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Abstract—For the purposes of this paper, the National vided by the pilot following some standard-operating
Airspace System (NAS) encompasses the operations of allprocedure for given airport, aircraft, weather conditions
aircraft which are subject to air traffic control procedures. inqirictions from air traffic control, and other contextual

The NAS is a highly complex dynamic system that is . .
sensitive to aeronautical decision-making and risk manage- elements of the flight, the flight procedures are well

ment skills. In order to ensure a healthy system with safe determined. The observed characterisfi¢sare repre-
flights a systematic approach to anomaly detection is very sentative of the flight behavior and hold a complex
important when evaluating a given set of circumstances relationship with the input/. Such a system that can

and for determination of the best possible course of action. ; : ; ; .
Given the fact that the NAS is a vast and loosely integrated be functionally described by the following equations:

network of systems, it requires improved safety assurance h, = T(h_,)

capabilities to maintain an extremely low accident rate a .

under increasingly dense operating conditions. Data mining x¢ = WU(x;_y, b w)

based tools and techniques are required to support and aid v = Qx) (1)

operators’ (such as pilots, management, or policy makers)

overall decision-making capacity. Within the NAS, the Equation 1 describes a system with as the observed
ability to analyze fleetwide aircraft data autonomously is system input, andy; is the observed system output
still considered a significantly challenging task. For our . ' ; . .
purposes a fleet is defined as a group of aircraft sharing Wh'c_h can take any form of discrete, categorical, gnd
genera”y Compatib|e parameter lists. Here, in this effort’ continuous featureS Here we a.ssume that the funCtlonS
we aim at developing a system level analysis scheme. In thisI" and ¥ are unknown. The functions and ¥ determine
paper we address the capability for detection of fleetwide the evolution of the hidden system stdte and govern
anomalies as they occur, which itself is an important he eyolution of the continuous state vector respectively.

initiative toward the safety of the real-world flight oper- : . .
ations. The flight data recorders archive millions of data We assume that the vectaris an N dimensional state

points with valuable information on flights everyday. The Vector, andx;_, is its history for the lastD time
operational parameters consist of both continuous and dis- Steps:x; ; = [Xt—p,Xt—D+1,-.-,Xt—1]. The hidden
crete (binary & categorical) data from several critical sub-  state h; is assumed to correspond to different mode
systems and numerous complex procedures. In this paper, configurations within the system and each mode affects

we discuss a system level anomaly detection approach base he output dvnamic®. In response to anv malfunction
on the theory of kernel learning to detect potential safety . P y ) P y

anomalies in a very large data base of commercial aircraft. N the system,h; could move to an abnormal state,
We also demonstrate that the proposed approach uncovers thus also changing the nature of the observed output.
some operationally significant events due to environmental, |t is not necessary thah, always has to move to an
mechanical, and human factors issues in high dimensional, 3pnormal state. It can very well reside in some unfamiliar

multivariate Flight Operations Quality Assurance (FOQA) s . . .
data. We present the results of our detection algorithms on state within the normal operational regime. In practice a

real FOQA data from a regional carrier. similar situation will arise when all pilots are attempting
to follow the same standard operating procedures, while
. INTRODUCTION some of them may deviate from these procedures which

Suppose the entire database that is available for_CQlUId lead to a different input sequencg, resulting

given system, covering both inputs and outputs, is givéR @ different set of observed flight characteristis
by the set(i/,)). In real-world flight operations, the which may be unusual but not necessarily wrong. The

input 4 can be due to exogenous disturbances or prBEOblem that we address in this paper is to develop a



method to discover whether or not the current observednduct the analysis on a much larger-scale dataset. In
vector) along with the discrete pilot inputg represent addition we provide some useful insight from domain
a state that is atypical or abnormal based on the obsenatented explanations. We demonstrate the capability of
history of the system. We want to emphasize, here thifie proposed methodology in terms of its flexibility to

in this particular research we don't intend to modgbrocess a variety of heterogeneous data sources without
dynamic behavior or relationship between input ancformulating the problem whenever there is a change
output variables in systems described above. Rather fheinformation content or data structure. The formula-
objective is to identify simultaneously unusual patterngson we demonstrate in this paper is very simple and
in any combinations of inpuf{) and output(}). can easily be adopted for fleetwide analysis in various

