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Abstract
Despite the existence of several automated air traf-

fic conflict resolution algorithms, there is a need for for-
mulations that account for air traffic controller workload.
This paper presents such an algorithm with controller
workload constraints modeled parametrically. To this
end, we first develop an integer programming model
for general conflict resolution, which emphasizes the
minimization of fuel costs, and runs in near real-time.
A parametric procedure based on this model is then
developed to consider controller workload limitations.
Two versions of the parametric approach are described,
along with computational results. It is demonstrated that
both formulations can be used to capture a broad range
of possible controller actions.

Introduction
The projected growth in air transportation demand

over the next twenty years is likely to exceed the capacity
of the unaided air traffic controller. Consenquently the
past two decades have seen significant investment in the
development of advanced air traffic conflict detection
and resolution algorithms. The aim of these algorithms
is twofold: to increase capacity and to improve safety.
Both the United States Federal Aviation Administration
(FAA), and EUROCONTROL, recognize the need to
develop support systems for both the tactical (radar
controller) and strategic (traffic flow management) con-
troller positions. At the tactical level these systems are
particularly important for deconflicting air traffic [1, 2].

The approach presented here seeks to explicitly ac-
count for limitations inherent in controller workload, and
to devise solutions which are both optimal and which
are compatible with controller work practice. Given
the difficulty of modeling the aspects of the airspace
which contribute to controller workload [3], this is not
a trivial task. Hence, conflict resolution models that

consider workload issues are rare in the literature despite
the existence of several general conflict resolution algo-
rithms. In this study, we develop and utilize a parametric
conflict resolution algorithm to account for controller
workload issues as accurately as possible. In addition,
the algorithm emphasizes the minimization of fuel costs
in the resolution of conflicts, and runs in near real-
time, making it possible to be implemented as a practical
decision aid for air traffic flow management.

The development of our proposed conflict resolu-
tion algorithm with an integrated model to account for
controller workload involves two phases. In the first
phase, we devise a general conflict resolution algorithm,
which we refer asCRP. This algorithm contains signifi-
cant improvements over previous integer programming
models. Then in the second phase, we develop a
parametric procedure to account for controller workload
using our conflict resolution model. We define two
parametersβ and λ , and present two versions of the
workload model based on these parameters. By properly
setting the values ofβ and λ , it is possible to drive
optimization solutions towards the desired number of
conflict resolution commands issued. The two paramet-
ric models are referred asCRP−β andCRP−λ .

The conflict resolution algorithm developed in the
first phase has several significant contributions, one of
which is the modeling of simultaneous speed and head-
ing changes in conflict resolution decisions. Although
an algorithm that independently controls either speed
or heading changes can be developed through a linear
model, consideration of the two types of maneuvers
simultaneously results in a highly nonlinear and noncon-
vex problem. This is mainly due the cost function, which
involves fuel burn costs as a function of the airspeed.
These relations cannot be represented linearly through
the decomposition of the airspeed vector. To overcome
the nonlinearity and nonconvexity, we present a model



that makes use of special ordered sets of type two
(SOS2). The solution space is segmented into multiple
regions, and by using SOS2 variables, a tight convex
linear approximation of airspeed can be calculated. The
problem can then be cast as a mixed integer linear
program, which can be solved in near real-time even for
conflicts involving a large number of aircraft. Particular
focus has been placed on reducing fuel costs involved
in conflict resolution. This was deemed to be important
given the significant role that fuel plays in the operating
cost of aircraft and the growing concern regarding the
impact of gaseous emissions on the environment. An-
other significant aspect of the proposed approach is the
ability to solve a complex problem in near real-time for
conflicts involving a large number of aircraft.

A model to account for controller workload is de-
veloped in the second phase using a parametric analysis
procedure. While the relationship between the layout
of the airspace and the traffic density and controller
workload are complex and difficult to quantify, there
is no doubt that the number of aircraft the controller
must monitor and continuously deconflict is a significant
driver of controller workload [4, 5]. To this end, we
first reformulateCRP to include an additional constraint
to limit the number of control maneuvers required to
resolve a set of conflicts. The boundβ on the number
of control maneuvers is parameterized, and the problem
CRP− β is solved for all values ofβ = 1, . . . ,N. For
the second parametric workload model,CRP−λ , we in-
troduce an additional cost term in the objective function
of CRP, namely the L-1 norm of the vector of aircraft
maneuvers, weighted by a parameterλ . Ultimately,
the two optimization models present formulations that
consider the workload costs of resolving traffic. Further,
through a comparison of the results over the values of
β and λ with observed number of control maneuvers
performed by controllers, the parameter values that best
reflect the observed conflict resolution procedures can
be determined. This would enable the direct use of the
developed conflict resolution procedures in any ATM
simulation.

In the next section, a brief review of previous
conflict resolution algorithms is presented. Then, we
describe our conflict resolution algorithm, including the
modeling of separation requirements and the linear ap-
proximations of the complex fuel cost structures. After-

wards, we discuss the modified versions of the algorithm
which are used for considering controller workload lim-
itations, along with the parametric procedure utilized.
We then present a simulation methodology for computa-
tional tests and the results of these simulations. Finally,
our conclusions are discussed.

