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Abstract 
The term Automated Contingency Management (ACM) has 
been used to describe intelligent systems capable of mission 
re-planning and control reconfiguration in the presence of a 
current health state diagnosis. While a diagnostics driven 
ACM capability designed to optimize multi-objective 
performance criteria remains a significant technical 
challenge, it cannot hope to overcome the fact that it will 
always be a reactive paradigm. This paper, therefore, 
introduces an automated contingency management 
paradigm based on both current heath state (diagnosis) and 
future health state estimates (prognosis). Including 
Prognostics in the control loop poses at least two additional 
challenges to ACM. First, future state prediction will, in 
general, have uncertainty that increases as the prediction 
horizon increases so adaptive prognosis routines that 
manage uncertainty are critical.  Secondly, a warning period 
afforded by prognosis allows ACM to be split into a real-
time “reactive” component and a non-real time “planning” 
component that considers temporal parameters and the 
potential impact of being proactive with mitigating action.  
The proactive ACM paradigm was developed and evaluated 
in the context of a generic mono-propellant system model in 
Simulink/Stateflow with diagnostics, prognostics and an 
optimal reconfigurable control system. Applications of 
Artificial Intelligence (AI) technologies in prognostics 
enhanced ACM system are briefly discussed. Preliminary 
results from the on-going research work are presented and 
the paper is concluded with remarks on future work. 

Introduction   
Stimulated by the growing demand for improving the 
reliability and survivability of safety-critical aerospace 
systems, a variety of Integrated Vehicle Health 
Management (IVHM) and fault tolerant control techniques 
have been developed. Techniques that are capable of 
detecting the occurrence of faults while still retaining 
acceptable performance in the presence of faults are being 
developed for both manned and unmanned air vehicles. 
The concept of using system health information (diagnosis) 
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in conjunction with reconfigurable control has been 
introduced through different techniques at various levels of 
sophistication ranging from engine controls, to flight 
controls and mission reconfiguration (Vachtsevanos et al. 
2007, Byington et al. 2004, Litt, Parker and Chatterjee 
2003).  
 
Automated Contingency Management (ACM) system 
architecture provides a framework to accommodate the 
integration of prognosis & health management (PHM) and 
control reconfiguration techniques (Tang et al. 2005 & 
2007). Most fault detection and fault accommodating 
control techniques found in literature can be categorized as 
ACM systems at certain levels. While a diagnostics driven 
ACM can react to and compensate for faults and 
performance degradation after they are detected, it cannot 
hope to overcome the fact that it will always be a reactive 
paradigm. This paper introduces a proactive ACM 
paradigm based on both current heath state (diagnosis) and 
future health state estimates (prognosis). Including 
Prognostics in the control loop poses several challenges. 
First, future state prediction will have uncertainty that 
increases as the prediction horizon increases so adaptive 
prognosis routines that manage uncertainty are critical.  
Secondly, a warning period afforded by prognosis allows 
ACM to be split into a real-time “reactive” component and 
a non-real-time “planning” component that considers 
temporal parameters and the potential impact of being 
proactive with mitigating action.  The purpose of this paper 
is to introduce an approach for integration of prognostics 
data with ACM system as prognostics becomes readily 
available by the introduction of IVHM techniques. 
 
The organization of this paper is as follows: First, an 
overview of ACM system is briefly introduced followed by 
an optimization-based ACM design methodology and a 
finite state machine based ACM modeling paradigm. The 
following sections address the issue of integrating 
prognostics in both high level ACM planner and low level 
control reconfiguration. A pressure-fed monopropellant 
propulsion system for a small spacecraft is utilized as an 
initial proof-of-concept implementation for the proposed 
techniques and preliminary simulation results are 



presented. The paper concludes with remarks on the 
technical challenges and future developments.  