Over the last few decades, with improved Sensi,@omains includir_1g medical applications, airspace safety,
capabilities, we have seen tremendous increase in RiSiness analysis etc.
formation flow, in terms of the volume and complexity, II. ANOMALY DETECTIONALGORITHMS
created at an unprecedented pace in several disciplines]_he theme of this paper is anomaly detection, also
The aviation industry is no exception. A good example il?nown as outlier detection or surprise pattern detéction
the Distributed National FOQA (Flight Operations Qualt utlier or anomaly detection refers to the task of iden-.
ity Assurance) Archive (DNFA) data base establisheﬁy. K it hich. i
by NASA. DNFA contains millions of flight data from yIng NEw or unknown patierns which, In many cases,

most of the major carriers in the U.S. Typical FOQAare abnormal or inconsistent. The problem of outlier

parameters consist of both continuous and discrete dg%tectlon has been extensively studied using several

- . pproaches [14], [15], [16], [7]. Supervised and un-
from the avionics, propulsion system, control Suncacegtjpervis;ed outlier detection are the two broader cat-

landing gear, the cockpit switch positions, and other ories. In the supervised approach a model is built

critical systems. These data sets can have up to 5 : ;
I detection purpose and this model assumes known
parameters and are sampled at 1 Hz. For a moderafe : o .
class labels. Typical classification based techniques such

sized fleet that operates 1000 flights per day, thesg Bayesian inference, decision trees, Support Vector

FOQA data sets become very large. Today, we are I??g . .
with the challenge of dealing with such a vast amoun ac_hlnes (SVMs)o_r neural network models are built on
eviously labeled instances of both normal and abnor-

of heterogeneous information resources in varieties BF . .
mal data instances. However class labels are expensive

semantic structures. Knowledge discovery from these . ) .
o . d they are not easily available, especially for most of
heterogeneous resources is still a challenging task. { L7 . o .

. . .__the historical data. Given the fact that it is impossible to
this increased complexity of data sources there is {ways have prior knowledge about all possible classes
potential need for building intelligent refinement an&‘r hgve knowFr)1 data Iabelsgor have datapre resenting all
integration frameworks, focusing on information contert’ '8 . ep 9

. possible scenarios or classes, unsupervised techniques
and semantics. : o .
] hold an edge in many applications and play an important

The key aspect of any data analysis method dependie in identifying ‘what is desired and what is rioin
on how the input data was measured within the procegsyataset. Novelty detector is one such specialized tool
and transformed into information. The data sources ajigat classifies the members of a given set of objects
categorized as structured data and unstructured data;g two groups on the basis of whether the model
the aviation domain, a typical example of unstructuredas seen those objects before or not. Kernel based
data is free text data, for example reports or scripigassification methods like single class SVMs, one-class
from pilots describing some events, expert fEE_dbaCk_(R@rnel Fisher Discriminants etc fall under the novelty
the process etc. However in this paper we will restrigietection category and are unsupervised in nature. In
our discussion to analysis using structured data whigRese techniques a model is built on the normal data and
has two main categories, continuous and discrete da§ge idea is to come up with a threshold for determin-
Discrete attributes can be either binary or categorical Mg abnormality and to use a distance based score for
logical order i.e. sequential in nature. evaluating the extent of abnormality. In nearest neighbor

In our earlier research we demonstrated the potebbased approach, the aim is to infer the outliers based
tial of the Multiple Kernel based Anomaly Detectionon the data itself e.g. by finding those points which are
(MKAD) algorithm [9] in detecting anomalies. In at a greater distance from most of the other data points
this paper we attempt to expand on the analysis loy by finding those points which are in a low density
reporting a variety of different interesting anomaliestthaegion. To address the quadratic time complexity which
we have observed in commercial aircraft data. Here vie a bottleneck of k-nn based solutions, researchers like



Angiulli and Pizzuti [3], Angiulli and Fassetti [2], statistical signatures across the parameters of a given
Ramaswamy et al. [17], and Bay and Schwabacher [Bight and clusters the flights based on the multivariate
have proposed promising techniques with improved rwignatures. Similar flights are grouped together and atyp-
time. ical flights are considered to be far away from a cluster
and therefore have higher scores. The distribution of
the anomaly scores are a function of the Mahalanobis
In the airline industry, algorithms that are chosen faflistance from centroids of the multivariate cluster. The
production level implementation must be heavily teste@sults provide the degree of the atypicality along with
and developed to produce reliable and meaningful resuftg contributing parameters, which can be useful for the
before they are selected by the airlines for everydahalysts. The algorithm was designed to be executed on
use. The most widespread method for detecting operdarge set of flights overnight and return the results the
ationally significant anomalies is with domain expertext morning (hence the name Morning Report).
defined threshold exceedances. Methods for detectmgz) Orca: “Orca” [5] is a method used for detecting