Background
Conflict detection is the identification of potential

conflicts through prediction of future aircraft trajectories
based on their current positions, headings, and flight
plans. A conflict in air traffic occurs when two or
more aircraft encroach the minimum required separa-
tion, as defined by some regulatory agency. In most U.S.
controlled en route airspace the minimum separation
criteria are 5NM. lateral separation and 1,000ft. vertical
separation. Presently, once a conflict is detected, it is
resolved by a tactical air traffic controller by issuing a
clearance to the pilot to change the trajectory, speed or
altitude of one or more aircraft so that the minimum
separation requirements are satisfied.

Aircraft conflict detection and resolution have been
studied extensively. A comprehensive survey of the
proposed models is presented in [6]. Since the publi-
cation of that survey, several other methods have also
been introduced. Among the methods proposed, three
of them are directly related to the approach described in
this study. These methods contain integer programming
models, which enable relatively fast calculations of an
optimal conflict resolution procedure. In the first study
[7], two integer programming models are developed by
allowing all aircraft to perform either speed changes or
heading changes, but not both. The objective of the con-
flict resolution algorithm is defined as the minimization
of the maximum deviation of the changes made. The
second study [8], a similar integer programming model
is discussed. However, the model assumes that only
heading changes are allowed to resolve conflict. A third
approach [9], considers the problem in three dimensions,
and solves for a resolution with only velocity changes
using a nonlinear integer programming model, which
requires a high level of computational effort.

Conflict resolution algorithms that try to model
controller workload issues are few. The authors of
[8] utilize an integer programming model to route air-



craft, minimizing the number of conflicts, and thus the
workload of the controller. The model is implemented
as a conflict detection and resolution procedure. The
controller workload is modeled through a knowledge-
based approach in [10], where a decision tree structure
represents conflict resolution procedures. Although not
a direct conflict resolution procedure, a traffic control
algorithm is presented in [11] and the algorithm is used
to consider controller workload. A somewhat differ-
ent study is [12], where the authors study the effect
of workload on conflict resolution procedures used by
controllers.

A Fuel-Optimal Near Real-Time Con-
flict Resolution Algorithm

There have been two general approaches in the
existing conflict resolution studies: rule-based and
optimization-based methods. The biggest advantage of
rule-based approaches is that they can be implemented
in real-time without significant computational effort.
Conversely, full nonlinear formulations have limited the
applicability of optimization methods. Our approach
remedies that shortcoming by developing a model that
can be implemented to resolve conflicts in near real-
time. This is accomplished by using an efficient integer
programming model, which is described in detail below.

Problem Description
Consider a set ofn aircraft located in a Euclidean

plane. Each aircrafti is defined by an initial position
pi = (xi,yi), a velocity vectorv0

i = (v0
i,x,v

0
i,y) defining

speed and heading, and a desired final headingθd
i . This

initial state assumption is valid for en route travel, as the
vast majority of en route travel is dominated by steady-
state cruising of aircraft.

Each aircraft in the problem is associated with
different model types with corresponding fuel burn char-
acteristics. Sample “fuel burn curves” at 33,000 ft
(FL330) for three different types of aircraft are shown
in Fig. 1, based on data obtained from [13]. In this plot,
fuel costs are scaled such that a value of 1 corresponds
to the minimum fuel burn for the given aircraft type and
flight level. The primary task is to assign each aircraft a
single instantaneous heading and speed change att = 0
that provides conflict-free travel, while minimizing a
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Figure 1: Sample fuel burn curves for three different
aircraft models at FL330 [13]

v
+,r

jv
+,r

i

ωi,j
D1,2

d/2

ωi,j

v
+

j

v
+

i

Figure 2: Each aircraft is modeled to have ad/2 safety
region. To prevent singularities, all pairs of planes are
rotated

measure of the fuel burn costs over all the aircraft.
The trajectory of any aircrafti is deemed to be

conflict free if the distance between aircrafti and any
other aircraft j, di, j = d j,i, will always be greater than
the minimum distance ofdmin

i, j . For the purpose of
commercial air travel, the nominal minimum separation
distance,d = dmin

i, j , between aircraft is 5NM. The mini-
mum separation distance can be visualized by encircling
each aircraft with a safety region of radiusd/2, as shown
in Fig. 2. If we assume that trajectories of aircraft are
linearly extrapolated in time, then for aircrafti and j with
given trajectories, the necessary minimum separation
condition is expressed by the following inequality:

√

x2
dist + y2

dist ≥ d ∀t ∈ R+ (1)



wherexdist andydist represent the distance between the
two aircraft in the corresponding coordinate axes:

xdist = (xi + vi,xt)− (x j + v j,xt)

ydist = (yi + vi,yt)− (y j + v j,yt)
(2)

Over the next few sections, we describe a method-
ology for formulating a fuel-optimal conflict resolution
model that ensures that separation conditions (1) hold for
t ∈ R+. Unlike most models in the literature, the process
yields a mixed integer linear programming problem,
which is solvable in near real time for dynamic routing
decisions.

