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Abstract

Emerging smart buildings, such as the NASA Sus-
tainability Base (SB), have a broad range of energy-
related systems, including systems for heating and cool-
ing. While the innovative technologies found in SB
and similar smart buildings have the potential to in-
crease the usage of renewable energy, they also add
substantial technical complexity. Consequently, manag-
ing a smart building can be a challenge compared to
managing a traditional building, sometimes leading to
adverse events including unintended thermal discom-
fort of occupants (too hot or too cold). Fortunately, to-
days smart buildings are typically equipped with thou-
sands of sensors, controlled by Building Automation
Systems (BASs). However, manually monitoring a BAS
time series data stream with thousands of values may
lead to information overload for the people managing a
smart building. We present here a novel technique, Scal-
able Causal Learning (SCL), that integrates dimension-
ality reduction and Bayesian network structure learning
techniques. SCL solves two problems associated with
the naive application of dimensionality reduction and
causal machine learning techniques to BAS time series
data: (i) using autoregressive methods for causal learn-
ing can lead to induction of spurious causes and (ii) in-
ducing a causal graph from BAS sensor data using exist-
ing graph structure learning algorithms may not scale to
large data sets. Our novel SCL method addresses both of
these problems. We test SCL using time series data from
the SB BAS, comparing it with a causal graph learn-
ing technique, the PC algorithm. The causal variables
identified by SCL are effective in predicting adverse
events, namely abnormally low room temperatures, in
a conference room in SB. Specifically, the SCL method
performs better than the PC algorithm in terms of false
alarm rate, missed detection rate and detection time.

Introduction
NASA Ames Sustainability Base1 (SB) is a green build-
ing that provides a research testbed for different sustainable
technologies and concepts. The SB is designed with a Net
Zero Energy objective. Detailed monitoring of the BAS is
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required at regular intervals. SB is instrumented with 2636
sensors, which perform physical or logical measurements.

One major area of consumption is the building heating
and cooling system. From Jan 2014 to May 2014 many
alarms were acknowledged from sensors specific to the heat-
ing system. An alarm is initiated whenever a sensor value
goes beyond the desired range, indicating an anomalous be-
havior of the heating system. Some alarms, e.g room temper-
ature going outside the predefined range, cause occupants’
discomfort and others can lead to short-term or long-term
damage to the system. In order to eliminate these alarms,
it is crucial to identify the causes. An attempt via human
inspection is time consuming and can take several weeks
or months. As the sensor data captures enough information
about the system, an alternative for cause-detection is a data
driven approach which does not require intervening with the
BAS of SB building.

Causality is mainly described by two methods: counter-
factuals or causal graphs (Pearl 2000). Here we primarily
consider the second one. A causal graph is based on the
principle that each variable is independent of its non-effects,
conditional on its direct causes. PC, FCI, RFCI and GES are
commonly used algorithms to learn causal graphs from data
(Spirtes, Glymour, and Scheines 2000; Chickering 2003;
Colombo et al. 2012). Bayesian networks have also been
shown to convey causal interpretation (Pearl, Verma, and
others 1991).

A Bayesian network (BN) is a directed acyclic graph
(DAG) which represents a family of distributions over its
nodes. The structure of a BN represents the conditional in-
dependence relations among the nodes. Hence learning the
independence relations by conditional independence tests is
a main approach in learning the structure of a Bayesian net-
work from data (Margaritis and Thrun 1999). Another struc-
ture learning approach is to perform a search over directed
graphs based on a score function (Heckerman, Geiger, and
Chickering 1995). Hybrid techniques have also been devel-
oped to learn BN structure (Tsamardinos, Brown, and Al-
iferis 2006). However identifying the causal Bayesian net-
work structure only from observations is challenging be-
cause it is possible to model one distribution by two distinct
directed graphs which have different causal meaning of the
variables (Ellis and Wong 2008).

In this work we propose a novel amalgamation (Figure
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Figure 1: Data processing steps

1) of autoregressive model and Bayesian network structure
learning techniques to learn the candidate causes of a target
from observational data. Using only autoregressive model
for causal learning can lead to spurious causes and learning a
Bayesian network over all variables demands huge compute
time. Our novel integration solves both problems enabling
accurate identification even in large scale data sets. Thus we
call this method Scalable Causal Learning (SCL).