Prognostics Enhancement to ACM  
Conceptually, ACM refers to a system that is designed to 
provide the ability to confidently and autonomously adapt 
to fault and/or contingency conditions while either 
achieving all or an acceptable subset of the mission 
objectives (Roemer et al. 2006). An ACM system is 
differentiated from a fault tolerant control system in that it 
consists of not only low level control reconfiguration, but 
also high level (mission) planning and optimization. A 
typical ACM implementation usually utilizes a hierarchical 
architecture that covers low level redundancy management, 
mid level fault accommodation strategies, and high level 
adaptive mission re-planning modules. Figure 1 shows the 
high level conceptual schematic of the interaction between 
the PHM and ACM system. The PHM and situation 
awareness modules provide fault diagnostics, prognosis 
and contingency information to the ACM system, which in 
turn, identifies and executes the optimal contingency 
mitigation strategies.  

 

Figure 1 : PHM & ACM Systems 

Real world implementations of ACM systems for aircraft, 
spacecraft or, on a smaller scale, their propulsion systems, 
are based on a variety of problem-specific solutions. 
Conceptually, ACM strategies can be implemented within 
a generic hierarchical architecture shown in Figure 2. This 
approach relies not only on current system 
performance/fault information (diagnosis) but also 
incorporates the projected future condition of the system 
(prognosis). By incorporating the likely future condition of 
the system into the ACM routine, it is possible to assess the 
likelihood of accomplishing a given set of objectives and, 
if necessary, change the objectives to avoid catastrophic 
failures. 
 
The ACM routine manages detected faults in three 
different ways. 1) Complete low-level reconfiguration will 
be utilized if the fault is located in a subsystem for which 
there exists a redundant backup system. 2) Complete high-
level re-planning will be performed if the fault is located in 

a subsystem for which no redundancy exists. 3) Partial 
low-level reconfiguration and partial high-level re-
planning will be performed if indirect redundancy is 
present at the lower level, that is, the system’s operational 
capabilities will be partially restored by utilizing other 
subsystems to compensate for the fault, and the overall 
objectives will be modified based on the degraded system’s 
capabilities. 

 

Figure 2 : Prognostics Enhanced ACM Architecture 

To effectively perform ACM, diagnostic and prognostic 
information must be provided. The diagnostic information 
regarding the system’s current fault condition will be used 
to assess immediate capabilities of the system, while the 
prognostics information will be used to establish realistic 
long term resource management and mission planning. The 
high level planner enables the ACM routine to not only 
address immediate fault conditions but also establish a long 
term operational plan that will optimize the utility of the 
entire system. 

Optimization Based ACM System 
 
Most ACM strategies for large-scale dynamical systems, 
like aircraft, propulsion systems, etc., rely on heuristic 
information about a reduced set of severe, frequent and 
testable fault modes, a reasonable number of active 
controllers and a mapping between the fault modes and the 
control reconfiguration routines. The strategy has the 
ability to adaptively switch from one controller to another, 
if control limits are reached and by this switching action 
critical mission objectives can be realized. In this paper, 
we present a new approach in which an optimization 
problem is dynamically formulated and solved on-line to 
solve the optimal contingency strategy constrained by the 
available performance and resource. A typical cost model 
is expressed in terms of such elements as critical 
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component on-time, time to complete the mission, fuel 
consumption etc.  Costs are computed in real-time and may 
change dynamically. 
 
Analytically, the objective of the ACM system is to 
optimize the utility of the vehicle with impaired capability 
to accomplish an assigned mission. The ACM system can 
be formulated as an optimization problem in two levels,  
 High Level Planner: 
  ),,,(max)( comreM

MMPPUMJ =     (1) 

 Control Reconfiguration (lower) level:  
  ),,,(max)( MRPFPRJ rmeR

=       (2) 

where U is a cost function that quantifies the usefulness of 
the vehicle to accomplish its mission. U is a function of the 
available prognostic information (Pr), the system’s closed 
loop performance (Pe), and the mission objectives (M and 
Mcom). Pe is a function of fault mode Fm , future 
prediction Pr, as well as any re-structuring/ reconfiguration 
R applied to the system and current mission objective M. 
Fm is a vector of indicators (0 or 1) that characterizes the 
fault modes detected on the aircraft; R is a vector of 
indicators that characterizes all restructuring applied to the 
system. Mcom describes the mission assigned to the 
aircraft. M allows the fault-tolerant control architecture, 
specifically the mission adaptation and resource 
management components, to modify the parameters of the 
assigned mission and redistribute the of available resources 
based on vehicle’s current performance, Pe. At the high 
level, mission adaptation and resource redistribution (M) 
allows the control architecture to pursue relaxed mission 
objectives in order to achieve greater vehicle usefulness U. 
At the lower level, the objective is to optimize vehicle 
performance Pe while satisfying the mission constraints, 
through restructuring and reconfiguration, R. Practically, 
the above optimization problems have to be solved while 
adhering to various constraints including system dynamics 
and resource limitations. 
 
