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Abstract
This paper considers the air traffic conflict resolu-

tion problem in the context of wind uncertainty. Aircraft
are assigned changes in airspeed to prevent conflict. The
goal is to determine the optimal maneuver to balance
deviation costs (e.g., fuel costs) and the probability of
conflict. A two-stage recourse model is developed, in
which new airspeeds are assigned in the first stage, based
on expected costs due to possible corrective actions
in the second stage. The second-stage considers the
expected costs for any last-minute maneuvers to com-
pensate wind modeling errors. The resulting model is
solved in real-time via numerical methods, providing
optimal airspeed values for the resolution of a conflict.

Introduction
There has been significant research in the fields of

air traffic conflict detection and conflict resolution. A
summary of results in both research areas is available
in [1]. One key factor in conflict detection and resolution
is the uncertainty in present and future estimations of
the velocity and position vectors of aircraft. These
uncertainties may be due to sensor noise (e.g., error in
radar systems) or due to unpredictable disturbances such
as wind. Many conflict detection algorithms account
for this uncertainty [2], [3], [4]. On the other hand,
only limited research has been done on stochastic air
traffic conflict resolution [5], [6], [7]. Given the limited
literature on conflict resolution under uncertainty, some
studies concerned with developing probabilistic conflict
detection models conclude by stating that there is a
need to better understand and utilize conflict probability
estimations in conflict resolution algorithms [8]. Hence,
there is a clear need for fully developed and more com-
plete probability based methods for conflict resolution.

In this study, we try to fill this gap by developing
a comprehensive stochastic conflict resolution model
for a pair of aircraft. To characterize the uncertainty

in aircraft trajectories, we consider a linearly growing
along-track positional uncertainty measure for aircraft,
which is primarily a result of wind disturbances. Such
an assumption can be validated by experimental data and
a specific auto-correlation function for the along-track
wind error. This assumption enables presentation of the
conflict resolution problem through a clear and simple
geometrical approach, with an analytical expression of
the probability of conflict as a function of the airspeed
change. The approach draws ideas from [9] and [10].

Similar to the approach in [9] for determining the
probability of conflict, it is possible to build a geomet-
rical and analytical two-stage stochastic optimization
model to determine the optimal maneuver to prevent
conflicts, taking into account the cost of maneuvers and
the resulting probability of conflict. Clearly, indepen-
dent minimization of each of these two criteria leads to
conflicting solutions. Hence, we minimize a global cost
function that considers a compromise, while constrained
by aircraft specifications (e.g., minimal and maximal
airspeed changes).

The optimization model is presented as a two-stage
stochastic model, where only speed changes are made
to resolve conflicts. The first stage considers costs asso-
ciated with an initial deviation in airspeed. The second
stage considers the expected costs associated with any
last-minute speed commands required to prevent conflict
due to unmodeled wind uncertainties. The resulting
formulation withholds from only utilizing arbitrary risk
measures such as minimum conflict probabilities or
mixed-cost weightings, as the first and second stage
costs can be posed in the same units.

The remainder of this paper is structured as follows.
First, we present the geometric analysis of the problem
considering the effect of uncertainty. In the next sec-
tion, we characterize the probability of conflict between
two aircraft, followed by the two-stage stochastic opti-
mization model. Then we analyze the structure of the
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Figure 1: The encounter model is defined by the intersec-
tion angle, the speeds and the distances of the aircraft to
the intersection

problem from a computational perspective, and present
the results from a sample simulation study. Conclusions
and future works are discussed at the end of the paper.

Geometric modeling of aircraft conflicts
We first present a geometric representation of the

conflict resolution problem, and then discuss how the
uncertainty due to wind can be included in this geometric
framework.

Encounter modeling
To model the encounter between two aircraft, we

use an approach similar to the work presented in [9]
and [11]. Consider an intersection between two air-
craft trajectories,AC1 and AC2 flying along straight-
line trajectories and crossing at the point O as shown
in Fig. 1. The encounter is defined by the following
characteristics:

• θ , the crossing angle

• d = [x,y], the vector composed of the distances of
the two aircraft to the crossing point of the aircraft

• vg = [v1,g,v2,g], the groundspeed vector of the air-
craft pair

• Dmin, the minimum separation distance required
between two aircraft

The position of the aircraft at some timet is shown
in Fig. 1. A conflict between the aircraft exists if the
distance between the aircraft,D, is less thanDmin at any
time. Through application of the law of cosines, the
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Figure 2: Four different configurations corresponding to
different speed-ratios between aircraft

distance constraint between the aircraft can be calculated
as:

D2 = x2 +y2−2xycosθ ≥ D2
min. (1)

For a given crossing angleθ , when the condition is at
equality, i.e. whenD = Dmin, it is considered to be the
critical configuration.