We test the SCL method by attempting to identify the
causes of too low room temperatures in an SB conference
room (target effect). Due to the HVAC system in SB, there
are strong correlations among the room temperature sensor
readings of the building. Further, what a building manager
can directly control is the HVAC system, not room temper-
ature. Consequently, we remove all room temperature data,
except the temperature for the target conference room, from
the SB dataset. Applying SCL to this SB dataset, we find that
the isolated causes make functional sense according to the
building’s operation model. As the true causes are unknown,
we measure the quality of the causal set by using them as
features in adverse event prediction of the target variable.
We have seen that the causes identified by our method per-
forms better than the causes identified by PC algorithm in
terms of false alarm rate, missed detection rate and detec-
tion time (Osborne et al. 2012).

Related Research
Bayesian networks are often used for anomaly detection or
fault detection in dynamical systems. Matsuura et al. used
a Bayesian network to model a dynamical system operating
under normal conditions and thereby predicting low proba-
bility events as faults (Matsuura and Yoneyama 2004). Their
approach performed better than the Luenberger observer
technique. A similar technique was proposed for multi-
variable systems/agents (Guo et al. 2011). Guo et al. used a
Dynamic Bayesian network to detect faults in heating, ven-
tilation and air-conditioning (HVAC) systems. The authors
showed that the method was advantageous over rule-based
fault detection and could detect most faults in the physi-
cal system. Unlike conditioning, blocking operator has also
been introduced for causal discovery in relational data sets
(Rattigan, Maier, and Jensen 2011).

Isolating cause effect relations: Machine learning tech-
niques have been used for automated debugging through iso-
lation of cause-effect chains (Jiang and Su 2005). Qui et al.
used Granger graphical models to detect anomaly in time-
series data (Huida Qiu, Subrahmanya, and Li 2012). They

used temporal causal graphs to identify instances deviating
from the normal pattern of the data sequence.

Bayesian networks were also used for causal discovery
in multivariate time series (Wang and Chan 2011). The au-
thors applied Bayesian network learning algorithm to con-
struct structural vector autoregression (SVAR) from time se-
ries data. This captured both temporal and contemporane-
ous causal relations. Although our work addresses a similar
problem, the use of VAR and Bayesian networks are very
different in our case. Moreover, Wang et al. used SVAR
model for causal discovery but we developed a method to
directly use Bayesian networks to isolate causes for a target.

Notation

We denote ith time series of the data set (D) by xi. And
x∗ represents the target variable for which candidate causes
are identified. To indicate time-lagged signals we add a sub-
script. For instance, xi−n indicates the ith time series shifted
n steps backward in time. We use X−n to represent the set
of all signals lagged by n time steps. The number of vari-
ables in D is denoted by p and the set of indices for these
variables is represented by DI . Z indicates the set of natural
numbers.

Structure learning from high dimensional data
Learning the structure of a Bayesian network is a very com-
putationally intensive task (Daly, Shen, and Aitken 2011).
Figure 2 shows the execution time of learning a Bayesian
network structure using two algorithms, Hill climbing (HC)
(Heckerman, Geiger, and Chickering 1995) and PC (Spirtes,
Glymour, and Scheines 2000), on random data sets (nor-
mally distributed with zero mean and unit variance) with
25000 observations each. The experiment was performed in
a machine with eight core 2.20GHz Intel Core i7 processor
and 8GB of RAM. We see that the execution time increases
super-linearly with increasing number of variables and the
curves almost resembles exponential rise.

The Proposed Method
We propose a new technique to learn candidate causes of one
target variable using a score based structural learning algo-
rithm as opposed to discovering all causal relations between
all variables in the data. A flow diagram consisting of all our
data analysis steps is presented in Figure 1.
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Figure 2: Comparison of execution times of 2 structure
learning algorithms.

Reducing Dimensionality
In an attempt to reduce the number of nodes in the network,
we filter some variables in the data using linear regression.
As candidate causes should help predicting future values
of the target, we use a regularized regression technique to
remove non-informative variables. This step makes our ap-
proach scalable to large scale data sets.