To facilitate the formulation of the optimization problem, 
an ACM guarded system can be represented by a Finite 
State Machine (FSM) as shown in Figure 3. There can be 
multiple states in each of the three state-spaces, but the 
general nature of transitions between different states can be 
described by five types of transitions as depicted. 
 

  
Figure 3 : ACM Modeling 

 

Contingencies may move the system to a failure state, 
while repairable failures allow the system to eventually 
come back to the normal state. Irreparable failures may 
force the system to a failsafe state to avoid further 
catastrophes and buy some extra time before external help 
can be sent. However, in case of faults that may not be 
completely repairable, ACM tries to find alternatives that 
will still let the system perform within acceptable limits 
but with degraded performance. 
 
With the modeling paradigm described above, the ACM 
algorithm can be formulated as a constrained optimization 
problem as stated: Given the current states of the system, 
and subject to predefined system constraints, find the 
optimal action series that will bring the system to the 
desired states with a minimal cost. 

High Level ACM Planner 
Prognostic information concerning the changes in the fault 
condition will in the future enable the ACM algorithm to 
derive long term strategies and thereby minimize the 
overall likelihood of a catastrophic failure. The high level 
ACM planner responsible for mission re-planning and 
resource/load redistribution can take advantage of the 
prognosis information to repeatedly optimize the mission  
objectives and the available resources as the fault develops. 
To illustrate how prognostics can be integrated into the 
optimization problem, a simplified mission planning 
problem is used as an example. Suppose the aircraft (e.g. 
an UAV) is assigned k tasks: },...,{ 21 ksssS = . The 

importance of task is  is denoted ic  and the expected time 
and resource (e.g. fuel) required to accomplish the task is 

it  and ir  respectively. The mission planning routine will 
find the sequence of tasks that maximizes the mission 
success criterion subject to time and resource constraints. 
For simplicity, it is assumed that the tasks are independent 
of one another. The optimization problem can therefore be 
formulated as, 
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limT  and limR  are the maximum time and resource 

allowed for all tasks; T
kpppP ],...,,[ 21= , }1,0{∈ip  

is the decision variable. When 1=ip , task is  is chosen. 
With this simple problem formulation, prognosis 
information can potentially affect lim,, TRT  and limR . For 
example, if an engine or a flight actuator is degrading, the 
degraded performance of the vehicle will affect the expect 



time to accomplish the tasks (T) and the time allowed for 
this group of tasks ( limT ) will be reduced to make sure 
there is enough time for successive missions. Similarly, a 
leakage in the fuel tank will affect R and limR . To keep the 
mission plan updated, the optimization routine must be 
executed repeatedly to accommodate for changes in the 
output of the prognostic routine. 
 
To capture the uncertainties inherently present in the 
prognostics routine, the high level optimization can be 
formulated as a stochastic programming problem. 
Stochastic programming provides a framework for 
modeling optimization problems that involve uncertainty. 
The consideration of uncertainty in stochastic 
programming is very important since the future state 
prediction has considerable uncertainty that increases as 
the prediction horizon increases. To accomplish this, a 
multistage look-ahead procedure will be added to the 
Hierarchical ACM. The underlying idea is as follows: 
Given the current and predicted state of the system it 
should be determined if it is possible to improve the overall 
system performance over a given time horizon T by taking 
a calculated risk early on. The deterministic optimization 
approach without consideration of prognostic information 
may in fact not be optimal over a longer period of time.  
 
Essentially, the considered time horizon is broken down 
into n pieces, and at each stage the prognostics routine 
provides the information regarding the status of the system 
fault, that is, the current probability density function 
associated with the fault will be propagated through time 
and sampled at each decision instance. Hence, when 
determining the best possible course of action, the 
prognostics routines will be executed in parallel with the 
ACM routine to improve the expected cost. 