Since the path of each aircraft is linear, the evolu-
tion of the encounter, i.e. ,the position of both aircraft
in space, can be represented by a phase-portrait as in
Fig. 2. The coordinates of a point in the phase-portrait
correspond to the distancesx andy of the aircraft from
the crossing point. As time progresses, the state of the
system will traverse a trajectory from the lower left-hand
quadrant to the upper right-hand quadrant. Furthermore,
assuming that the aircraft fly with constant speeds,v1,g

and v2,g, the state trajectory on the phase portrait is a
straight line with slopem, where

m=
dy
dx

=
dy/dt
dx/dt

=
v2,g

v1,g

In Fig. 2, four lines are plotted corresponding to
four different configurations,Ci, with the same initial
condition d0 = [x0,y0], but different speed-ratios,mi,
i = 1, . . . ,4. Figure2 also contains an ellipsoid, which
is described by Eq. (1) and corresponds to the critical
configuration when the distance between aircraft is equal
to the minimum separation distanceDmin. Clearly, if the
state trajectory remains outside the ellipsoid, then there
is no conflict (caseC1), whereas a conflict occurs if the
state trajectory passes through the ellipsoid (caseC3).
The critical speed-ratios occur when the trajectory and
the ellipsoid are tangent (casesC2 andC4).



For initial conditionsd0 andv0
g, conflict will occur

if the speed-ratio is such that

mc
l < m=

v0
2,g

v0
1,g

< mc
u (2)

where mc
u and mc

l are the maximum lower-slope and
minimum upper-slope required for conflict-free travel,
corresponding to the casesC2 andC4, respectively. The
values ofmc

l and mc
u represent solutions ofm to the

following system of equations:

m=
y0−y
x0−x

x2 +y2−2xycosθ = D2
min

d
dt

(

x2 +y2−2xycosθ
)

= 0

dy
dx

= m

(3)

Expressions formc
l andmc

u can be explicitly derived as a
function ofx0, y0, Dmin, andθ .

Aircraft and wind uncertainty modeling
Given this geometric framework, we can develop a

probabilistic model in order to capture the uncertainty
in the conflict between the two aircraft. Due to aircraft
performance envelopes and Air Traffic Control (ATC)
restrictions, the aircraft are limited in the speed change
maneuvers performed to prevent possible conflicts. As-
sume that aircraftACi has a minimum airspeedvmin

i and
a maximum airspeedvmax

i :

vmin
i ≤ vi ≤ vmax

i , i = 1,2 (4)

where the airspeedvi can directly be related to the
groundspeedvi,g through any local windvi,w, as:

vi,g = vi +vi,w, i = 1,2 (5)

For the problem at hand, aircraft will be assigned new
airspeeds,v+

i , to resolve conflicts. However, we will
make use of both the groundspeed and airspeed variables
throughout the formulation.

If an air traffic controller anticipates a conflict,
as determined through a trajectory prediction tool es-
timating the future positions of the aircraft, avoidance
maneuvers can be issued. From radar measurements (or
GPS navigation solutions), the position of aircraftACi

at timet0 is (x(t0),y(t0)). The initial position is known
within some uncertainty envelope. However, when the
aircraft is traveling along a straight path the estimate of
the aircraft position may be subject to along-track and
cross-track errors with respect to the planned trajectory.
With the advent of modern Flight Management Systems
(FMS) and pilot corrective actions, the magnitude of
any cross-track errors remains small. On the contrary,
along-track errors are much more significant and tend to
grow with time. In fact, since throttle compensation for
regulating groundspeed due to unexpected wind changes
is fuel-inefficient and of little use, the FMS and the pilot
aim to maintain a constant airspeed, while the actual
groundspeed will typically vary with time according to
the wind speed. Hence, the predicted groundspeed of
the aircraft is dependent on an unpredictable parameter,
and so is the predicted position of the aircraft. Due to
errors in the modeling of the space and time-varying
wind speed, the along-track error can be significant.

