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Abstract—Distributed prognostics is the next step in the 

evolution of prognostic methodologies. It is an important 
enabling technology for the emerging Condition Based 
Management/Prognostics Health Management paradigm. This 
paper provides an overview of such systems with details of the 
system architectures and the various possible design 
considerations. A distributed particle filter architecture for 
battery health management is developed and successfully 
implemented using embedded smart sensor devices with wireless 
communication capabilities.   

 
Index Terms—Prognostics; Distributed Architecture; Sensor 

Network; PHM; Distributed Prognostics; Distributed Health 
Management; Distributed PHM. 
 

I. INTRODUCTION 
EALTH management is becoming more and more an 
enabling technology in the aerospace domain. Given a 

complex system, multiple sensors monitor various subsystems. 
The measurements taken from these sensors are then 
processed by suitable algorithms to determine the health of the 
system. Most of the system development assumes a 
centralized health management architecture, i.e., a central 
computing machine collects all the sensor data, processes 
them, and then runs various diagnostic and prognostic 
algorithms.  

However, such a system architecture has several 
disadvantages: (a) increasingly large amounts of sensor data 
are being collected for more refined analysis (e.g., high 
frequency vibration data for structures health management or 
data with high sampling rate for avionics health management), 
requiring significant wiring for the transmission of such data; 
(b) these data need to be processed by increasingly more 
complex algorithms. A single processor with limited memory 
resources may not be sufficient to deal with that complexity; 
(c) the system becomes more vulnerable to loss of 
functionality if the single processor system crashes. The whole 
health management system might go down and it would 
require considerable amount of time and effort to restore the 
system back. In some instances such a recovery may not be 
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possible at all.  
In our vision the health management architecture combines 

robust functionality with low added weight. This can be 
realized through a distributed health management architecture, 
where the computation is no longer completely executed on a 
single computing machine. Multiple such smart sensor devices 
would monitor different parts of a system while running 
individual monitoring algorithms. Where heavyweight 
algorithms are needed, multiple nodes in the architecture 
collaborate to provide the answer. This can be realized by 
taking advantage of advances in smart sensor technology that 
combine the power of embedded computing devices with 
sensors and wireless transmission technology.  

An example of such an implementation is where each 
embedded device would perform its local diagnostics which is 
assumed to be a light-weight operation (although light-weight 
diagnostics is not a requirement). When a fault condition has 
been detected, and when more computation power is required 
to perform remaining life calculations, the task is distributed 
among some of the remaining devices. Such an architecture 
would support an efficient as well as robust health 
management system. We will in the following sections 
continue with this illustrative example to demonstrate the 
operation of the distributed architecture. Results are shown for 
the functionality of the distributed architecture for prognostics 
in the context of battery health management. The algorithms 
were implemented on Sun Microsystem’s SPOT devices.  

II. BACKGROUND 
Although many techniques have been investigated for 

prognostics, the field itself is still relatively immature.  
Distributed prognostics is a topic that has been even less 
explored. Nonetheless, some of the techniques used in 
prognostics – such as particle filters – have been investigated 
in the context of distributed implementations. For example, in 
[2] the authors present three different distributed methods for 
implementing particle filter system while in [13], the authors 
present a parallel particle filter implementation on a shared-
memory multiprocessor cluster. Distributed particle filter 
implementation for embedded systems have been presented in 
[11]. Of late, sensor networks have gained popularity and 
often, sensor networks employ particle filters for tracking 
objects. Distributed particle filters for such applications have 
also been explored ([3], [8], [14]). 

A few efforts have been made recently in the domain of 
implementing a prognostics system in a distributed fashion. 
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For example, a concept similar to our work has been outlined 
in [9], where the authors briefly outline a distributed 
prognostics system architecture. However, the distributed 
architecture in this case refers only to the distribution of tasks 
at the prognostics algorithm level, i.e., identifying the different 
system modules and where they fit into a given system using 
prognostics. In [5], the authors present a high-level CAD 
(Computer Aided Design) tool for designing distributed 
prognostics system employing varied computing platforms 
such as FPGAs as well as embedded processors like ARM. 
The design capabilities were demonstrated using small 
examples: a PID tank controller and an XOR gate. 