Control Reconfiguration with Prognostics 
Consideration 

Receding horizon control (RHC) has been proposed as a 
method for reconfiguration due to its ability to handle 
constraints and changing model dynamics systematically. 
RHC relies on an internal model of the system, which can 
be identified online in real-time (Tang, Roemer and 
Kacprzynski, 2007).  
 
Reconfigurable RHC control can be applied to 
accommodate both actuator failure and structural failures 
caused by hostile action or hazardous atmospheric weather 
conditions. These failures can be handled naturally in a 
RHC framework via changes in the input constraints and 
internal model. Prognostic information can be integrated 
into the controls as soft constraints on control variables. 

For example, actuator limit and rate constraints can be 
written as: 
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for actuator inputs u1 through um. If actuator i becomes 
jammed at position iu~ , the RHC controller can be made to 
accommodate the changes by simply changing the 
constraints on input i to 
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Moreover, if prognosis of actuator i predicts that the 
actuator may get stuck in the near future, the RHC 
controller can help the actuator to get stuck in a preferable 
position (usually the neutral position) by setting the 
following constraints, 
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where 0du  is the reduced range for actuator i around the 

neutral position 0u , and is a function of the remaining 

useful life distribution. Adding constraints on  iu&  can also 
help to mitigate or defer actuator failure by avoiding 
aggressive control signals. 
 
Typically, the receding horizon optimal control is derived 
by solving the receding horizon optimization problem,  
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where u is the controls to be solved, x is an augmented 
state vector that includes the reference model states, 
identified plant states, and states of a state space model that 
integrates tracking error dynamics, 
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T
rx  are the states of the reference model defined by (δ  is 

the pilot command), 

 
rrr

rrrr

xCy
BxAx

=
+= δ&

             (9) 

T
px  are the states of the identified system. T

ix are the states 
of a state space model that integrates tracking error 
dynamics, 
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Matrix XQ  is defined as, 
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where TQ  and IQ  are symmetric positive semidefinite 
matrices that assign importance to predicted and integrated 
predicted tracking error, and uQ  is a symmetric positive 
definite matrix that penalizes control usage. 
 
System constraints are appended to the integrand of the 
objective function, and extremization of the integral results 
in matrix and vector differential Riccati equations which 
are solved at each control update based on the most 
recently identified aircraft dynamics. 
 
The reference models for the retrofit reconfiguration 
algorithm are implemented as low order equivalent system 
transfer functions that output pitch rate, roll rate, and yaw 
rate for the controller to track. The natural frequencies, 
damping ratios, and transfer function gains define the 
response characteristics of the reference dynamics 
(Monaco, Ward, and Bateman, 2004). 

The Application of AI Techniques 
There are many potential applications of Artificial 
Intelligence (AI) technologies in a Prognostics enhanced 
ACM system. An expert system is an efficient way to 
model rule-based contingency strategies. It is anticipated 
that early integration of prognostics based fault mitigation 
strategies are in the form of expert specified rules. The test 
scenario #2 in the case study presented in the following 
section is an example of rule-based contingency strategy, 
where the ACM system switch the fuel path to the 
redundant path in the idle mode to avoid propellant tank 
overpressurization in successive thrust mode. Fuzzy logic 
can be utilized to set the actuator movement constraints 

0du , lu0∆ and hu0∆  in the RHC problem presented in the 
previous section. Computational intelligence techniques 
such as genetic algorithms and particle swarm optimization 
can be applied to the optimization problems in the high 
level ACM planner. 

Case Study 
Figure 4 depicts the overall scheme conceptualized for 
proof-of-concept demonstration using a Monopropellant 
Propulsion System (MPS, shown in Figure 5) (Saxena et 
al. 2007). Mission level objectives are translated into 
external commands, e.g. Move forward by x distance, 
increase speed, stop, etc., which will provide inputs to 
various components in the system model. Once a fault is 
detected, the stateflow model indicates the failure to the 
decision maker, which in turn requests the ACM model to 
provide possible corrective action sequences along with 

associated costs. The decision maker makes a decision 
based on specified criteria (currently the minimum cost). 
The corrective action is applied to the system. Various 
fault injection options have also been included using a fault 
simulator that can simulate various faults like stuck valves, 
malfunctioning regulator valve, malfunctioning heater or 
gas leakage, etc. 