Following the previous assumptions, we only con-
sider the along-track errorei(τ), whereτ is the predic-
tion time. The errorei(τ) is the difference between the
actual along-track distancesi(τ) flown by the aircraft
ACi after timet0 and the planned (or predicted) along-
track distance ˆsi(τ):

ei(τ) = ŝi(τ)−si(τ) i = 1,2 (6)

According to [10] and [11], the along-track errorei(τ)
may be modeled as a normally distributed random vari-
able with a standard deviation growing linearly with
time:

ei(τ) = r iτNi(0,1) i = 1,2 (7)

wherer is the rate of growth of the standard deviation
of ei(τ) andNi(0,1) is a Gaussian distributed variable
with zero mean and unit variance. This along-track
error model has been validated in [12] by comparing
the estimates with real data. Using these results, the
rate of growth of the standard deviation is evaluated to
be 0.25NM/min. Another approach to justify (7) is to
model the wind uncertainty, as it is the dominant cause
for any along-track error. Assuming a specific auto-
correlation function for the wind along-track speed error,
the expression in (7) can be recovered for the position
error (see [13] and [14] for details). The auto-correlation
function considers that wind speed errors close in time
(i.e. for small prediction timeτ) are highly correlated,



whereas they become less correlated as the prediction
time τ increases, which is sensible from a physical
viewpoint. If we rewrite (6)–(7) in terms of speed, we
obtain:

Vi,g = v̂i,g + r iNi(0,1), i = 1,2 (8)

whereVi,g is the random variable for the groundspeed,
andv̂i,g is the planned (or estimated) groundspeed of the
aircraft according to (5).

Probability of conflict

Given a stochastic representation of ground speed,
it is possible to derive a relationship for the probability
of conflict between two aircraft under known initial
conditions. In this section, we describe this relationship,
and discuss how changes in airspeed can impact this
probabilistic model.

According to (2), a conflict occurs if the speed-
ratio V2,g

V1,g
lies betweenmc

l and mc
u, wheremc

l and mc
u

are constant parameters for a given encounter configu-
ration (i.e., crossing angle, aircraft departure points and
minimal separation distance). Using (8), we can write
the random variableM, which represents the stochastic
speed-ratio of the aircraft:

M =
V2,g

V1,g
=

v̂2,g + r2N2(0,1)

v̂1,g + r1N1(0,1)
(9)

The probability density function ofM corresponds to the
ratio of two normally distributed random variables with
correlationρ , and is given by [15] as:

fM(m) =
b(m)d(m)√
2πr1r2a3 (m)

[

Φ

(

b(m)

a(m)
√

1−ρ2

)

−Φ

(

− b(m)

a(m)
√

1−ρ2

)]

+

√

1−ρ2

πr1r2a2 (m)
exp

(

− c
2(1−ρ2)

)

(10)

where,

a(m) =

(

(

m
r2

)2

− 2ρm
r1r2

+

(

1
r1

)2
)

1
2

b(m) =
v̂2,gm

(r2)
2 − ρ (v̂2,g + v̂1,gm)

r1r2
+

(

v̂1,g

(r1)
2

)

c =
v̂2,g

(r2)
2 −

2ρ v̂2,gv̂1,g

r1r2
+

(

v̂1,g

(r1)
2

)

d(m) = exp

{

b2 (m)−ca2(m)

2(1−ρ2)a2 (m)

}

(11)

andΦ(x) =
∫ x
−∞
(

1/
√

2π
)

e−
1
2u2

du. Note that the distri-
bution is defined according tôvg = [v̂1,gv̂2,g], r1, r2, and
ρ .

Given that ˆvi,g/r i ≫ 0 andP(V1,g < 0) ∼ 0, we can
make the following approximation:

f̂M(m) =
b(m)d(m)√
2πr1r2a3 (m)

(12)

For future calculations we will make use of̂fM(m)
wheneverfM(m) is required.

The approximation that yields (12) uses the as-
sumption thatP(V1,g < 0) ∼ 0. Practically, the condition
}V1,g < 0} would never occur. It implies that aircraft are
flying in winds greater than the airspeed of the aircraft,
and hence, it would never reach its destination. In
addition, from a cost perspective, this is clearly not a
reasonable solution for airline operators.

Two-stage Stochastic Optimization
Model

The two-stage stochastic optimization model
presents a methodology for capturing uncertainty in the
conflict resolution problem by accounting for recourse
actions. We assume that the decision process consists
of issuing first-stage speed adjustment commands to
aircraft in conflict, followed by any necessary second-
stage speed adjustments upon realization that a recourse
action is required due to conflict.