Autoregressive (AR) models are often used in economics
and for modeling time-varying natural processes (Kelejian
and Prucha 2010; Chakraborty et al. 2012). We used an au-
toregressive model of order τ , AR(τ ), to express the target
as a linear combination of all time-lagged variables,

y
(j)
t = aT1 yt−1 + aT2 yt−2 + · · ·+ aTτ yt−τ + e

(j)
t (1)

= βTYt−1,t−τ + e
(j)
t

where y(j)t = x∗ is the target, yt ∈ Rp is a vector contain-
ing the values of all variables at time t and at is the corre-
sponding weight vector. Yt−1,t−τ ∈ Rpτ and β ∈ Rpτ con-
catenates the variables and weights respectively. To reduce
non-informative variables we train the model with a sparsity
constraint. Our optimization formulation is as follows,

β̂L = arg min
β∈Rpτ

T∑
t=τ

(
y
(j)
t − βTYt−1,t−τ

)2
+ λ||β||L (2)

where the regularization norm L is chosen to be 1 or 2; and
λ controls the amount of shrinkage. We select the first k
variables, sorted in decreasing order of the weights in the
trained model β̂L, as informative variables. Only these vari-
ables (say X̄ ∈ Rk with k < p) are used to construct a
Bayesian network. Thus the autoregressive model serves as
a dimension reduction step and reduces the computational
cost of structure learning step.

Learning Bayesian Networks
As causes must precede the effect in time, we attempt to con-
struct a Bayesian network with all variables shifted back-
wards in time and the target in real time. The nodes of
the network are {X̄−1, X̄−2, · · · , X̄−τ , x∗}. To restrict the
search space towards feasible causal structures, we introduce

a few temporal constraints to the search. No outgoing edge
for the target and no direct edge going backwards in time for
a particular variable is permissible in the network. Hence,
the following types of edges are avoided:

x∗ → x̄i−t ∀i ∈ [1, k]

x̄i−t+j → x̄i−t ∀i ∈ [1, k], j ∈ [1, t] ⊂ Z (3)

As our objective is not to learn a fully causal network, we
reduce the number of constraints by enforcing the second
constraint to individual variables as opposed to all pairs of
variables. Preventing all possible direct edges going back-
wards in time require O(k2τ2) constraints. In our method,
only O(kτ2) or O(pτ2) (as k < p) constraints are needed.

A B

C D

E F G

Figure 3: An example Bayesian network

Isolating Candidate Causes
The parents of the target variable are natural choices for can-
didate causes. However, these parents can be the effect of
target’s grandparents and so forth. Events that create cause-
effect chains spanning multiple time-steps may lead to this
kind of structure in a directed graph. Thus we consider all
variables in all paths from target to root nodes as candi-
date causes. For instance, the candidate causes for G in the
network shown in Figure 3 are {A,B,C,D, F}. The set of
candidate causes is denoted by CCD according to the causal
discovery algorithm CD.

Predicting Adverse Events
Once the candidate causes are identified, we train models to
predict adverse events in the target variable using feature set
CCD. For model training, Adverse Condition and Critical
Event Prediction Toolbox (ACCEPT)2 (Martin et al. 2015)
is used. ACCEPT’s main goal is to provide the ability to pre-
dict or forecast adverse events in time series data. Moreover,
it provides a single, unifying framework to compare multi-
ple combinations of algorithms concurrently, without hav-
ing to rerun the system for each new algorithm and gather
results separately. Further, its architecture is patterned af-
ter MSET (Multivariate State Estimation Technique) since it
represents the current state-of-the-art in prediction technolo-
gies and is used ubiquitously in nuclear applications, as well
as aviation and space applications (Bickford 2000). Lastly,
ACCEPT produces results in the form of missed detection
(false negative), false alarm (false positive) rate and detec-
tion time (the number of time steps in advance the system
can predict an anomalous event), all of which is essential in

2http://ti.arc.nasa.gov/opensource/projects/accept/



validating our approach to identifying candidate causes (Os-
borne et al. 2012).