unstable and high energy approaches commonly mvo'.‘é%omalies in both continuous and discrete (binary for-

exceedance queries on multiple parameters. Examinin . : .
. t) data in vector space, using a nearest neighbors
the min and max values for each parameter and determbn-

o : ased approach to detect anomalous points. For con-
ing if they fall outside the expected normal range ovetr .

. . . . . . finuous data, Orca takes a nominal reference data set
a given phase of flight is also used to yield interestin

gnd calculates the nearest neighbors using Euclidean

anomalies. These methods have been in use for as Iod?gtance to all test points in the original vector space. For
as the FOQA program has been in existence and have b 9 pace.

provided analysts with valuable results. This is in par inary data points the hamming distance [21] is used and

; .. combined with Euclidean distance. “Orca” ig:anearest
due to the fact that the exceedance events identified are : .
Lo : . eighbor based algorithm adopting nested loop structure
easily interpretable since the user has defined what the > ™. : . o ) .
4 . ) . . in conjunction with randomization and simple pruning
algorithm is looking for. Another attractive feature is the . . . ) ! o
. . . . rule. Pruning used in this algorithm helps in achieving
highly scalable implementation of the algorithm on large

data sets. However, the drawback to exceedance balgg" linear time performance with high dimensional data.

o . . is makes the algorithm scalable for analyzing large
analysis is the fact that typically only the anomalies tha . : .

. : ata sets. The algorithm uses a distance-based metric
are defined are reported to the analyst, leaving the unde- .. ™" ; . .
. or finding an outlier by examining the distance of any
fined anomalous events undetected. In other words the

method only answers the questions that someone thou %Stt point t.Ok existing examples who are con§|dered Its
earest neighbors. If one looks at the local neighborhood

to ask. Algorithms discussed in this paper address t Rd finds that the test points are relatively close, then

issue of detecting “unexpected anomalies”. They are SttI e examples are considered normal. In this algorithm,

in the research level stage, but with increasing mtereesach data point is scored independently and therefore

from the gwlmes may one day be running in a prodUCt'O"El]nomaIies in the temporal domain are undetectable. The
level environment. B e . .
pseudo code of “Orca” is shown in algorithm 1.

B. Research Level Implementations 3) IMS: The Inductive Monitoring System (IMS) [11]

In this section we will describe some anomaly deis a distance based anomaly detection tool that uses
tection techniques that have been extensively used aounsupervised anomaly detection algorithm that uses
analyze FOQA data. Some of these algorithms includiecremental clustering to build models of the expected
Morning Report, Orca, IMS, SequenceMiner, and on@peration of the system on a set of nominal data. The
class Support Vector Machines. These research levebdels are used to test new data to determine whether an
algorithms help complement the exceedance based methemaly is present or not. The underlying concept states
ods by being able to identify the “unexpected anomadhat if the system behaves similar to the normal operating
lies”. Once the anomalies found are analyzed, new parodes that the data was trained on, the distance scores
rameter exceedances can be developed and incorporatdtl be lower than data that are generated from a
into the airlines’ daily analysis to track future or passystem that is in an anomalous state. IMS evaluates each
events. sample, which is a multivariate vector, by calculating the

1) Morning Report: Morning Report [20], [1] is an Euclidean distance to the cluster bounds of each cluster
algorithm designed to detect atypical flights over & the model, and reporting the distance to the closest
set of aircraft and identify the contributing anomalousluster as the anomaly score. A 2D representation in Fig
parameters and phases of flight. The algorithm calculatesan be seen. The normal operating regions are defined

A. Production Level Implementations



Algorithm 1 Orca Algorithm

1:

10:

11:
12:
13:

Input:

Apq - Matrix with ¢ dimensional dataset having
instances arranged in a random order

k : Number of nearest neighbors (default 5)

n : Number of outliers used (default: = p)

: Output:

O(n) : Set of outliers
Sglobal - Global scores

: Argument:

a : Entries in A

B : Block of examples from A

b : Entries in B

C : Cut-off threshold

wq : Weight of discrete parameters

. Definitions:

z € (e, xq)