Before describing the details of the proposed ap-
proach, we first list some initialization assumptions. We
assume that no aircraft violate the minimum separation
conditions (1) at t = 0. Also, no initial conditions are
such that aircraft are on a collision course that cannot
be avoided with control actions over a reasonable time
frame.

The model does not take into account the time to
execute state changes. It is assumed that the time to
complete any maneuver change is small in comparison to
the time until conflict. However, the safety region about
each aircraft can be expanded to handle uncertainty from
resulting maneuver changes, wind variation, or other
unmodeled phenomena.

Starting with the initial conditions
{

(pi,v0
i )

}

, the
solution to the resulting optimization model is the set
of new velocity vectors

{

v+
i

}

for each aircraft. Updated
speed and heading commands can then be extracted from
v+

i . The new velocity vectorv+
i represents the solution

for an instantaneous change in the trajectory.

Problem Formulation
For conflict-free trajectories, each pair of aircraft

must satisfy separation constraint (1). In this section a
basis formulation is presented in which the separation
condition is deconstructed into a set of linear constraints
that ensure no aircraft encroaches another aircraft’s
safety region. This approach is similar to the one used in
[7] to determine the separation constraints.

Consider a pair of aircrafti and j with initial
position and velocity states:

pi = (xi,yi), v0
i =

[

v0
i,x,v

0
i,y

]T

p j = (x j,y j), v0
j =

[

v0
j,x,v

0
j,y

]T
(3)
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Figure 3: Definition of the safety regions for aircraft

A given aircraft i may alter its trajectory to pre-
vent conflict by changing its velocity vector bydvi =
[dvi,x,dvi,y]

T . Applying dvi to each corresponding air-
craft defines new trajectories as follows:

v+
i = v0

i +dvi, v+
j = v0

j +dv j (4)

To avoid singularities in the problem formulation,
the reference frame for the pair of planes is rotated so
that the angleωi, j = 0, whereωi, j is the angle between
the horizon and the connector between the aircraft. This
process is demonstrated in Fig.2. For an initial angle
ωi, j ∈ [0,2π), rotation is performed by multiplying the
initial position and velocity vectors by the rotation ma-
trix R(ωi, j):

R(ωi, j) =

[

cos(ωi, j) sin(ωi, j)
−sin(ωi, j) cos(ωi, j)

]

pr
i = R(ωi, j)(xi,yi), v+,r

i = R(ωi, j)v+
i

pr
j = R(ωi, j)(x j,y j), v+,r

j = R(ωi, j)v+
j

(5)

Once the rotation is performed, a set of linear
constraints to ensure that a pair of aircraft maintain
separation is derived from the relative velocityṽi, j and
initial position p̃i, j of aircraft i and aircraftj, i.e.:

ṽi, j = v+,r
i −v+,r

j

p̃i, j = p+,r
i −p+,r

j

(6)

Conflict between aircrafti and aircraftj occurs when the
ray originating from aircrafti extending along̃vi, j passes
through the safety region around aircraftj. For aircraft
with safety regions of radiusd/2, the projected safety
region of aircrafti along ṽi, j must remain outside the
safety region of aircraftj, as illustrated in Fig.3.

By understanding the method of ray extension
along the relative velocity, the allowable regions forṽi, j



can be delineated. Ultimately, the set of lines,lp
i, j andln

i, j,
with slopesmp

i, j and mn
i, j, tangent to the safety regions

of each aircraft is key to defining the linear constraints
through the following relation:

ṽi, j,y

ṽi, j,x
≤ mn

i, j

or
ṽi, j,y

ṽi, j,x
≥ mp

i, j

(7)

For aircraft that areD distance apart, with mandatory
separationd, the slopesmp

i, j andmn
i, j are given by:

mp
i, j = d/

√

D2−d2

mn
i, j = −d/

√

D2−d2
(8)

Constraints (7) can be expressed as linear inequalities
by multiplying the right-hand side by the denominator
ṽi, j,x, separating the condition ˜vi, j,x ≤ 0, and removing
overlaps in the constraints:

ṽi, j,y ≤ ṽi, j,xmn
i, j, ṽi, j,x ≥ 0

or

ṽi, j,y ≥ ṽi, j,xmp
i, j, ṽi, j,x ≥ 0

or

ṽi, j,x ≤ 0

(9)

The separation constraints (9) are expressed as linear
inequalities of the decision variables ˜vi, j,x and ṽi, j,y,
which are functions of the speed and heading changes,
dvi. Furthermore, the condition ˜vi, j,x ≤ 0 allows for the
case of aircraft trailing one another, i.e. the singularity
of ṽi, j,x = 0 in the slope is admissible for this formu-
lation. The constraints (9) are then applied to all pairs
of aircraft. As the constraints are reciprocal, only one
set of constraints is required for each pair. Because all
pairs of aircraft are resolved simultaneously for all future
time, there are no secondary conflicts. In line with the
primary goal of providing a framework in which fuel
costs are considered in conflict resolution and aircraft
routing, an appropriate cost functionG0(s,θ) can be
defined as:

G0(s,θ) = gs(s)+ gh(θ) (10)

where gs and gh are nonlinear scalar functions of the
airspeedss, and the headingsθ of the aircraft. The
function gs measures the fuel burn percentage of an
aircraft, while gh accounts for the scaled increase in
distance traveled due to a deviation from the desired
route, and the estimated cost to return to the desired
path. Considering both parts,G0 is the fuel consumption
percentage with respect to the optimal path at a desired
airspeed when there are no obstacles for all aircraft.