The need to identify potential causes is important to AC-
CEPT since it will enhance the classification potential as it
will remove misleading data and thus improving accuracy.
Another reason is that it improves the computational effi-
ciency of ACCEPT as there is less data for each algorithm
to work with and thus drastically improving the time to pro-
duce results. Furthermore, these candidate causes gives us a
better understanding of the domain.

The architecture of ACCEPT has the same basic structure
as MSET but involves both a regression step and a detec-
tion step where the ground truth is used to aid the detection
methods in determining the false alarm and missed detec-
tion rates. The regression step is implemented with the aid
of machine learning techniques and the detection step tests
a set of fixed hypotheses relating to the statistical properties
of the resulting residual, using a variety of models.

Experimental Results
Data and Methods
Our data set consists 26,493 samples (Nov 2014 to Feb
2015) from 2,636 sensors of the BAS of NASA SB building.
These sensors measure various physical and logical quanti-
ties and record in 5 minutes interval. We used 60% of total
samples for training models, 10% for validation and 30% for
testing.

The target variable (x∗) in our analysis is a room tem-
perature sensor associated with the cold complaints scenario
in NASA SB building. The Wet Bulb Globe Temperature
(WBGT) index is a proxy for four measureable environmen-
tal factors (air temperature, air relative humidity, air veloc-
ity and mean radiant temperature) associated with Fangers
famed Predicted Mean Vote (PMV) index (Atthajariyakul
and Leephakpreeda 2005). The target sensor, x∗, is designed
to characterize thermal comfort based on the WBGT index
and thus computed a weighted average of dry bulb, wet bulb
and mean radiant (black bulb) temperature.

As a preprocessing step of our experiments, we centered
and scaled every sensor data to make the mean 0 and vari-
ance 1. Moreover, we discretized all continuous sensor val-
ues before Bayesian network learning step. The discretiza-
tion was performed with different number of levels for dif-
ferent sensors.

While training autoregressive model, we observed that
strong correlations exist among room-temperature sensors
measurements. Thus for proper causal discovery, we re-
moved all temperature sensors, except the target, from the
dataset.

Identifying Ground Truth
An empirical approach was taken to determine the ground
truth for the cold complaints prediction scenario. We esti-
mated the distribution of the target room temperature sen-
sor (x∗) and found that it was a unimodal distribution with
mean 71.7 and standard deviation 1.8. Hence, a 95% confi-
dence interval around the mean corresponds to 68.1◦F and

75.3◦F. Considering this range as nominal room tempera-
ture values, we established 68.1◦F as the upper threshold for
cold regions. In our problem, we are only concerned with
anomalous drops in temperature. Thus, we considered any
temperature value below 68.1◦F as an adverse event (cold).
And there are multiple adverse events as shown in Figure 4.
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Figure 4: Cold and warm temperature regions according to
empirical analysis.

Training Autoregressive Model
The goal of this experiment was to find the most appropriate
autoregressive model for dimension reduction. We started
with an AR(1) to predict room temperature (as in equation
1). We comparedL1 (lasso) andL2 (ridge) penalties in terms
of prediction error on test set, to find which one is more
suitable to the training data. Figure 5 shows the prediction
of trained models on both training and test data sets. Clearly
the model trained using ridge penalty has more accurate pre-
dictions than its lasso counterpart. Therefore we used ridge
regression for the dimension reduction step in the remaining
experiments.

Next we compared autoregressive models of orders τ =
1, 2, · · · , 5 based on prediction error on the test data. Sur-
prisingly we found, as shown in Figure 6a, the first or-
der model AR(1) achieves minimum prediction error. The
limited training data was possibly insufficient to train the
more complicated models. It is worth mentioning here that
with increasing AR order, the training time increased super-
linearly. Hence for this data set, AR(1) model is superior in
both statistical and computational measures.

Moreover we inspected the capability of the AR model to
predict a few steps ahead in time. We trained the following
models (equation 4) compared their prediction errors.

y
(j)
t = aT1 yt−1 + e

(j)
t

y
(j)
t = aT2 yt−2 + e

(j)
t

· · ·

y
(j)
t = aTτ yt−τ + e

(j)
t (4)
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Figure 5: Prediction of linear model trained with ridge and
lasso regularization on DCTN240T room temperature sen-
sor.
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Figure 6: Tuning parameters of autoregressive model.