 
Figure 4: Optimization-based ACM & Test Bench  

 

 
Figure 5: A generic monopropellant propulsion system 

schematic 
 

A Simulink® model for MPS has been developed as a test 
bench for developing PHM methodologies with particular 
emphasis on ACM. This MPS model has been taken from 
NASA’s Fault Tree Handbook (Vesely et al. 2002) and has 



been slightly modified to suit the requirements of health 
management scenarios. The simulink model is equipped 
with a fault simulator to allow injecting various types of 
faults so that the ACM strategies can be validated and 
verified. Although this model is hypothetical and primarily 
qualitative, it incorporates most of the functional aspects 
that can be found in a propulsion system. Furthermore, its 
simplicity allows for quick implementation and 
experimentation to test and validate new algorithms.  

Monopropellant Propulsion System (MPS) 
The system uses hydrogen peroxide (H2O2) that passes 
over a catalyst and decomposes into oxygen, water, and 
heat, creating an expanding gas that produces the required 
thrust. The system includes a reservoir tank of inert gas 
that feeds through an isolation valve IV1 to a pressure 
regulator valve RG. The pressure regulator senses the 
pressure downstream and opens or closes a valve to 
maintain the pressure at a given set point. Separating the 
inert gas from the propellant is a bladder that collapses as 
the propellant is depleted. The propellant is forced through 
a feed line to the thruster isolation valve IV2 and then to 
the thrust chamber isolation Valve IV3. For the thruster to 
fire, the system must first be armed, by opening the IV1 
and IV2. After the system is armed, a command opens the 
IV3 and allows H2O2 to enter the thrust chamber. As the 
propellant passes over the catalyst, it decomposes 
producing oxygen, water vapor and heat. The mixture of 
hot expanding gases is allowed to escape through the 
thruster nozzle, which in turn creates the thrust. The relief 
valves RV1-4 are available to dump inert gas/propellant 
overboard should an overpressure condition occur in any 
corresponding part of the system. 
 
The ACM model has been developed using Matlab 
StateflowTM toolbox. Figure 6 shows a part of the 
Stateflow diagram that covers a heater fault (stuck on) and 
a regulator valve fault (stuck open). Whenever the system 
makes a transition from the normal mode to a fault mode 
the costs are computed and the action is taken at the 
moment the total costs are the minimum. 
 
As a proof-of-concept, a simple cost model was developed. 
This model takes two factors into account in calculating 
the total costs, i.e. fuel consumption and time to 
accomplish the mission.  
Total Cost=w1*time(heater_on)2 + w2*cost(extra time to 
complete mission)   
 
Figure 7 shows two scenarios each with fault occurring at 
an early and a later stage of the mission. As can be seen, if 
the fault occurs in the early stage of the mission, the heater 
need not be turned on immediately whereas if the fault 
occurs towards the end, the heater should be immediately 
turned on. This example also illustrated the advantage of 
optimization-based ACM design compared to an ACM 

system based only on predetermined rules. Once other cost 
factors need to be considered, a composite cost function 
can be formulated and incorporated in the decision making 
process. 
 

 
Figure 6: ACM Model in Stateflow 

 

 
Figure 7: Cost Model 

 
The developed simulation platform has been used to 
evaluate how prognostics can be effectively utilized in the 
controls of the monopropellant system. Seal leakage in an 
isolation valve (IV1) and pressure sensing degradation in a 



regulator valve (RG) are simulated. The pressure sensing 
degradation in RG is caused by corrosion that clogs the 
sensing port of the regulator valve which leads to a stuck 
open failure. The proof-of-concept demonstration showed 
that the proactive ACM system could switch the fuel path 
to the redundant path in the idle mode to avoid a dangerous 
high pressure in the propellant tank in the successive thrust 
mode (scenario 1 and 2). In addition, the simulation results 
also demonstrated that by considering the prognosis of seal 
leakage severity level, the mission requirements could be 
relaxed to secure most important tasks (scenario 3). 