  

III. DISTRIBUTED PROGNOSTICS 

A. Overview 
We envision a distributed prognostics system where 

multiple smart sensor devices are employed that monitor 
various subsystems or modules and perform diagnostics 
operations and trigger the prognostics mode based on user 
defined thresholds and rules in which case the prognostics for 
the whole system or a part of the system is carried out in a 
distributed fashion.  

Before going into further details, we first define the basic 
components of our architecture. We define a computing 
element (CE) as a device that contains a sensor or a set of 
sensors, a processing element (computing device) and a 
communication device i.e., a wireless transreceiver or wired 
communication capabilities. These devices could be placed in 
actual modules or subsystems where they would use the 
sensors as well as the processing elements (PEs). They could 
also be used just as a computing device in which case they 
could act as monitors for the rest of the system – schedule 
tasks, detect failures and initiate recovery, provide access to 
resources such as an external database etc – or act as “helpers” 
to offload the computation requirements from other CEs to 
maintain real-time constraints of the application. The PEs may 
not have sufficient computation capabilities for a large and 
complex system in which case a central server can be used. A 
central server is a more powerful computing device that 
collects data from the CEs – the CEs only preprocess the 
sensor data which involves minor computations such as simple 
filtering –, processes them and communicates the result back 
to the CEs. Note that the central server can be a 
multiprocessor platform and use parallel computations. Thus, 
the central servers can vary from a personal laptop to a cluster 
of microprocessors. The other important design element is the 
network connection architecture which determines how the 
various components are interconnected with each other. The 
network connection varies chiefly depending on the following 
factors: 

• Wired or wireless connection capability, 
• Processing power of CEs, 
• Communication bandwidth. 
Given the above definitions, a distributed prognostics 

system, thus, comprises of CEs connected using a network 

connection and may or may not contain central servers. There 
are two operating modes for a CE: diagnostics and 
prognostics. A CE runs in the default mode of diagnostics 
until a prognostics flag is raised by some CE in which case 
depending on the current state i.e., availability of its resources, 
it switches to prognostics mode. Thus, in the prognostics mode 
it is not necessary that all the CEs are utilized; some of them 
may be busy monitoring critical components or may not have 
enough computing power to simultaneously execute both 
default operations along with a part of the prognostics 
operation. When the prognostics mode is triggered, either 
central server or the CE that triggered the mode makes an 
estimate of how many computing resources are available and 
partition and delegate tasks accordingly. An overview of the 

system is provided in Figure 1. 
In terms of system architecture there are three possible 

models: 
1. Single CE with multiple helpers 
2. Multiple CEs with a single helper 
3. Multiple CEs with no helpers 
4. Multiple CEs with multiple helpers 
 Note that for model 4, there are two possible scenarios: a) 

the CEs do not distribute their tasks and only share sensor data 
and b) the CEs share data and tasks. In our discussions, 
henceforth, we assume that the computation is always 
distributed and hence we do not consider case 3 for which the 
design considerations are much simpler. 

B. Particle Filter based Prognostics Systems 
Particle filters provide a powerful technique for prognostics. 

They are based on Bayesian learning networks and are often 
used to track progression of system state in order to make 
estimations of remaining useful life (RUL), which is at the 
core of system prognostics and health management. Bayesian 
techniques also provide a general rigorous framework for such 
dynamic state estimation problems. The core idea is to 
construct a probability density function (pdf) of the state based 
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Fig. 1.  Overview of distributed prognostics system architecture. Note that all 
the CEs may not have wireless connectivity. 
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on all available information.  
In contrast, for the Particle Filter (PF) approach ([1], [6]) 

the pdf is approximated by a set of particles (points) 
representing sampled values from the unknown state space, 
and a set of associated weights denoting discrete probability 
masses. The particles are generated and recursively updated 
from a nonlinear process model that describes the evolution in 
time of the system under analysis, a measurement model, a set 
of available measurements and an a priori estimate of the state 
pdf. In other words, PF is a technique for implementing a 
recursive Bayesian filter using Monte Carlo (MC) simulations, 
and as such is known as a sequential MC (SMC) method. 