Note that we only consider aircraft speed changes,
and not heading changes, to avoid possible conflicts. The
speed changes are made such that the expected two-
stage cost function over the decision variablesv+ is
minimized. More specifically, the initial airspeedsv0

1



andv0
2 change tov+

1 andv+
2 , where the new speed values

still satisfy (4). Any changes in airspeed can be directly
linked to the planned groundspeed,v̂g. As a result, the
initial planned speed-ratiom0 will be updated to the new

planned speed-ratio ˆm+ =
v̂+

2,g

v̂+
1,g

.

The motivation behind the two-stage model is as
follows. En route aircraft prefer to restrict speed changes
to maintain fuel economy and to limit the need for
re-submitting flight plans. Overall, aircraft resolution
maneuvers can be classified into two categories: (1) con-
servative commands which guarantee conflict-free flight
at the cost of increased fuel-costs, (2) commands that
reduce initial fuel-costs, however, increase the probabil-
ity of requiring additional maneuvers to resolve conflict.
Of these, additional last-minute maneuvers typically
incur costs at a greater expense than the equivalent
first-stage decision. The proposed two-stage stochastic
formulation works towards balancing the cost between
overly-conservative and overly-risky conflict resolution
solutions.

The second-stage speed adjustments are pre-
determined for each recourse situation, and do not need
to be considered as decision variables. However, this
requires explicit generation of possible action-recourse
processes and the associated costs. We address these
issues in the next subsections. To this end, we first con-
sider a single-stage decision process without recourse
and describe the corresponding formulation in deter-
ministic and stochastic settings. Then, the two-stage
formulation is systematically developed by including
recourse actions, restrictions due to aircraft dynamics
and cost function calculations.

Deterministic and Stochastic Single-Stage
Problems

Consider again the case with two aircraft with
crossing trajectories as described previously and illus-
trated in Fig.1. Given no uncertainty in wind, the ground
speed of the aircraft can be calculated exactly. Hence,
the problem reduces to assigning feasible airspeeds,v+,
to the aircraft such that some cost function is minimized.
Assuming generic cost functionsgi(v

+
i ) for each aircraft,

Conflict
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Figure 3: Phase portrait representation of the standard
deterministic formulation

this problem can be expressed as follows:

minimize g1(v
+
1 )+g2(v+

2 )
s.t.

vmin
1 ≤ v+

1 ≤ vmax
1

vmin
2 ≤ v+

2 ≤ vmax
2

v̂1,g = v+
1 +v1,w

v̂2,g = v+
2 +v2,w

m̂+ =
v̂2,g

v̂1,g

m̂+ ≤ mc
l or mc

u ≤ m̂+

(13)

Again, v+
1 and v+

2 are the assigned airspeeds
of the aircraft, and ˆm+ is the new speed-ratio for
the system. The bounds onv+

1 and v+
2 mean that

m̂+ is bounded as well. The domain for ˆm+ is
given by the closed interval

[

vmin
2,g /vmax

1,g ,vmax
2,g /vmin

1,g

]

=
[

(vmin
2 +v2,w)/(vmax

1 +v1,w),(vmax
2 +v2,w)/(vmin

1 +v1,w)
]

.
In Fig. 3, the two solid lines emanating from intial
aircraft stated0 represent these bounds on the speed-
ratio. Hence, the set of feasible solutions corresponds to
the area between these solid lines and the dashed critical
speed-ratio lines defined bymc

u andmc
l .

Similar to this deterministic formulation, we can
develop a single-stage stochastic formulation of the
problem based on anα−bounded conflict probability,
where the feasible space of airspeeds is restricted such
that the probability of any first-stage conflict is less than
α . Let the average wind over a measurable distance
be bounded such that realizable speed-ratios are also
bounded. In this case, the problem becomes:

minimizeg1(v
+
1 )+g2(v

+
2 )

s.t. (v+
1 ,v+

2 ) ∈ {(v1,v2)|P(mc
l ≤ M ≤ mc

u
|v+

1 = v1,v+
2 = v2) ≤ α}

(14)
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Figure 4: Feasible region for a single-stage stochastic
problem

where the speed-ratioM is the random variable de-
scribed by (9) according tov+

1 , v+
2 andv1,w, v2,w.