Case Scenario #1 
This scenario considers a mission profile that includes 
three thrust periods: the first one (duration 50 cycles) is 
intended to lower the orbit of the spacecraft, the second 
period (20 cycles) is used to reach the desired altitude for 
the mission and to return to the intermediate orbit, and 
final thrust periods puts the spacecraft back into the 
original orbit.  
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Figure 8 -  Simulation results for RG fault without 

Prognostic module 
 

Figure 8 shows the results of the simulation when the 
prognosis results are not considered. At the 100th cycle, 
the pressure at the output of the regulator valve reaches 
dangerous levels because RG is stuck open due to 
accumulated corrosion around the sensing port. This fault 
propogates and leads to over-pressurization in the 
propellant tank (PT). The ACM system reacts by switching 
to the redundant regulator va;ve (second plot in Figure 8), 
which prevents the condition from getting worse. 
However, obviously the reactive ACM system is not able 
to prevent a sudden change of pressure after the idle mode. 
Note that in the idle mode, the fault can’t hopefully be 
detected because the regulator valve (RG) is not in 
operation. Prognosis of the corrosion growth is the only 
clue that should be considered in the ACM system as 
shown in scenario 2. 

Case Scenario #2 

0 50 100 150 200 250
0

10

20

R
E

G
 O

ut
 P

re
ss

ur
e

0 50 100 150 200 250
0

2

4

A
C

M
 C

om
m

an
d

0 50 100 150 200 250
0

50

100

%
 o

f M
is

si
on

 P
ro

gr
es

s

Time [cycles]  
Figure 9 -  Simulation results for RG fault with Prognostic 

module 
 

Figure 9 shows the results of the simulation when the 
prognosis results are taken into account by the ACM 
system. Clearly the system does not undergo the same 
sudden change in pressure observed in Figure 8. It can be 
observed that the ACM system is allowed to take action 
(and switch to the redundant regulator valve) much earlier. 
The magenta-dotted-vertical lines in plot illustrate the 
confidence interval for the remaining useful life of the 
regulator valve till it got stuck open.  

Case Scenario #3 
The scenario simulates a severe leakage condition in IV4 
(the system is already using the redundant fuel path). There 
is also the problem of sensor degradation in the regulator 
valve (RG2) that is accommodated by adjusting its set 
point value. Therefore, the mission reconfiguration in the 
ACM system decides to skip the second thrust mode as it 
can be seen in Figure 10. 
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Figure 10 -  Mission re-planning simulation results 



Conclusion & Future Work 
This paper presented an overview of the integration of 
prognostics in the planning and control loop in the context 
of an Automated Contingency Management for complex 
systems like modern aircraft and spacecraft. Applications 
of artificial intelligence techniques were also discussed. 
The main contribution is a generic hierarchical ACM 
architecture and novel optimization-based solutions for 
both high level ACM planner and control reconfiguration 
that incorporate prognostic information. A simple proof-of-
concept example was presented to provide insight into the 
utility of the suggested ACM techniques. The proposed 
techniques will be matured through further development 
and evaluated on a real application.  
 
Prognostics uncertainty management is an important issue 
that affects the performance of a Prognostics enhanced 
ACM system significantly. In practice, accurate 
prognostics has proven rather difficult to accomplish, thus 
uncertainty management and reduction techniques have to 
be implemented before the prognostics can be confidently 
utilized by the ACM system. In this paper, the stochastic 
programming approach for high level planner, and the 
fuzzy logic rule for setting constraints for actuator 
movement in the RHC approach take prognostics 
uncertainty into consideration, but many technical issues 
remain to be solved. Reducing uncertainty in failure 
prediction is being accomplished in the prognosis by the 
integration of many techniques including the integration of 
multi-discipline models, introduction of new sensors for 
state awareness and damage detection and, more 
importantly, reasoners to fuse failure models, usage 
history, environmental conditions, current state, and 
planned near-term operational use into predicted 
capability. Accurate and precise prognosis demands good 
probabilistic models of the fault growth and statistically 
sufficient samples of failure data to assist in training, 
validating and fine tuning prognostic algorithms. Many 
accomplishments have been reported but major challenges 
still remain to be addressed (Goebel and Eklund, 2007). 
Impact Technologies is actively involved in this research 
area and is developing a Probabilistic Modeling and 
Analysis Toolbox to support on-line prognosis uncertainty 
management. 
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