For nonlinear systems or non-Gaussian noise, there is no 
general analytic (closed form) solution for the state space pdf. 
The extended Kalman filter (EKF) is the most popular solution 
to the recursive nonlinear state estimation problem [8]. In this 
approach the estimation problem is linearized about the 
predicted state so that the Kalman filter can be applied. In this 
case, the desired pdf is approximated by a Gaussian, which 
may have significant deviation from the true distribution 
causing the filter to diverge.  

Particle filter methods assume that the state equations can 
be modeled as a first order Markov process with the outputs 
being conditionally independent which can be written as:  

xk = f(xk-1) + ωk 
yk = h(xk) + υk                     (1) 

where, k is the time index, x denotes the state, y is the output 
or measurements, and both ω and υ are samples from noise 
distributions. 

In terms of computation, a particle filter based system 
essentially consists of the following three computational steps: 

1. Sampling: In this step, samples (particles) of the 
unknown state are generated based on the given 
sampling function which provide an estimate of the 
current state of the system and also propagate the 
particles from the previous time step to the current time 

2. Weight Calculation: Based on the observations, an 
importance weight is assigned to each particle  

3. Resampling: This step involves redrawing particles 
from the same probability density based on some 
function of the particle weights such that the weights of 
the new particles are approximately equal. 

 
Particle filters are expensive with respect to computation as 

well as memory requirements. However, they exhibit 
considerable amount of data parallelism to enable parallel 
processing. All steps enlisted above except resampling can be 
completely parallelized. Though, various efforts to derive 
parallelized versions of particle filters have been made, it has 
not been possible till now to formulate a complete parallel 
version. However, the resampling technique being used is 
often dictated by the application and system requirements and 
hence parallel versions cannot be used in all designs.  

Based on the above observations, several architectures for 
particle filter based systems have been proposed ([2], [3]); 
some of which employ a central base-station/monitor while 
others do not. In our case, the resampling technique enforces 
use of a central base-station. The details of the architecture are 

presented in Figure 2. In this Figure, the CEs perform 
sampling and weight calculation while the central server 
performs all the steps in particle filtering. Thus, steps 1 and 2 
in the particle filter are shared amongst the CEs and the central 
server while the resampling is done solely by the central 
server after collecting all the updated particle weight from the 
rest of the CEs.  

  The operational flow of the system is as follows: 
1. When a prognostics flag is raised, the central server 

starts the prognostics algorithm by initializing the 
particle filter either based on a given fixed algorithm or 
reading from a file. 

2. The central server collects information regarding which 
CEs are available for sharing the prognostics task. 

3. The central server divides the computational load based 
on number of particles among the rest of the available 
CEs and sends this information to the CEs. It also sends 

the initial particle values.  
4. The participating CEs read in the above information and 

read only the particle values assigned to them. 
5. The CEs and the central server perform the sampling 

step.  
6. If there is only one sensor, the CE responsible for 

reading that sensor value updates the central server with 
the reading which is then communicated to the rest of the 
CEs. If there are multiple sensors, the same is done for 
all the sensor readings.  

7. Once the relevant sensor readings are obtained, the CEs 
and the central server perform the weight update step. 

8. The CEs send the updated particle and their weight 
information to the central server which then performs 
resampling. 

9. After resampling the central server sends the new 
particle information only to the CEs if the load 
distribution based on particles is constant for all the 
iterations. However, if the distribution varies over time – 
for example because any of the CEs notifies the central 
server that it cannot participate any more or its other jobs 
require more attention and hence this load needs to be 
reduced – the central server sends new load assignment 
as well. 