D € (D., Dy)

Hd(xd’Dd) = Wdy (xdl! = Ddl) + wdz(xdzl =
Ddz) + ...+ wgy, (.I‘d"! = Dd“)
d(z,D) = \/(xe, — D¢, )2 + ...
Hd(JTd, Dd)

d(z, D): maximum distance betweenand an
example inD

M}, :k closest example i) to =
S(D,z)=L>" d(x,D) distance based score

T m

+ (wc, — De,)? +

. Initialize:

Let p instances ofd,,, be divided inNp blocks

and K,,,,(z) be the matrix that keeps track of the

nearest neighbors/examplesaafAnd C' = 0 and
O = &, where® is a null vector

- Forblock =1: Np {

B = A(:,block); K, (b) = @

: For eacha in A, {
: For eachb in B andb # a {
It Length(K (b)) < k or

d(b,a) < dm(b, K, (b)) {
Knn (b) — le:K,,m(b)Ua

If S(Kpnn(b),b) <c{
Remove examplé from setB
P

O=0UB

Sglobal = SCOT@(O)

C <+ min(Sgiopai(0))

}

Ae

Cluster One Cluster Two
C D
B
Fig. 1. A conceptual diagram to describe the working pritecipf

IMS.

by the two boxes, with the distances computed to the
edge of the nearest box. In the context of flight data IMS
will train on a set of nominal flights, either identified
by domain experts or another algorithm, and test on the
remaining flights. Each time point within the test flight
will be evaluated, producing a profile of anomaly scores
for each flight. The anomaly scores for each flight can be
combined in many different ways, however, typically the
scores are averaged for each flight and the flights with
the highest average score are ranked most anomalous. As
with Orca, IMS evaluates each point independently and
therefore suffers from the same drawback of not being
able to detect anomalies in the temporal domain. The
pseudo code for IMS is shown in the algorithms 2 & 3.
4) SequenceMiner:SequenceMiner [6] was devel-
oped to address the problem of detecting and describing
anomalies in large sets of high dimensional symbol
sequences such as recordings of switch sensors in the
cockpits of commercial aircraft. SequenceMiner works
by first using an unsupervised clustering algorithm to
cluster the sequences using the normalized longest com-
mon subsequence (nLCS) as a similarity metric. Once
the clusters are defined, anomalies can be detected using
the nLCS as the distance measure. In this context anoma-
lies are determined to have low similarities between
the clusters of other sequences and are defined to be
far away from a cluster. Once anomalies are identified,
SequenceMiner applies a genetic algorithm to modify
the sequence to draw it closer to the cluster. Keeping
track of the changes made to the sequence, the algorithm
reports back the missing and extra symbols, giving the
user some context for the anomaly. Since SequenceMiner
focuses on the sequential nature of the anomalies it
can find anomalies that other algorithms such as Orca
and IMS are unable to detect, however it is ineffective
at handling continuous parameters without somehow



Algorithm 2 IMS: Train drastically changing the nature of the data.

1: Input: X; (nominal system data vectors)

2: for each input vectoX; normalize the values
of X; and find the cluster with the closest
centroid toX;.

5) One-class SVMsOne-class SVM is a kernel based
method that builds a model on single (known) class data
and then finds a set of outliers using a decision boundary.
Data which is non-linearly separable (or sometimes non-
separable) in input space is mapped into much higher
dimensional feature spac&) where the data are linearly
separable. The mapping of the data idffocan be done
by defining a similarity measure using the dot product
in F in terms of a function operating on the input

¢ (initial tolerance percent)

e (expansion percent)

m (max distance from cluster centroid to
input vector)

3 if no clusters exist, create a new cluster X .
centered orX,, adding initial tolerance da.ta. space and t_hus computing the inner produ“cts more
percenti to each vector value to create uppeffficiently which is commonly referred as the “kernel
and lower bounds. _trlck in the maphme Ie_armryg Ilterature_. Thl_s _res_ults
4 else ifa closest cluster is found arl, is in a kernel _matnxK which gives a relative similarity
within distancem of the centroid of that between objects.
cluster, expand the cluster parameter
boundaries as necessary to include
adding the expansion percento each
parameter bound that is changed.
5: else ifa closest cluster is found a¥; is Separating
beyond distancen of the centroid of that hyperplane N & TN TR
cluster, create a new cluster centered>n s Tl .
as in sters. 0 Non-SVs R Tl
6: end if ® Marginal SVs
7: end for = Non-marginal SVs ,
8: Output: B, (parameter boundaries for each Origin
cluster)
Fig. 2. This figure illustrates the geometric interpretatidroptimal
hyperplane for one class SVMs.