Examples of the feasible solution space as de-
scribed by the constraints in deterministic problem (13)
and stochastic problem (14) are shown in Fig. 4 for
α =

{

1/
√

1000,1/1000,1/10002
}

, and also the de-
terministic case with no uncertainty. The infeasible
solutions for the deterministic case are located within
the narrowest band; the size of the infeasible area and
expands outwards with decreasingα . In this instance,
each aircraft is assumed to be initially 90NM from the
intersection, with a speed range of[400,600] kts.

Solution Space to the Two-Stage Stochastic
Model

The two-stage model can be constructed by enu-
merating the solution space according to possible trajec-
tories (no-conflict and conflict-recourse). Figure5 pic-
torially defines these trajectories. Given the initial state
of the system,d0 andv0, aircraft are issued a resolution
commandv+. According to the commanded airspeed
and random wind input into the system, there are two
classes of possible outcomes:Case 1-The aircraft reach
a point such that it is determined the probability of
conflict is low. In this case, the state trajectory inter-
sects with the optimal-horizon line,lopt

u or lopt
l , which

defines the set of switching-states where the aircraft
may return to the desired or optimal airspeed without
concern for conflict, thereby terminating the conflict
problem. Case 2-The aircraft approach a potentially
unsafe situation. The system will be required to make a
fixed-recourse decision upon hitting the switching-state

Conflict Area

Optimal−horizon
Recourse−horizon

State Trajectory
Conflict

Case 1

Case 2

d
opt

l

d
opt
u

l
r
l

lopt
u

l
c
l

d
r
l

lt

l
c
u

lru

d
0

l
opt

l

Figure 5: Possible outcomes for the two-stage stochastic
model

defined by the recourse-horizon lines,l r
u or l r

l . The
aircraft will continue along the new trajectory defined
by the fixed recourse decision until the state trajectory
intersects an optimal-horizon line.

Both trajectories listed above can be described by
a sequence of states which the system passes through.
Let dopt

u be the switching-state that lies on the upper-
optimal-horizon line, anddr

l be the switching-state that
lies on the lower-recourse-horizon line, with the remain-
ing states named similarly. Examples of the states are
identified in Fig. 5. The possible processes are listed
below, with the first two trajectories corresponding to
Case 1, and the last two trajectories corresponding to
Case 2.

1. d0 → dopt
u

2. d0 → dopt
l

3. d0 → dr
u → dopt

u

4. d0 → dr
l → dopt

l

Using the above state trajectories, the cost function
can be expressed as the sum of the expected cost of any
conflict resolution decision over the possible outcomes.
This requires that the expected cost over each link along
the state trajectory be calculated. First, however, the
placement of the optimal-horizon and recourse-horizon
lines needs to be described.



The optimal-horizon lines and the recourse-horizon
lines need to be calculated for the two-stage stochastic
program. We define these lines based on theα-bound on
the maximum acceptable probability of conflict, similar
to the single-stage model. For the tangent lineslopt

u , lopt
l ,

l r
u, andl r

l , the slopes are sufficient to define the equation
of the lines for any given ellipse. In reference to a gen-
eral tangent line,l∗, we usel∗ andm∗ interchangeably.

In the single-stage case presented in (14), the α-
bound defined the feasible space. This is equivalent
to defining the maximum allowable probability of con-
flict before reaching the optimal-horizon line. For the
recourse case, the recourse-horizon line is arbitrarily
defined by dividing the probability of conflict equally
between both trajectory segments: following the initial
resolution-command, and after the recourse-command.
Let Pr,1 be the probability that recourse is required,
and letPr,2 be the probability of conflict even after the
recourse action is taken. According to theα-bound,
it then follows thatPr,1Pr,2 ≤ α . For simplicity, let
maximum probability of conflict for the fixed recourse
action bePr,2 =

√
α . Therefore, the feasiblev+ is

defined accordingly:

v+ ∈
{

(v1,v2)|P(mc
l ≤ m≤ mc

u|v+
1 = v1,v

+
2 = v2) ≤

√
α
}

(15)
We assume that if the state trajectory of the system

reaches the recourse-horizon line, it will switch to the
fixed recourse extrema airspeeds to prevent conflict.
Based on this assumption, the recourse-horizon lines can
then be defined by the slopes:

mr
u = in f

{

m|P(M < m|v1 = vmin
1 ,v2 = vmax

2 ) ≤
√

α
}

mr
l = sup

{

m|P(M > m|v1 = vmax
1 ,v2 = vmin

2 ) ≤
√

α
}

(16)

In this manner, the total maximum probability of conflict
to reach the optimal-horizon line is bounded byα .