10. After all the iterations are over, the central server notifies 
all participating CEs. 

Note that all communication is acknowledgment based. 
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Fig. 2.  System architecture for particle filter based prognostics system. 
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Thus, if acknowledgment(s) for a message is not obtained 
within a timeout period, the sender resends the message again. 
In the above discussions, we assume that a central server 
exists. However that may not be true for all applications, in 
which case one of the CEs is used as a central base 
station/monitor and could also be the CE that raised the 
prognostics flag. 

 

IV. SUN SPOT (SMALL PROGRAMMABLE OBJECT 
TECHNOLOGY) DEVICE 

A. Hardware Overview 
The Sun SPOT device (Figure 3) is a small, wireless, 

battery powered experimental platform. It allows 
programming almost entirely in Java to allow regular 
designers to create and implement standalone systems in an 
easy and convenient way. The hardware platform includes a 
range of built-in sensors as well as the ability to easily 
interface to external devices.  

In terms of hardware, there are two SPOT devices. One is a 
base station while the other is free range or remote device. 
The base station can connect to the development or host 
machine (a PC, or a laptop) and allows writing programs that 
can run on the host machine. The base station's radio can then 
be used to communicate with remote Sun SPOTs. Note that 
this does not imply that the free range SPOT devices have to 
be used in conjunction with the base stations always; they can 
be used independent of the base station and a host computing 
machine. The base station can also be used by the 
development tools to deploy and debug applications on remote 
Sun SPOTs. Thus the base stations mainly provide additional 
modes of operation as well as debugging capabilities. Note 
that a remote Sun SPOT can also be used as a base station, in 
which case its sensor board would not be used.  

A full, free range Sun SPOT device is built by stacking a 
Sun SPOT processor board with a sensor board and battery. It 
is packaged in a plastic housing. The smaller base station Sun 
SPOT consists of just the processor board in a plastic housing. 

In terms of processing power, each Sun SPOT has a 180MHz 
32-bit ARM920T core processor with 512K RAM and 4M 
Flash. The SPOT devices communicate using radio channels. 
The processor board has a 2.4GHz radio with an integrated 
antenna on the board. The radio is a TI CC2420 (formerly 
ChipCon) and is IEEE 802.15.4 compliant. Each processor 
board has a USB interface (used to connect to a PC). There are 
two LED's, one red and one green. Finally there is an 8-bit 
microcontroller Atmel Atmega88 used as a power controller. 
The battery used to power a SPOT device is a 3.7V 
rechargeable, 750 mAh Lithium-ion battery which is 
recharged whenever the USB interface is connected to a PC or 
powered USB hub. Note the base station Sun SPOT does not 
have a battery, getting its power via the USB connection to the 
host PC.  

B. Software Overview 
The Sun SPOTs unlike a lot of other embedded device do 

not require either hardware coding (using hardware 
description languages) or assembly language coding. It runs 
Java VM (Virtual Machine) on the processor directly. The VM 
executes directly out of flash memory. A Java Virtual 
Machine (JVM) is a set of computer software programs and 
data structures which use a virtual machine model for the 
execution of other computer programs and scripts. The model 
used by a JVM accepts a Java byte code which is a form of 
computer intermediate language normally but not necessarily 
generated from Java source code.  Thus, the designer can 
develop the whole system in Java. The Java source code can 
then be compiled and the generated bytecode directly 
downloaded to the SPOTs.  

The Sun SPOTs use a fully capable Java ME (Micro 
Edition) implementation called Squawk that provides basic OS 
functionality. Java ME is a specification of a subset of the 
Java platform aimed at providing a certified collection of Java 
APIs (Application Programming Interface) for the 
development of software for small, resource-constrained 
devices such as cell phones, PDAs. All the device drivers for 
the SPOTs are written in Java. 

The software platform provided to develop Java programs 
for Sun SPOTs is Java Netbeans IDE. The NetBeans IDE 
allows applications to be developed from a set of modular 
software components called modules. Applications built on 
modules can be extended by adding new modules. The 
modules enable direct interaction with I/O (Input/Output) 
APIs as well. 