Algorithm 3 IMS: Test Sctolkopf [18] showed that in the high dimensional
1: Input: x; (test input) feature space it is possible to construct an optimal
2: for eachx; normalize the values hyperplane by maximizing the margin between the origin

of x; and find the closest nominal and the hyperplane in the feature space by solving the
_ Cluster inB. to x;. . following dual problem,
3: if all x, parameter values fall within the
bounds of a cluster, the distance from 1
to the cluster is zero. minimize @ = 5 > i (Y BEY)
4: else if no cluster containk; locate the cluster i, A
with the hyper-box boundary that is closest . 1 _
to x;. Calculate the distance between a subject to 0 < a; < w’ ;ai =1
vector ofx; and a cluster hyper-box by
summing the squares of the differences Zm =1Lp20, vel01] (2
between eaclk; parameter and the nearestyhere , is a user specified parameter that defines the
cluster boundary value for that dimension, ypper bound on the training error, and also the lower
then find the square root of that sum. bound on the fraction of training points that are support
5  end if vectors. Based on the suggestion of [13], we have mod-
6: end for ified the optimization formulation of [18] such that the
7: Output: D, (distance of vector to nearest cluster) resulting kernel is the convex combination of different
dqp (distance of each parameter to kernels.3, correspond to the weights of the kernels and
cluster bounds) o, is Lagrange multiplier. The key idea is to construct

a hyperplane that can separate outliers (also known as



slack variables) from the rest of the training examples, &®m the presence of multiple attributes where the at-
shown in Fig. 2. In Fig. 2, the distance of slack variablesibutes do not belong to the same data type. For example
from the hyperplane is represented by tf)eand the the attributes can be either continuous or discrete or it
offset (also known as bias) hy. We wish to develop a may be a mixture of both. Another source of hetero-
decision rule (Eqn. 3) from the training samples, so thgeneity can be the behavioral or functional properties of
new data can be labeled as normal or anomalous. these attributes. Since there exists a standard operating
R . rocedures for flying the aircraft, the sequence of the
f(@:,0,8,p) = 529”(2 aiQ_AEL) —p) @) Siscrete pilot inpa/ts%uong with the measfred quantities
et A or parameters are extremely meaningful. It is important
The decision boundary is defined by a set of specig note that in order to enable knowledge discovery, algo-
training examples which are known as support vectors. Hithms in general require an integrated and merged view
Fig. 2, support vectors are shown in shaded circles. The the data available across various resources. Besides
dark shaded circles are the called marginal or unboundedca, the rest of the algorithms described in the previous
support vectorsfz; : i € [(],0 < a; < 1}) and the light section have been explored either in the context of
shaded circles are non-margin or bounded support vesntinuous real-valued data attributes or within discrete
tors ({x; : i € [{],a; = 1}). The hollow circles are the domains. However Orca in its current form is not well
non support vectors and they are not used in the modeliited for the sequential anomaly detection task where
This means that it is possible to re-build the same modebnsidering the ordered information of the data instances
with just using the training examples corresponding tgre extremely important in the analysis. Having said that,
the support vectors and not taking any of the non suppayith the increasing number of data sources, there is a
vectors into account. If the decision function predicts geed to develop intelligent knowledge refinement and
negative label for a given test pointthen it is classified integration techniques, focusing on the descriptions of
as an outlier. Test examples with positive labels aignderlying heterogeneous data sources.
classified normal. The pseudo code of one class SVMs

) This leads us to “kernelized” methods such as one-
is shown below.

class SVMs where we can encode the knowledge about
the data, expressed in terms of pairwise similarities.
This provides us with the opportunity to incorporate vast