From Figure 6b we observe that the prediction error in-
creases at a higher rate for smaller input delays compared to
larger delays. In Figure 7 we present the prediction of the
trained model (ridge penalty) with 1 hour lagged input sig-
nals. We see that the predicted values follow the observed
values closely until Jan 22. Thereafter we see high predic-
tion error. This indicates the need to retrain the models after
every few days (4-5) while predicting with lagged input sig-
nals.
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Figure 7: Prediction of trained (order 1) auto regressive
model with 1 hour lagged input signals on test set.

Selecting Informative Variables
As the data is scaled and centered before training, all weights
in the AR model are in same scale. Thus the predictive vari-
ables should have higher weights than the rest. We sorted
the variables according to decreasing absolute weights of
the trained AR(1) model and picked the top k variables as
informative variables. Only this set is used for causal graph
learning. The parameter k is a design choice. We demon-
strate our results using k = 10.

Learning Bayesian Network and Isolating Causes
A Bayesian network structure is learned over the informative
variables according to our proposed method. Although we
found AR(1) model to perform well, the causes need not be
limited to 1 time-step in past. We demonstrate our results for
variables with two time-steps delay. Thus for k informative
variables, we learn a Bayesian network with 2k + 1 nodes
where the last variable is the target without any time delay.
As we are using k = 10, we learn the network structure with
21 nodes. However this step can be extended to informative
variables with multiple delays.

For structure learning we used the Hill Climbing algo-
rithm as implemented in bnlearn package of R (Scutari
2010). The algorithm performs a greedy search over the
space of directed graphs guided by a predefined score func-
tion. We used Bayesian Information Criterion (BIC) to score



each directed acyclic graph. The constraints in equation 3 are
provided to the hill climbing search as blacklisted edges.

The learned Bayesian network structure for the target
room temperature sensor is presented in Figure 8a. The num-
bers after the node labels indicate the delay of that variable.
The candidate causes of the target variables are:

CSCL = {room’s dew point, heat pump 2 current (HPP2
current), CRCP (ceiling radiant cooling panel) valve,
supply air temperature, heat pump flow switch (HP4C)}.

(5)

The elements of CSCL have direct functional relationship
with x∗. The dew point is located at the same place as x∗
measures humidity which is a part of the weighted sum com-
puted by the target sensor. The heat pump 2 current drives
the pump for heating and the HP4C sensor is an indicator of
flow for heat pump 4. As both heat pump 2 and 4 are desig-
nated for heating in the building, they affect x∗. The CRCP
valve and supply air temperature set point are also associated
with the heating system of the building.

Moreover, we observed that learning a BN structure with
1.5% fewer training samples leads to fewer edges in the
learned graph. Hence, an attempt to reduce training time by
decreasing the training set size results in incorrect identifi-
cation.

Comparison of Hill climbing and the PC Algorithm
A causal graph, as shown in Figure 8b, was also constructed
using the R implementation of the PC algorithm (Kalisch et
al. 2012) over the informative variables for x∗. The identi-
fied causes are:

CPC = {DX1 start/stop, heat pump current,
N2 average temperature, heat pump flow switch}. (6)

Similar to the graph learned by Hill Climbing algorithm,
heat pump current and flow switch were also detected as di-
rect caused of the target. Two distinct causal variables, N2
average temperature and DX1 start/stop, were also detected
by PC algorithm and both are closely related to room tem-
perature. A comparison of these two causal sets is performed
in the next section.

Adverse Event Prediction
The goal of this experiment is to compare different causal
learning techniques where the true set of causes is unknown.
We use the causal featuresCCD to predict the adverse events
of x∗. As ACCEPT works with only continuous features, we
discard the discrete features from CCD for predictions by
ACCEPT. The feature set, with only continuous features, is
denoted by C̄CD.

The first two set of sensors C̄SCL and C̄PC are defined by
Equations 7 and 8 respectively.