V. EXPERIMENTS AND RESULTS 

A. Application 
The application domain chosen for the implementation of 

our proposed methodology is battery health monitoring. 
Batteries form a core component of the power supply system 
for many machines, and their degradation often leads to 
reduced performance, operational impairment and even 
catastrophic failure.  Battery health monitoring has a wide 
variety of connotations, ranging from intermittent manual Fig. 3.  Anatomy of a free ranging Sun SPOT device (courtesy of 

www.sunspotworld.com). 
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measurements of voltage and electrolyte specific gravity to 
fully automated online supervision of various measured and 
estimated battery parameters. In our chosen application 
electrochemical impedance spectroscopy (EIS) is used to 
probe the internal electrochemical reactions of batteries. The 
measurement process involves the injection of a small AC 
voltage, swept over a large range of frequencies (e.g. 0.1Hz – 
10kHz), superimposed over a fixed DC voltage at the 
terminals of the cells, while the impedance spectrum (Nyquist 
or Bode plot) is recorded.  

The data collected is from second generation 18650-size 
lithium-ion cells (i.e., Gen 2 cells) that were cycle-life tested 
at the Idaho National Laboratory under the Advanced 
Technology Development (ATD) Program. The cells were 
aged at 60% state-of-charge (SOC) and various temperatures 
(25oC and 45oC). The full dataset is divided into a training set 
(25oC data) and a test set (45oC data), so as to examine the 
ability of the prognostic algorithm to handle the uncertainty in 
the different aging rates. Features extracted from the training 
data are used to estimate the internal parameters of the battery 
model (shown in Figure 4), which are subsequently used to 
initialize prognosis in the test case.  
 

  
Fig. 4.  Lumped Parameter Model of a Battery. 
 

The parameters of interest are the double layer capacitance 
CDL, the charge transfer resistance RCT, the Warburg 
impedance RW and the electrolyte resistance RE, whose values 
change with various ageing and fault processes like plate 
sulfation, passivation and corrosion. From the aging data 
collected, RE and RCT are found to be changing significantly in 
value, and hence, are considered to be the state variables of 
interest. Exponential growth models, as shown in equation 2, 
are fitted onto their aging curves to identify the relevant decay 
parameters like C and λ: 
θ  = C·exp(λt)                        (2) 

where, θ  is the model predicted value of RE or RCT.  
The state and measurement equations that describe the 

battery model are given below: 
z0 = C; Λ0 = Λ 
zk = zk-1.expΛk + ωk 
Λk = Λk-1 + νk 
xk = [zk ; Λk] 
yk = zk + υk                      (3) 
where, the vector z comprises of RE and RCT, and C and Λ 

contain their C and λ values respectively. The z and Λ vectors 
are combined to form the state vector x. The measurement 
vector y comprises of the battery parameters inferred from the 
test data. The noise samples ω, ν and υ are picked from zero 

mean Gaussian distributions whose standard deviations are 
derived from the training data. The particle filter uses the 
parameterized model described in equation (3) for the 
propagation of the particles (samples from the pdf of xk). 
Taking advantage of the highly linear correlation between 
RCT+RE and C/1 capacity (capacity at rated current) as derived 
from training data, predicted values of the internal battery 
model parameters are used to calculate expected charge 
capacities of the battery. The predictions are compared against 
RUL thresholds (end-of-life criteria) to derive the RUL 
estimates. Further details about the applied particle filtering 
framework can be found in [11]. 

B. Experimental details 
 The system architecture being used is the same outlined in 

section III.B. The CE in our experiments is the SunSpot and 
the software development for the Sun SPOTs was done using 
Netbeans IDE version 5.0. The base station – which can be 
connected to a PC – is used as a central monitor. The free 
ranging SPOT devices form the rest of the CEs. Experiments 
with 2 SPOTs – one free ranging and the other a base station – 
and 3 SPOTs – two free ranging and the other a base station – 
were carried out. However, since the in-built sensor 
capabilities of the SPOTs were not sufficient for the 
observations required for the batteries, sensor observations 
were read from an offline database via the SPOT base station. 
Note that a slight variation of such indirect sensor reading 
might be encountered commonly if some of the participating 
CEs do not make sensor readings i.e., act as helpers (as 
mentioned in III.A) in which case they read sensor values via 
the base station. The base station was connected to laptop 
using a USB cable. The files containing the sensor information 
and other initialization information were read through the 
USB cable and communicated to the free ranging SPOTs 
appropriately.  