Algorithm 4 One-class SVMs Algorithm

1 Input vector:X = {z1, za....15, 2}, X € R amounts of knowledge from heterogeneous sources using
2: Map multiple feature_sEA BAER)).- _ “appropriate” kernel functions. This field of research is
3: Solve Eqgn. 2 to obtaimv corresponding to Support known as Multiple Kernel Learning (MKL) [4], [9], [13].
Vectors (SVs). MKL takes advantage of the mathematics of kernels
4. Calculate biasp Ns allowing us to derive new kernels from existing kernels,
. > A ) o y
5: Calculate scoref(2) = > ;2 ar(d_y BaKz 7 )- provided each kernel satisfies the “Mercer condition”
6: if f(Z) > p then which states that the kernel function must be continu-
7. return] ous, symmetric, and positive definite. There are several
8: else classes of kernel which coincide with the Mercer kernel.
9: ret_urn() Interested readers can explore literatures [8], [10],,[12]
10: end if [19], [22] that look into various other classes of kernel

like RBF, polynomial, bag-of-word, sigmoid, spline,
graph based, tree based, mismatch based functions etc.
A common practice is to use a convex combination (i.e.
>~ B = 1) of various kernels (Eqn. 2) which may be
constructed on very different feature sets.

IIl. FLEETWIDE ANALYSIS OF HETEROGENEOUS
DATA

Not only is aviation data extremely large in size, it When analyzing FOQA data the concept of a system
also has many aspects that create natural sourceslestl analysis is paramount. The flight data consists of
heterogeneity. Some examples include flights that hameany parameters that monitor the various subsystems
common origin or destination airports, city pair routesyithin an aircraft. Given a single flight this is not a
tail numbers, aircraft models, as well as seasonal aspesitaiple task, and when considering additional flights and
such as flights within a month. Even within a flightmultiple aircraft the task can quickly grow beyond the
there exist several phases such as take offs, landings afabsical timeseries analysis problem. With this incrdase
cruise. In aviation safety data heterogeneity may resaibmplexity it is important to understand the hierarchical



system structure and design algorithms to address thiznvert them into a SAX representation (details can be
paradigm. Another challenging aspect is the sheer sifmind in [9]'). The discrete parameters are handled by
of the data that must be consumed by the algorithm. Tymarking the on and off transitions between switch states
ically flights are recorded at 1 Hz and may last anywheggith unique symbols and concatenating the symbols,
from a couple of hours for some regional flights and uphile preserving the time ordering, into a sequence
to 10 to 19 hours for some international flights. Thisector.

is compounded by the number of parameters that are

recorded, which is typically hundreds of measurement8: Experimental Details

Sqme airlin(_as are flying tho_usands of flights a day and | the Multiple Kernel Anomaly Detection (MKAD)
millions of fllght_s a year, which can aFid up to terabyte§|gorithm [9], since we want to model switching se-
of data very qwckly. To address this in Fhe system 'eV%||uences for a given process and where the order of
approach the algorithm must treat the flights as a fleet gfg switching is important, normalized Longest Common
aircraft with some sort of intelligent way of Compressm$ubsequence (NLCS) based kernel was chosen as a
the impprtant featu.res of each flight, and identifying thﬁotential candidate. Given two sequengesnd;, if z
anomalies at the flight level. We will elaborate more 0fenotes a subsequence of them it means that removing
this in the following section. some symbols fron¥; produces?; or vice versa. The
IV. FOQA DATA ANALYSIS longest such subsequence ©f and &; is c_alled the
o longest common subsequence (LCS) and is denoted by
The real world data set chosen for analysis is frO’ECS(g?» 7;) and |LOS(%;, ;)| is its length. Such a
1y4] it} )

a U.S. regional carrier. All aircraft analyzed were ofgne| over discrete sequences, when normalized, takes
the same fleet and type (narrow body jet), over a oRfa form of

year period resulting in over 176,000 flights. Each flight

consists of 160 parameters sampled at 1 Hz with the LCS(, 7))

average flight length between 1.5 and 2 hours. Due to k(Z;,%;) = nLCS(%;, %) = i Sl e PAN )
privacy reasons, each pilot’s identity and the exact date Vielz,

of the flight is kept confidential by the airline industry. \yhere . is the number of symbols in sequenge
Each sequence of switches is compared against other

A. Data Preparation g
D vsi ¢ q h h .sequences by using the longest common subsequence
ata analysis was focused on the approac port'?ﬂCS) as the metric for comparison. Sequences that

of th_e flight_ from 10,000 ft. Mean Sea Level (MSL) tOare similar are bound to hold high nLCS values, while
landing, using the o_Ieponment of the _thrust FEVETSerS Bisimilar sequences will hold very low nLCS values.
a means to determine toucthwn. Flights that were N8Lr the MKAD algorithm, once the sequences are gen-
Lour;d to dreach 10,000 ;t.for d'?] n(()jt have thrust reVerSelyated the discrete kernel is computed pairwise across all
eployed were removed from the data sets. For paramel@iqipie flight combinations in the training set. For the

selection a domain expert provided a list of 26 releva ntinuous data, each time series is SAX transformed. In

continuous parameters that were extracted for analysy, original version of SAX, the z-score normalization