The measuress and θ are nonlinear nonconvex
functions of the decision variablesdvi. In the following
sections, we develop tight convex linear approximations
for the cost functionsgs(s) andgh(θ), and show that the
underlying optimization problem can be modeled as a
linear integer programming problem.

Previous conflict resolution research described in
the introduction focused on minimizing the required
velocity deviation,dvi, to ensure separation. Noting that
any such deviation incurs costs, a measure of airspeed is
required to provide a broader framework to understand
and study the fairness and costs associated with aircraft
routing. The final airspeed of aircrafti, s+

i , can be
calculated according to a first-order approximation:

s+
i ∼ s0

i +
1

s0
i

[v0
i,xv0

i,y]dvi = ŝi (11)

While a first-order approximation is satisfactory fordvi

when
∥

∥dvi ×v0
i

∥

∥ ∼ 0, the approximation degrades as
larger heading angle changes are required to avoid con-
flicts. For heading deviations of 15◦ and greater, error
from a first-order estimate of airspeed diminishes the
ability of any formulation to utilize the approximation
to effectively solve for fuel-optimal routing.

To overcome the shortcomings of a first-order ap-
proximation, constraints making use of Special Ordered
Sets of Type 2 (SOS2) can provide a more accurate
approximation of airspeed. SOS2 variables are a set
of non-negative continuous variables such that, at most,
one pair of consecutively indexed variables is nonzero.
Hence, ifλ1, . . . ,λn is SOS2, and ifλi ≥ 0, then either
λi−1 ≥ 0 or λi+1 ≥ 0 and all otherλ j = 0. Although
introduction of SOS2 variables into the optimization
model adds to the complexity of the formulation, it
enables a much better approximation of the airspeed over
the feasible region.



Consider an aircraft with some initial headingθ0,
and which can perform heading changes of±dθ to
ensure separation. We assume that the range of possible
final heading values is broken intom adjacent regions
according to the setθ = {dθ1 + θ0, . . . ,θ0, . . . ,dθm +
θ0} = {θ1, . . . ,θm}. These regions need not be uniform
in size. A grid structure over the feasible space is
then formed including the origin, and the set(Xq,Yq) =
{

vmax
i cos(θq),vmax

i sin(θq)
}

, ∀q ∈ {1,2, . . .m}. The
functionZq =

∥

∥vq
∥

∥ is then evaluated over the grid points.
The airspeed estimate, ˆsi, is calculated by forming a
convex combination of the function values of the grid
points associated with the sector encompassingv+

i . The
airspeed is given by the following set of constraints:

v̂+
i,x =

m

∑
q=0

Xqλq

v̂+
i,y =

m

∑
q=0

Yqλq

ŝi =
m

∑
q=0

Zqλq

m

∑
q=0

λq = 1

λq ∈ SOS2 ∀q

(12)

The SOS2 approximation yields a much tighter
approximation over the domain, as shown in Fig.4. For
the example provided, using only four regions spread
over±45 degrees around the initial heading, the largest
percent error between the approximation and the actual
airspeed is only 2%. In comparison, the linear approx-
imation in (11) increases to approximately 30% at 45◦.

For cost calculations due to airspeed changes, we
assume that the airspeed cost for each aircraft is the
percent deviation in fuel burn, per unit distance traveled,
when compared to the optimal speed of the aircraft.
Given the fuel burn per minute as a function of the true
airspeed, this value can be converted to fuel burn per NM
traveled by dividing by the ground speed.

Given a set with different aircraft models, it is
important to consider the fuel burn equations for each
model type. For each aircraft model, we define a set of
l linear inequalities defined by slopesak,i and intercepts
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Figure 4: Percent error in the SOS2 approximation of
airspeed

bk,i for k = 1, . . . , l, based on fuel curves such as the ones
in Fig. 1. These inequalities are then used to formulate
the approximate convex fuel cost,ti, for theith aircraft:

a1,i ŝi + b1,i ≤ ti
a2,i ŝi + b2,i ≤ ti

...

al,i ŝi + bl,i ≤ ti

(13)

