Conference on Decision and Control,
2009.

[18] A. Vela, E. Salaün, S. Solak, E. Feron,
W. Singhose, and J.-P. Clarke. A two-stage
stochastic optimization model for air traffic conflict
resolution under wind uncertainty. In Proc. of the
28th Digital Avionics Systems Conference, 2009.

[19] K. Lee, E. Feron, and A. Pritchett. Air traffic com-
plexity: An input-output approach. In American
Control Conference, 2007, pages 474–479, 2007.

[20] K. Lee, E. Feron, and A. Pritchett. Describing
Airspace Complexity: Airspace Response to Dis-
turbances. Journal of Guidance, Control, and
Dynamics, 32(1), 2009.

[21] Z.-H. Mao, E. Feron, and K. Bilimoria. Stability
and performance of intersecting aircraft flows un-
der decentralized conflict avoidance rules. IEEE

Transactions on Intelligent Transportation Sys-
tems, 2(2):101–109, 2001.

[22] S.M. Ross. Stochastic processes. Wiley series
in probability and mathematical statistics, second
edition, 1996.

[23] D. Moreau and S. Roy. A stochastic characteriza-
tion of en route traffic flow management strategies.
In Proc. of the AIAA Guidance, Navigation, and
Control Conference, pages 6274–6285, 2005.

[24] J-P.B. Clarke, S. Solak, Y.-H. Chang, L. Ren, and
A.E. Vela. Air trafic Flow Management in the
Presence of Uncertainty. In USA-Europe ATM
R&D Seminar, 2009.

Acknowledgments
This work is funded by NASA under Grant
NNX08AY52A and the FAA under Award No.
07-C-NE-GIT, Amendment Nos. 005, 010, and 020.

Email Addresses
Erwan Salaün: erwan.salaun@gatech.edu,
Adan Vela: aevela@gatech.edu,
Eric Feron: feron@gatech.edu,
John-Paul Clarke: johnpaul@gatech.edu,
Senay Solak: solak@som.umass.edu.

28th Digital Avionics Systems Conference
October 25-29, 2009

mailto:erwan.salaun@gatech.edu
mailto:aevela@gatech.edu
mailto:feron@gatech.edu
mailto:johnpaul@gatech.edu
mailto:solak@som.umass.edu

	Abstract
	Introduction
	Encounter Modeling and Conflict Avoidance Algorithm
	``Open-loop'' Modeling of the Encounter Behavior
	Probability of Conflict
	Comparison With Simulations

	``Closed-loop'' Modeling of the Encounter Behavior
	Probability of conflict
	Comparison With Simulations

	Conclusion and Future Works
	Acknowledgments
	Email Addresses