The optimal-horizon lines are defined in a similar
manner. Arriving at the optimal-horizon line the aircraft
switch to their desired airspeed. The probability of
conflict following the switch should be bounded byα .
The optimal-horizon lines are then defined by the slopes:

mopt
u = in f

{

m|P(M < m|v1 = vopt
1 ,v2 = vopt

2 ) ≤ α
}

mopt
l = sup

{

m|P(M > m|v1 = vopt
1 ,v2 = vopt

2 ) ≤ α
}

(17)

Optimization Model
The optimization within this two-stage framework

involves minimization of a cost function. In this section,
explicit derivations of the cost function are detailed
through the use of standard probability theory. Ulti-
mately, through a series of tightly bounded approxima-
tions, followed by numerical integration, the model is
shown to be solved in decision-time.

As noted previously, the conflict problem is con-
sidered terminated when the state of the system reaches
the conflict-free optimal-horizon line. We define the
cost function,G(v+), as a measure of the expected fuel-
disruption to the aircraft,

G(v+) = E[C1]+E[C2] (18)

whereE[C1] andE[C2] are the individual expected fuel-
costs for each aircraft prior to reaching an optimal-
horizon line. The process by which the aircraft reaches
an optimal-horizon line determines the exact costs. The
optimization model requires the minimization of (18)
subject to the feasibility requirements described in (15).

Without loss of generality, we first consider aircraft
AC1. Similar results can be expanded toAC2. The
expected cost forAC1 can be broken down into four
segments according to which optimal-horizon line or
recourse-horizon line the state trajectory intersects:

E[C1] = C1,M⊗lopt
u

+C1,M⊗lopt
l

+C1,M⊗l ru +C1,M⊗l rl (19)

where ”cross-notation”M ⊗ lg indicates that the state-
trajectory intersects the horizon-linelg. The term
C1,M⊗lg is given by:

C1,M⊗lg = E[C1|M⊗ lg]P(M⊗ lg) (20)

The value of P(M ⊗ lg) is dependent on the initial
configuration of the problem and the planned airspeeds.

We begin to determine the structure of each expec-
tation in (19) by calculating the expected fuel-cost for
a planned airspeedv+ over a given segments, which is
determined by the random variableM. We then integrate
over the space ofM. The cost over a generic segments
is:

E[Cs
1|v+,s] =F f uel

1 (v+
1 )E[T1|v+,s]

=F f uel
1 (v+

1 )ds
1E[1/V1,g|v+,s] (21)



whereF f uel
1 (v+

1 ) [Kg/min] is the fuel-burn function,T1

is the travel time,ds
1 is the distance traveled over the

segment, andV1,g is the random variable describing the
groundspeed of the aircraft. The distribution ofV1,g is
defined according to (9). For a fixedm in the sample
space ofM, the distribution of the ground speed is
normal, i.e.,V1,g ∼ N

(

v̂2,g/m,(r2/m)2
)

, where:

V1,g = V2,g/m (22)

To evaluateE[1/V1,g|v+,s] over the distribution
(22) we can make use of a tight Taylor series approx-
imation [16], [17]. We define a new random variable
Z = 1/V1,g and take the Taylor series expansion about
a = v̂2,g/m:

Z =
∞

∑
k=0

g(k) (a)
(

Vgs
1 −a

)k

k!
(23)

Taking the expectation of (23), and notingE[(Vgs
1 −a)n]

is the nth moment over the normal distribution, the
Taylor series can be rewritten as:

E[Z] = m

[(

1+

(

r2

v̂2,g

)2

+
1
2

(

r2

v̂2,g

)4

+ . . .

)

/v̂2,g

]

(24)
The series converges quickly for the range of values we
are considering. Note that we are making the assumption
E[(Vgs

1 −a)n] = E[(Vgs
1 −a)n|Vgs

1 ≥ 0], since we assume
P(Vgs

1 ≤ 0)∼ 0 . LettingA(v̂2,g, r2) equal the summation
of the infinite series, and then evaluating the expected
cost in Eq. (21), we get:

E[C1|v+,s] = F f uel
1

(

v+
1

)

ds
1mA(v̂2,g, r2) (25)

Similarly, the same process applied to the expected fuel-
cost forAC2 yields:

E[C2|v+,s] = F f uel
2

(

v+
2

) ds
2

m
A(v̂1,g, r1) (26)