The fuel cost associated with a heading angle devi-
ation and a return to the desired flight path is approx-
imated using a two step process that is illustrated in
Fig.5. In the first step, the aircraft makes a heading angle
change to resolve conflict. Then in the second stage,
the heading is corrected back towards the destination,
as soon as the aircraft is clear from the conflict. In
conjunction with conflict detection methods, we assume
that there exists a complete knowledge of the system.
Particularly, we assume that conflict detection methods
can predict the largest distancedi,1, for a possible con-
flict between aircrafti with another aircraft assuming
no corrective action is taken, wheredi,1 is illustrated in
Fig. 5. Let Di = di,1 + di,2 designate the straight-line
distance between the destination and the current position
of the airplanei.
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If maintaining separation requires a heading angle
change, then the travel distance isLi,1 + Li,2, and the
normalized increaseDp,i in the travel distance is:

Dp,i = (Li,1 + Li,2)/Di (14)

The next step is to establish a relationship between
the change in the heading angle and the resulting in-
crease in fuel cost. Making use of the heading change
dθi instead ofLi,1 in (14) and applying the law of cosines
to solve forLi,2 over the rangedθi ∈ (−π/2,π/2), Dp,i

can be represented as:

Dp,i(dθi) =

di,1

cos(dθi)
+

√

(

di,1

cos(dθi)

)2
+ D2

i −2di,1Di

Di
(15)

where the first term in the numerator corresponds toLi,1,
and the second term corresponds toLi,2.

Assuming that any heading angle change allows
the aircraft to fly near the optimal fuel burn speed, the
additional distance can be used as a fuel consumption
measure. To integrate this measure, we develop a
tight linear approximation of the relation in (15). Note
that (15) is a convex function in the intervaldθi ∈
(−π/4,π/4), yet nonconvex in the decision variables
dvi. A contour plot ofDp,i as a function of the airspeed
changesdvi is given in Fig.6. Thus, a linear approxi-
mation is possible by fitting a set of 2q planes between
angles[θ−q, . . . ,θ0, . . . ,θq] to (15). Each planew, ap-
proximating (15) within some interval[θw,θw+1], can be
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determined by first calculating the pointsxw,yw,zw and
xw+1,yw+1,zw+1 as follows:

xw = vi,maxcos(θw)

yw = vi,maxsin(θw)

zw = Dp,i(θw)

xw+1 = vi,maxcos(θw+1)

yw+1 = vi,maxsin(θw+1)

zw+1 = Dp,i(θw+1)

(16)

Then, a linear function relating the scaled increase in
distance traveled due to a heading deviationdθi, where
dθi ∈ [θw,θw+1] can be obtained from:

det









x y D̂w
p,i −1

x− xw y− yw D̂w
p,i − zw

x− xw+1 y− yw+1 D̂w
p,i − zw+1







 = 0

(17)

whereD̂w
p,i is the approximate percent increase in dis-

tance traveled andx = v+
i,x andy = v+

i,y. Note that (17) is a
direct result of the points(xw,yw,zw),(xw+1,yw+1,zw+1)
and(x,y,D̂w

p,i) being on the same plane. The resulting re-
lation can be included as a constraint in the optimization
model as:

D̂w
p,i = c1x+ c2y+ c3 (18)
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wherec1, c2, andc3 are constants obtained from (17).
As shown in Fig.??, the convex planar representa-

tion closely approximatesDp,i(dθi). The approximation
error is less than 1% for most values of the heading angle
change within the nominal operating bounds.

Assuming that the aircraft operates at the optimal
fuel burn rate when applying a heading change, the
additional percentage fuel cost,ui, due to the heading
angle change for theith aircraft, over the optimal fuel
burn rate is equal to the additional percent distance
traveled, i.e.Dp,i.

To implement the planar approximation in the op-
timization model, the following constraints to define the
heading change costs,ui, for each aircraft is included in
the formulation:

D̂w
p,i ≤ ui ∀w (19)

We assume that the overall objective is a mixture of
the minimization of the sum of individual fuel costs, i.e.
tsum, and minimization of the maximum fuel burn over
all the aircraft, i.e.tmax (to ensure that no single aircraft
is excessively penalized). Note that the individual fuel
costs are equal to the sum of the costs incurred due to
the change in airspeedti and the costs due to the change
in heading angleui. Thus, the overall objective function

for the problem can be expressed as:

f f uel = Jmtmax + Jstsum (20)

where Jm and Js are constants that form a ratio for
valuing the minmax or cumulative sum approaches, and
can be determined based on the policy that the decision
maker wants to implement. The variablestsum andtmax

are defined in the formulation through the following sets
of constraints:

ti + ui ≤ tmax ∀i

tsum =
n

∑
i=1

(ti + ui)
(21)

Hence, the overall formulation for the conflict res-
olution problem can be summarized as follows:

CRP: min Jmtmax + Jstsum

s.t.
ṽi, j,y − ṽi, j,xmn

i, j ≤ (1− ri j
1 )Mi j

1 ∀i < j

−ṽi, j,x ≤ (1− ri j
1 )Mi j

1 ∀i < j
−ṽi, j,y + ṽi, j,xmp

i, j ≤ (1− ri j
2 )Mi j

2 ∀i < j

−ṽi, j,x ≤ (1− ri j
2 )Mi j

2 ∀i < j
ṽi, j,x ≤ (1− ri j

3 )Mi j
3 ∀i < j

D̂w
p,i = ci

1v+
i,x + ci

2v+
i,y + ci

3 ∀i
ṽi, j,x = v+,r

i,x − v+,r
j,x ∀i < j

ṽi, j,y = v+,r
i,y − v+,r

j,y ∀i < j

R(ωi, j) =

[

cos(ωi, j) sin(ωi, j)
−sin(ωi, j) cos(ωi, j)