Using information from the domain expert in conjunction - integral part of the algorithm. However in this

W'th th_e statistics f“?m the data, the flap parametqresearch’ we normalized each time series (only once)
W.h'Ch IS catego_ncal In nature, was de_compqsed |nt9 b%fore it is SAX transformed. We are able to maintain
binary state vanable; and then combined W'th Iandlrl%nsistency in choosing the alphabet size for both ref-
gear and grqund spoilers for sequence analy5|s'. erence and test sets. The window size was also kept
The quk'ng _data s_et consists_of appro_XImatelylxed throughout the analysis. The window size was set
174,000 flights with varying lengths. Each flight is reprery 30 sec. We assumed that any changes smaller than
sented by a multidimensional heterogeneous time Serigs, \inqow size is not significant for our analysis. The
A random set of 2048 flights was chosen for training an&ﬁphabet size was set 10, which is typically based on
the remaining were used for testing. For continuous dattﬁe resolution the user wants to achieve. Once the SAX

the mean and standard q§V|at|9n are calculateq fqr ear@%resentations are obtained, another kernel is computed
parameter across all training flights. These statistics Sirwise across all possible flight combinations. Each

then used in both training and testing to z-score norm lement of this kernel is the average of the pairwise
ize each parameter across flights to maintain consistency.

Once .the contlnuous_ parameters are no_rmal'zeq they alrhe source code of SAX can be obtained from the authors’ websi
quantized over a window length and in amplitude tat http://www.cs.ucr.edu/ eamonn/SAX.htm.



comparison across the parameters of any two flightdid something entirely counterintuitive when too high -
In the optimization, we have set the parameter of he climbed for about 25 seconds, bleeding off sufficient
one-class SVMs td.1. For testing, the support vectorsairspeed to permit him to extend the flaps further, which
are used to calculate the pairwise similarity betwean turn enabled him to descend more rapidly (fig 3 again),
all testing flights. The discrete and continuous kernelsith the goal of enabling him to lose sufficient altitude
for test data were generated in a similar fashion as the return to the approach in a much better position for
training. a stabilized approach. When even this was not enough,
he made the turn.

C. Flight Analysis L . .
_ o Climbing on approach to dissipate energy is an un-
Out of 174,000 flights the algorithm identified over,q a1 byt not unheard of maneuver. It usually results

4.’700 f“ght$ as anomalous: This paper wil presgnt "8 in the aircraft being above the ideal approach profile,
flights identified by a domain expert to be operationallfe essitating a high rate of descent at a time when stable
5'9”""0?‘”‘- . ) approach procedures aim to minimize such diversions.
1) ngh Energy Approach:The first flight can be Much research has shown such anomalies to result in
cgtegonzed as q.h|gh energy apprqach. There are I3"f\'increased number of long or hard landings, definite
sically two COHde[IOI’IS which result n a high ENeI9)safety issues. The comparison of potential and kinetic
approach - the aircraft may be too high or too fast (gnergy between aircraft is problematic, due at least in
both. I_Each of these conditions can b? converteq INt0 G\t {6 the number of variables involved. But an entirely
other in a process called “trading altitude for airspee Jew concept - the rate of change of energy - may allow

or vﬁce versa. But ultimately, drag devices, such as ﬂi,gl%mparisons between flights, and provide fertile ground
spoilers, gear or flaps must be deployed to permit g ¢t re research.