The values ofds
1 andds

2, the distance traveled for each
aircraft, have yet to be defined. They are in fact random
variables. Figure6 is a pictorial representation of a
general case with an arbitrary horizon-line and initial
starting point. The valuesds

1 andds
2 are functions ofm,

the initial aircraft positions,di = [xi ,yi ], and the line in
question,l∗. For AC1 and a general linel∗(m∗,b∗), the
distance traveled is given by:

ds
1 =

m∗xi +b∗−yi

m−m∗ (27)

m

l
∗(m∗

, b
∗)

m∗

u

m∗

l

d
i = [xi, yi]

T

ds
1

d
s 2

Figure 6: Representation to calculate the distance traveled
by the aircraft

and forAC2, the distance is:

ds
2 =

m(m∗xi +b∗−yi)

m−m∗ (28)

Now, for the case in which the initial state trajectory
intersects the optimal-horizon line, i.e., when no second
stage recourse is required, Eq. (25) and (26) can be
substituted directly into their respective costs in Eq. (19).
As shown in Fig.5, the range ofm for which this will
occur is[max(mc

u,m
opt
u ),∞) and(−∞,min(mc

l ,m
opt
l )]. In-

tegrating the expected cost for both aircraft over this
range, for a givenv+, we get:

C1,M⊗lopt
u

= F f uel
1 (v+

1 )A(v̂2,g, r2)K(lopt
u ,d0)

·∫ ∞
max(mc

u,m
opt
u )

m
m−mopt

u
·dFM(m)

C1,M⊗lopt
l

= F f uel
1 (v+

1 )A(v̂2,g, r2)K(lopt
l ,d0)

·∫min(mc
l ,m

opt
l )

−∞
m

m−mopt
l

·dFM(m)

C2,M⊗lopt
u

= F f uel
2 (v+

2 )A(v̂1,g, r1)K(lopt
l ,d0)

·∫ ∞
max(mc

u,m
opt
u )

1
m−mopt

u
·dFM(m)

C2,M⊗lopt
l

= F f uel
2 (v+

2 )A(v̂1,g, r1)K(lopt
l ,d0)

·∫min(mc
l ,m

opt
l )

−∞
1

m−mopt
l

·dFM(m)

(29)

where,
K(l∗,di) = (m∗xi +b∗−yi) (30)

The line lt is defined as the line connectingd0 and the
intersection point betweenl r

u and l r
l , as shown in Fig.



5. For the case where recourse is required, in particular
when the state trajectory intersects the upper-recourse-
horizon line, a similar calculation can be performed. The
expected cost for this case can then be expressed as:

C1,M⊗l r = F f uel
1 (v+

1 )A(v̂2,g, r2)K(l rc
u ,d0)

·∫min(mc
u,m

r
u)

mt

m1
m1−mr

u
·dFM1(m)

+F f uel
1 (vmin

1 )A(v̂r
2,g, r2)

·∫mc
u

mc
l

K(lopt
u ,dr

u)

·∫ ∞
max(mr

u,m
opt
u )

m2

m2−mopt
u

·dFM2(m) ·dFM1(m)

(31)
where the first integral accounts for the first-stage costs,
and the second integral is a measure of the recourse
costs.

This process can be repeated forAC2, as well as for
intersections with the lower-recourse-horizon for both
aircraft. These additional costs are then used to complete
the definition of the cost function in (18).

Computational Analysis
Given the complexity of the cost function, it is quite

difficult to assess the properties of the formulation from
an analytical perspective. The cost function is neither
convex nor quasi-convex over the complete space, even
when the space is partitioned in half according to ˆm+ ≥
mc

u andm̂+ ≤ mc
l . Hence, an analytical solution to the

problem cannot be derived, and numerical methods need
to be used. On the other hand, numerical evaluations
over the feasible space can be performed in a very fast
and efficient manner.

The cost function requires numerical methods to
evaluate a number of integrals over a series of conflict
resolution commands,v+. For the computational cost
to evaluate a single instance of the integral of the form
∫mu

ml
f (m)dFM(m), we assume that a discretization of the

probability distribution withκm values over the space is
used. Let the space ofv+

1 be discretized atµ values,
andv+

2 be discretized atν values over their range. The
upper-bound on the total number of required evaluations
of the integral is given by 6µν , corresponding to 4µν
evaluations in (29) and 2µν evaluations in (31) for each
(v+

1 ,v+
2 ) pair. An additional fixed number of evaluations

are required to calculate the recourse cost, which is
an inner integral in (31). The feasible space is deter-
mined through evaluation of the cumulative distribution
function. As a result, the complexity of the numerical
evaluation procedure isO(µνκm).