]

∀i < j

v+,r
i = R(ωi, j)v+

i ∀i < j
v+,r

j = R(ωi, j)v+
j ∀i < j

al,isi + bl,i ≤ ti ∀l, i
ti + ui ≤ tmax ∀i

tsum = ∑n
i=1(ti + ui)

∑3
k=1 ri j

k = 1 ∀i < j
v+

i,x = ∑m
q=0Xqλq ∀i

v+
i,y = ∑m

q=0Yqλq ∀i
si = ∑m

q=0 Zqλq ∀i
D̂w

p,i ≤ ui ∀w, i
∑m

q=0λq = 1
ri j

k ∈ {0,1} ∀k, i < j
si, ti,ui, tmax, tsum,D̂w

p,i ≥ 0
λq ∈ SOS2 ∀q

(22)



For brevity, the above formulation is written as:

min Gbase(v)
s.t. v ∈ V

(23)

whereV is the set of feasible maneuvers.

Consideration of Controller Workload
UsingCRP as the basic problem structure, we de-

fine two additional formulations that consider controller
workload limitations. The first formulation,CRP− β ,
uses some additional binary variables and a parametric
bound β to limit the maximum number of deviations
allowed for conflict resolution. The second formulation,
CRP−λ , is based on theL1 norm of the vector of aircraft
maneuvers and attempts to approximate the maneuver
limitations by adding a penalty function to the cost.

CRP−β Formulation
In the first workload formulation, we include an

additional term to the cost function ofCRP, as well as
some supplementary constraints. These modifications
are used to restrict the number of resolution commands
that can be used to resolve conflicts.

If β is the maximum number of resolution com-
mands allowed, andκi is an additional binary variable
to indicate if aircraft i is not being issued a conflict
resolution command, then the problem becomes:

CRP−β : min Gbase(v)+ K ·Rtotal

s.t. κi ⇒ vi = 0
Rtotal = N −∑N

i=1κi

Rtotal ≤ β
v ∈ V

(24)

whereN is the number of aircraft andK is some non-
negative cost coefficient, allowing the inclusion of a
penalty function based on the total number of resolution
commands.

Inclusion of the binary variablesκi, and the corre-
sponding constraints increases the computational diffi-
culty of the problem. However, it allows specification of
the maximum number of resolution commands. Such a a
limitation is a valid approximation for considering limits
of controller workload since there is a practical limit to
the number of resolution commands a human air traffic
controller can issue in a given time frame.

UsingCRP−β it is also possible to fix the number
of aircraft resolutions to a specific value. Furthermore,
if the optimization is run in a receding horizon format,
such that it is solved at regular time intervals, it can
be linked to controller constraints. For example, if
a controller is limited toL̄ communications everyδT
minutes, thenβ = L̄/δT .

CRP−λ Formulation
Similar to CRP − β , CRP − λ is based on the

original formulation with slight modifications to the
cost function. We first introduce the variableΓi to
represent the absolute measure of deviations for each
aircraft i. The L1 norm of the vectorΓ, multiplied by
the parameterλ is then used to implement a penalty
cost for the deviations. As the multiplierλ is increased,
the optimization solution will reduce the number of
deviations. And atλ → ∞, the solution will locally
converge to include the minimum possible number of
deviations. This formulation can be expressed as:

CRP−λ : min Gbase(v)+ λ ||Γ||1
s.t. Γi = ||dvi||1

v ∈ V

(25)

The formulation above is a relaxation of theCRP−
β , as the number of allowable maneuvers is not bounded.
It has some key benefits, as it balances fuel cost savings
to the number of resolution commands that can be issued
at any time. Because it does not fix the number of resolu-
tions, it is always guaranteed to be feasible, assuming the
CRP is feasible. Furthermore, note that the formulation
does not require the addition of new binary variables
or complicating constraints. As a result,CRP− λ can
be solved in the same time magnitude as the base CRP
formulation.

Simulation and Results
In this section, we describe the methodology used

in computational testing of the two workload formula-
tions, and present a comparison of the two algorithms.
The objective of the computational tests is to analyze
the effects of the parameterβ and λ on the conflict
resolution procedure, and assess the ability of the formu-
lations to provde results consistent with expected con-
troller decisions. To this end, we study the performance



of the two workload formulations through a series of
randomly generated scenarios based on current air traffic
conditions, with varying levels of traffic volumes.

Simulation Methodology
The computational tests implements the formula-

tions in a realistic setting based on air traffic patterns
in sector ZME19 within the Memphis Air Route Traffic
Control Center. Single flight-level traffic loads up to 13
aircraft at the median peak levels were used to demon-
strate that the proposed algorithm can be implemented
in real operational situations. These realistic tests were
conducted dynamically in a receding horizon format
to simulate directing traffic through the sector. The
conflict resolution problem was solved in 30 second
intervals if a new aircraft arrived during the time period.
Otherwise, the resolution problem was solved nominally
every 5 minutes. The simulations were stopped when all
generated arrivals cleared the sector.