return to the ideal flight profile. However, complicating _ .
this effort, most of the drag devices have a maximum 2) Turbulent Approach:The second flight falls under

speed for deployment, limiting corrective options in th&1€ category of a turbulent approach. The amount of lift
“too fast” scenario, and airlines and aircraft have rafedPPlied by an aircraft wing is a function of the speed
of descent limits which affect the “too high” situation Of thg air flowing_across it. In turbuIenF conditions, it is
Finally, Air Traffic Control (ATC) is responsible for pgssuble to experience en.ough loss qf lift that one or bpth
traffic separation, which may limit the maneuverind"in9s stall, possibly causing roll or pitch changes,wh|ch
needed to dissipate excess energy. The flight shown!Thextreme cases could be_dangerous. AI_I of this has been
figures3 & 4 managed to encounter every one of thesiell known since the earliest days of flight, but recent

issues. Techniques were employed, rather competenfi{AShes in the South Atlantic and in upper New York

which enabled the aircraft to "go down and slow down” ate remind us that despite advanced aircraft design and
’grrent operational procedures, the issue of turbulence,

a supposed dichotomy. In order to dissipate energy, th

pilot lowered the landing gear just below the maximurgSPecially clear air turbulence, remains a threat. Airline

allowable airspeed for that operation, and prior to arfjdnt data monitoring programs waich for excessive

flap extension (see fig 3). The algorithm found thi§!rcraft attitudes and speeds, but generally downplay
anomaly. But this was insufficient to permit a return t&nvwonmental factors like wind speed and direction, as

an ideal flight profile, so the pilot presumably obtainelf/®!l as throttle position and engine speed (N1). This

an ATC clearance to make a 360 degree turn (see Fig./ight descended from about 5,000 ft to landing on a

Due to considerations of conflicting traffic this is alwayd@/"y straight path, but the pilot had to work hard to
something which must be coordinated with ATC, angccOmPlish this (see figure 5(a)).
sometimes a simple 360 is not an option, resulting in MKAD discovered atypical fluctuations in engine
the performance of a go around maneuver. 360 degréeed, which is represented by an RPM parameter called
turns on final approach, while not unheard of, are rarbl1l. Engine speed is normally fairly consistent during a
so the algorithm found this anomaly as well. stabilized approach, increasing a bit each time flaps are
It turns out that the 360 degree turn was the last @xtended, to make up for the increased drag. On this
a whole series of energy dissipating steps taken by tfght, N1 varied between 35% and 80% (maxium being
pilot. Prior to the turn, the aircraft was both too high and00%) in more than 7 cycles see figure 5(b). This is a
too fast to make a stabilized approach, so drag devic€§nsiderable amount of engine speed variation.
in this case flaps and gear were deployed. The landingAfter some analysis, the reason for all this variation
gear had provided some drag, but the aircraft was still tawas that the pilot had to cope with gusty wind conditions
fast to deploy flaps beyond an initial setting, so the pilathich caused the airspeed to vary between 140 - 180
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Fig. 5. Figure 5(a) shows straight altitude approach profilee
arrows in figure 5(b) are shown to help visualize the frequecrease
and decrease in Engine Speed.

Fig. 4. Flight path plot showing when flaps and gear were deglo
The arrows indicate location of the altitude peak and trough

knots. Part of the reason for this variation, of coursés different from other algorithms that treat each time
was the extension of drag devices (gear and flaps), B#mple independently which hinders them from detecting
an examination of the airspeed trace seen in figure 6@)ents in this way.
shows about 4 cycles of acceleration and deceleration.
The headwind over this same time segment varied be- V. CONCLUSION
tween 23 - 28 knots in about 4 cycles (see figure 6(b)), Parameter anomalies discovered by MKAD are fre-
not dangerous, but certainly not ideal. quently like little windows into a larger reality. It will

It is important to note that the anomalies identifiedrequently require analysis by a domain expert to ferret
by MKAD were determined to have contributions fromout whether an anomaly stemmed from a hazardous
both the discrete and continuous parameters. In the higsue, or whether the condition, while atypical, was
energy approach the landing gear was statistically osséife and explainable. One thing is certain - while a
of order from the normal approaches in the data set aledge amount of experience and expertise underlie the
when combined with the unusual altitude profile signaleclirrent aviation data analysis programs, they only answer
an anomaly. Additionally the preprocessing steps usegdestions that someone thought to ask. There will always
to discretize the continuous parameters preserved the value in the search for the unexpected, which is the
sequential nature of the data allowing the kernel functiggurpose of MKAD.
to highlight an unusual parameter profile such as the An interesting observation is that detection techniques
throttle changes in the turbulent approach flight. Thiswhich involve distance related functions or similarities
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between elements of the set somewhere in the algorith[r%’,]
are more versatile to address different data structures.
For example the MKAD technique described above can
easily be extended to include unstructured data (texf)y
if available. Choosing the rightmetric function and
integrating knowledge from multiple sources must bﬁS]
done judiciously.
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