C̄SCL ={room’s dew point, heat pump 2 current (HPP2
current), supply air temperature} (7)

C̄PC ={heat pump current, N2 average temperature}.
(8)
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Figure 8: Causal graphs learned over the informative vari-
ables of target room temperature using two structure learn-
ing methods. The target variable (x∗) is highlighted in green
and the causal variables (CCD) are highlighted in orange.

To test the necessity of all causes in C̄SCL, we created a
third set (C̄SCL−rand) by randomly replacing three causal
sensors by three other random sensors. Additionally, to test
the effect of non-causal sensors, we created a fourth set
(C̄SCL+rand) by randomly adding three causal sensors to
those in C̄SCL.

To compare these four feature sets we used false alarm
rate, missed detection rate and detection time. The detec-
tion time is defined as the number of timesteps in advance, a
warning in generated. For ACCEPT we used linear and ex-
treme learning machine (Huang, Zhu, and Siew 2006) as re-
gression methods. Moreover, we used three detection meth-
ods: redline, predictive and optimal (Martin 2010).

Table 1 shows the performance of the models trained with



Feature Set False Alarm Rate Missed Detection Rate Detection Time

C̄PC 18% 20% 0
C̄SCL 8% 0% 50 minutes

C̄SCL−rand 36% 26% 0
C̄SCL+rand 16% 15% 0

Table 1: Results for each feature set

the above-mentioned four sets of sensors. For the sets with
random features, 10 independent sampling runs were per-
formed and the mean statistics are reported. The feature set
C̄SCL−rand produced worst results. There was a very high
false alarm rate of 36% and missed detection rate of 26%,
while the detection time is 0 indicating that this set was in-
sufficient to give any advanced warning. The performance of
C̄PC was much better than C̄SCL−rand. Its false alarm rate
is much lower (18%), the missed detection rate is also lower
(20%) but the detection time is again 0. While the PC algo-
rithm gave an improvement, it is not sufficient to implement
into our system as both the false alarm and missed detec-
tion rates are too high and there is no prediction capabilities.
We also observe that C̄SCL+rand performed better than both
C̄PC and C̄SCL−rand with a lower false alarm rate of 16%
and a missed detection rate of 15%.

In contrast, C̄SCL produced very low false alarm rate of
8% and kept the missed detection rate to 0%. This is sig-
nificantly better than the previous feature sets. Also, the de-
tection time is 10 timesteps or 50 minutes (one timestep is
5 minutes in our data set). We can implement this feature
set into our system for adverse event prediction due to the
extremely low false alarm rate, no missed detections and a
decent detection time. These metrics show that our causal
sensors are necessary for good modeling and prediction of
the target temperature sensor.

This comparison indicates that even in presence of all sen-
sors in C̄SCL, the additional random sensors can impede the
predictive capabilities. Moreover, the inferior performance
of C̄PC compared to C̄SCL and C̄SCL+rand implies that
SCL is more effective in learning causes of a target sensor
compared to the PC algorithm.

Conclusion and Future Work
In this work, we present a novel integration of Bayesian net-
work structure learning algorithm and autoregressive model
to to isolate candidate causes from observational time-series
data. As structure learning algorithms, typically, do not scale
towards networks with large number of nodes, we perform
dimension reduction on the original data set to filter out non-
informative variables. We train an autoregressive model with
sparsity constraint on the parameters and select the variables
with high weights as informative variables. Thus, a Bayesian
network is learned only with the informative variables in-
stead of all variables. This step makes our method, Scalable
Causal Learning (SCL), applicable to large-scale data sets.

We test SCL on a time series data set from a building au-
tomation system. We find that a first order autoregressive
model trained with ridge penalty performed better on the
data set compared to its lasso counterpart. We present the

causal networks and the sets of candidate causes learned the
HC and PC algorithm.

To compare these sets of causes, we feed the variables to
an adverse event prediction system, ACCEPT. We find that
the causes isolated by SCL produced better results in pre-
diction (lower false alarm and missed detection rates; higher
detection time), compared to the causes identified by the PC
algorithms.

Future work will be directed towards developing theoreti-
cal guarantees of our method. We also intend to add alternate
validation of our method using root cause analysis. More-
over, we plan to extend our method towards data sets con-
sisting of both discrete and continuous variables.
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