To approximate traffic through the sector, a sta-
tistical distribution of entry-exit pairs was generated
using historical data of aircraft traveling through the
center at and above FL300 during the 24 hour period of
September 1, 2005. The sector boundary was broken up
into 10NM segments, which were numerically identified
as entrances and exits. For the distribution, each aircraft
was designated to enter and exit through a particular
boundary segment. Aircraft interarrival times into the
sector were assumed to follow an exponential distribu-
tion with a slight modification such that aircraft entering
at the same entrance had a minimum time separation of
2 minutes.

To increase traffic loads, the average interarrival
time between aircraft was decreased. For simulations,
the average interarrival time between aircraft was taken
at [2,3,4, . . . ,10] minutes between aircraft. For each
arrival-rate, 10 samples were taken with 200 aircraft
each. The median peak number of aircraft in the sector
for each arrival rate is shown in Fig.8. Aircraft models
were also assigned according to a sampled distribution
taken from the historical data. The aircraft span a broad
range, including regional, narrow body, wide body, and
business class jets. All sampled aircraft trajectories
provided to the simulation were assumed to be flying
east to west at FL360, consistent with the current traffic
pattern in the sector. An example of the sampled traffic
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Figure 8: Median peak number of aircraft in the sector
for each arrival rate
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Figure 9: Distribution of en route flights in ZME19

pattern through the sector is displayed in Fig.9. The
darker and thicker lines in the figure correspond to entry-
exit pairs that are used more frequently.

The simulations were performed similar to a near-
real time implementation, where the problem was solved
multiple times for a stream of 200 aircraft entering the
sector. WhileCRP− λ is implemented as presented in
its formulation, a more complex procedure is used for
CRP− β to ensure feasibility. In the simulation runs,
the parameterβ was defined as the upper bound on the
number of resolutions commands issued in a 5 minute
interval. Initially, as new aircraft enter the sector, the
minimum number of aircraft are issued commands to
resolve any conflicts by assigning a large value to weight
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Figure 10: Distribution of minimum aircraft miss dis-
tances from historical data

K in the model. Then, the number of issued resolutions
during the 30 second interval is subtracted fromβ . If the
number of remaining maneuvers is insufficient to solve
the resolution problem at each 5 minute update, then the
minimum resolution solution with a large value ofK is
applied once again to resolve conflicts.

While the nominally required separation between
aircraft is 5NM, the simulations were performed with
a spacing requirement of 8NM to better replicate en
route conditions and controller actions. This was qual-
itatively determined by plotting the historical sampled
distribution of minimum aircraft miss-distances for the
sector, flight-levels, and day considered. As shown by
the miss-distance data in Fig.10 there is a qualitative
change in the distribution near 8NM. While the figure
shows that some flights violated the minimum separation
requirements of 5NM, it is assumed that errors in the
miss-distances exists due to radar measurement error and
interpolation error between the sampled data. Lastly, to
reduce the overall complexity of the problem, only air-
craft coming within 16NM of each other are considered
in the conflict resolution problem.

Simulation Analysis
The simulations were performed for each of the two

workload formulations, and the changes in the number of
resolution commands for varying levels of the workload
parameters,β and λ , were analyzed. Overall, the two
different implementations return mostly similar results

in regards to achieving the desired goal of limiting work-
load when using a semi-automated conflict resolution
algorithm with a human-in-the-loop.

We first consider the results from theCRP − β
implementation. In Fig.11, the average number of reso-
lution commands for each aircraft are shown for various
workload parameter values. It can be observed that as
β is increased, the number of resolutions commands per
aircraft goes up. However, while it can be concluded that
limiting the number of resolutions in any 5 minute period
can reduce the overall number of commands issued to an
aircraft, it does not necessarily reduce the peak number
of resolution commands at any time instance, as shown
in Fig. 12. Therefore, the reported peak number of
resolution commands at any time can remain relatively
high.

As an example, for the case in which the number
of resolution commands issued in a 5 minute period is
limited to β = 4, it is possible that the algorithm issues
all 4 commands at a single point in time. From a con-
trollers perspective, such workload involves a stressful
and difficult task. Also note that for the caseβ = 2,
Fig. 12 indicates that at higher-traffic loads, limiting
the number of resolution commands is unable to handle
the traffic volume, e.g., the average peak number of
commands issued in any time period is greater thanβ =
2. Such information can also be useful in analyzing the
level of traffic that a sector can accept, given a maximum
rate of issuing resolution commands based on controller
limitations.