The procedure was implemented in Matlab using a
single processing-core of a quad-core 2.66 GHz com-
puter with 2GB of memory, and was observed to run
in decision-time in all cases. As an example, at a grid
spacing ofδv = 5 over a range of[400,600] kts for each
aircraft, and integrating over the space ofM within the
two-tailed α-bound of 1/10002, corresponding tom∈
[.5743,1.7410] with δm= 1/1000, the value of the cost
function over the complete space was calculated in 2.3
seconds. Clearly, even faster implementations are possi-
ble in other programming environments. Furthermore,
the calculations are well suited for evaluation using
multiple processor-cores to improve run-time linearly.

Simulation results
A sample result is provided to develop some intu-

itive understanding of the formulation and cost function.
The following initial conditions were defined for a test
case:

• Dmin = 5NM

• θ = 90o

• d0 = [−70,−70]

• v+
1 ∈ [400,600]

• vopt
1 = 500

• v+
2 ∈ [370,570]

• vopt
2 = 470

• v̂i,w = 0

• r1 = r2 = .25

• ρ = .15

For this case, we assumed a simple fuel cost function
for each aircraft, defined asF f uel

i = (vopt
i − v+

i )2. The
cost function (18) was evaluated over a meshgrid with
spacing ofδv = 5. The total expected cost for the
problem when the state trajectory intersects the optimal-
horizon line is shown in Fig.7. As expected, the more
conservative maneuvers result in increased costs. How-
ever, for more risky actions when the aircraft maintain
desired speeds,vopt

1 = 500 andvopt
2 = 470, the expected

costs are also low. The low expected cost in this region
is to be expected as a result of (20) since the probability
still hitting a optimal-horizon line is low. In fact, if
the aircraft maintains airspeeds close to the desired or
optimal airspeeds, increasing the probability of taking
recourse actions, the expected costs due to required
recourse actions is larger, as shown in Fig.8.
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Figure 7: Expected cost when state trajectory intersects
lopt
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Figure 8: First and second-stage expected costs when state
trajectory intersects l r

The complete cost functionG(v+), involving all
possible trajectories and evaluated over the entire space
is shown in Fig.9. The cost function is again shown in
Fig. 10, but this time only over the feasible space. Note
that the function is nonconvex, eliminating the possibil-
ity of using standard gradient search methods to achieve
guaranteed convergence to a global optimum. Hence,
an enumerative evaluation procedure is necessary. As
discussed, such a procedure can be performed in real-
time and an optimal solution can be identified. For this
example, identifying the mimimium cost results in the
speed assignments ofv+

1 = 520 knots andv+
2 = 435

knots.
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Figure 9: Cost function evaluated over the domain
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Figure 10: Cost function over the feasible space

Conclusions and future work
In an environment where uncertainty is ever

present, and decisions are both safety-critical and cost-
conscience, there is a need for realistic tools to aid air
traffic controllers. In this paper we have presented a for-
mulation for a two-stage stochastic program for air traf-
fic conflict resolution with speed changes. The formula-
tion’s aim is to consider the issue of wind uncertainty in
air traffic resolution. Furthermore, the formulation goes
beyond a simple single-stage optimization model, and
does not extend to resolve the stochastic problem con-
tinuously. In this manner, the model developed is both
robust and practical, as it provides fixed limits on the
workload and the amount of decision-making required
by air traffic controllers. More specifically, an initial
resolution command is issued, and a fixed recourse is
provided as needed. And more so, the recourse decision
can be automated without input from the controller.
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Figure 11: Cost-to-go solution for various initial condi-
tions

This research is a first-step in answering the ques-
tion, ”When should conflicts be resolved?” In Fig.11
a cost-to-go map is shown for a problem similar to that
described in the Simulation section, with the conflict res-
olution problem solved over a range of initial distances.
In this case, the intersection angleθ = 90o, and the
two aircraft have the same desired airspeedvi,d = 500.
Given the cost-to-go map, based on current positions,
airspeeds, and wind properties, it will be possible to
calculate the cost of issuing a resolution command at the
present time, or waiting until a more beneficial time.

Lastly, there is a need to compare speed-change res-
olution commands against heading-change resolutions.
Future work involves the development of a similar two-
stage model with heading-change commands.
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