Although the results from theCRP−λ formulation
are in general similar to that ofCRP−β , a smoother pat-
tern is evident in terms of representing workload. In Fig.
13, we can observe that the number of maneuvers per
aircraft increases proportionally with decreasing values
of λ for each arrival rate. This proportionality appears
to be mostly exponential. In addition, as shown in Fig.
14, the peak number of resolution commands per interval
remains relatively low when compared with theCRP−β
formulation. Hence, the result demonstrates that by
adjusting theλ parameter, not only can the average
number of commands issued per aircraft decrease, but
also the expected peak number of commands at any point
in time. This behavior is more likely to be acceptable to
a human controller.

We also compare the number of resolution com-
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Figure 11: Workload-curves for various β according to
CRP−β

2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

Integer Model: Average Aircraft Interarrival Time [min]

A
ve

ra
ge

 P
ea

k 
N

um
be

r 
of

 R
es

ol
ut

io
n 

C
om

m
an

ds
 P

er
 In

te
rv

al

 

 

β=2

β=4

β=6

β=8

β=10

β=12

β=14

β=16

β=18

β=20

Figure 12: CRP− β : Average peak number of resolution
commands required at any instance in time

mands over any 5 minute period. Figures15 and
16 display the corresponding curves forCRP − β and
CRP−λ , respectively. As expected,CRP−β solutions
involve lower peak number of maneuvers over a longer
period of time. This is at the expense of a higher
peak number of instantaneous commands issued at any
resolution epoch, as discussed above. On the other
hand,CRP− λ solutions with higherλ values produce
similar results, demonstrating thatCRP− λ is a more
flexible formulation. While this is the case, theCRP−β
formulation provides some additional insight into the
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Figure 13: Workload-curves for various λ according
CRP−λ
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Figure 14: CRP− λ : Average peak number of resolution
commands required at any instance in time

type of workload air traffic controllers should expect for
a given arrival rate. It can be noted that even as the
number of allowed maneuvers increases, at low traffic
volumes the number of required resolutions converge. In
all cases, however, as the workload parameters become
more restrictive, the total number of maneuvers within a
5 minute period decreases.

Figures17 and 18 present the average number of
resolution commands issued to each aircraft for differ-
ent interarrival times, as a function of the workload
parametersβ and λ , respectively. These plots provide
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Figure 15: CRP− β : Average peak number of resolution
commands required over a 5 min period
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Figure 16: CRP− λ : Average peak number of resolution
commands required over a 5 min period

a better representation of the sensitivity of the formula-
tions with respect to different values of the parameters,
which is likely to be significant in an empirical analysis
to determine the best values of these parameters for
representing controller workload. For example, in terms
of the average number of maneuvers per aircraft, it can
be seen that at lower values ofβ , the marginal effect of
the parameter is similar for all arrival rates. On the other
hand, similar behavior is not observed for the parameter
λ , as shown in Fig.18.

It should be noted that for all the simulations,
regardless of the workload parameter, any increase in
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Figure 17: CRP− β : Average number of commands per
aircraft according to the workload parameter β
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Figure 18: CRP− λ : Average number of commands per
aircraft according to the workload parameter λ

fuel burn due to conflict resolution solutions over opti-
mal fuel-burn levels was limited to 0.5% for all traffic
loads. This value is well within any uncertainty due
to modeling errors in the fuel curves and wind effects.
This demonstrates the value of maintaining considera-
tion of fuel costs in conflict resolution. Furthermore,
because the required minimum miss-distance is 8NM,
it is actually possible to relax some of the resolution
commands to achieve better fuel performance. However,
this was not done in the simulations, as the objective was
to represent en route traffic and controller behavior.



Conclusion and Future Work

It has been demonstrated that workload limitations
can be integrated into a conflict resolution model, while
still preserving fuel-cost efficiency. In fact, even as
workload parameters become increasingly stringent, it
is possible to maintain an acceptable trade-off with
increased fuel consumption. To this end, we have
presented two different parametric formulations, and
performed simulations to analyze the suitability of the
formulations in respecting controller workload limits.
The results are promising for both formulations, and
different insights can be gained from each implementa-
tion. Overall,CRP− λ appears to be a more flexible
and consistent formulation, and on average it tends to
produce results that contain a higher number of total
maneuvers, but lower number of simultaneous resolution
commands. On the other hand,CRP − β typically
produces a less balanced set of conflict resolution ma-
neuvers, but the resolutions typically involve a lower
number of total resolution commands. Hence, given
these two parametric tools, it is possible to perform an
empirical analysis to identify the values ofβ andλ that
best support the actions of a human controller.

Overall, this paper represents the first step in at-
tempting to explicitly account for and support limitations
on human decision making capabilities. This under-
standing will allow for the development of optimization
algorithms which are better suited for implementation in
decision support system.

Despite their effectiveness, the presented models
involve some assumptions, and thus have some draw-
backs. Because the workload and conflict resolution is
only solved for instances in time, there is no concern for
any conflicts and additional work that may be generated
following an initial maneuver in order to return to the
desired path. In fact, if exit constraints are fixed, for
every initial resolution maneuver, it is expected that
another maneuver will be needed. As such, there exists
a probability of generating future conflicts. Also, the
model does not present a method for limiting the number
of commands over a given period of time, which if
included could provide more flexibility in a conflict res-
olution formulation that considers workload constraints.
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