The main issue faced in the design was limitations imposed 
by the restrictions on the message length by the 
communication channel; all the state information for a single 
iteration could not be packed into a single message. Thus, the 
message had to be broken into multiple parts and sent 
iteratively both by the base station to send state information to 
the free ranging SPOT and the free ranging SPOT to 
communicate updated state information to the base station. 
The sensor values were broadcast at the beginning of every 
iteration of the particle filter. Since, there was only one 
application being executed by all the SPOTs, the availability 
of the SPOTs as well as the workload divisions were known a 
priori and hence this was not separately communicated. The 
initial particle values for each SPOT were sent individually 
using dedicated radio channels by the base station to the free 
ranging SPOTs.  

Each state was a 2-dimensional vector. Also, since the 
parameter identification was done along with state estimation, 
2-dimensional parameter values were also send along with 
each state value. The number of particles used was 100. First 
state tracking was performed for a few iterations followed by 
computation of the RUL or time-to-failure (TTF).  
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C. Results 

 
Fig. 5.  Particle Filter Output using 2-SPOT configuration 

 
Figure 6 shows both the state tracking and future state 

prediction plots for data collected at 45oC. RUL or TTF is 
used as the relevant metric for the state-of-life (SOL). This is 
derived by projecting out the capacity estimates into the future 
(Figure 6) until expected capacity hits a certain predetermined 
RUL threshold (end-of-life criteria). The particle distribution 
is used to calculate the RUL pdf by fitting a mixture of 
Gaussians in a least-squares sense. As shown in Figure 5, the 
RUL pdf improves in both accuracy (centering of the pdf over 
the actual failure point) and precision (spread of the pdf over 
time) with the inclusion of more measurements before 
prediction. The average (over 10 executions) RUL values 
computed at 32 weeks and 48 weeks for the 2-SPOT 
configuration are 58.06 weeks and 61.17 weeks respectively, 
while the corresponding values for the 3-SPOT configuration 
are 59.93 and 61.99 weeks. 
 

 
Fig. 6.  Particle Filter Prediction using 3-SPOT configuration 
 

The static program memory usages of the SPOT devices for 
both 2 SPOT and 3 SPOT configurations are as follows: 

• Free range SPOTs: 29KB, 
• Base station: 101KB. 

The execution times (averaged over 10 separate executions 
of the whole system) for prediction after 8 weeks and 
prediction after 12 weeks using the 2-SPOT and 3-SPOT 
configurations are shown in Figure 7. An average was taken 
since the execution time varies – within a margin of 10-15 ms 
– mainly based on the wireless communication time which is 
dependent on the distance between the SPOTs. The execution 
time decreases for the 3-SPOT configuration compared to the 
2-SPOT. However, a significant decrease is not observed due 
to the resampling step which is serial in nature and is executed 
completely on the base station. Also, as the number of SPOTs 
is increased, the amount of time spent on communication 
increases, which diminishes the effect of the gain in execution 
time obtained by distributing the computation workload. 

 
Fig. 7.  Execution time results for 2SPOT and 3SPOT configurations 
 

The low program memory utilization of the free ranging 
SPOTs demonstrate that more multitasking can be delegated 
to them; instead of executing a single application as discussed 
here more allocated tasks would enable more efficient use of 
resources. As shown by the results in Figure 9, for a multiple 
SPOT system, significant amount of time may be spent in 
communication. Thus, a free ranging SPOT can execute its 
own set of monitoring applications when the base station is 
busy communicating and collecting intermediate results from 
other SPOTs and processing them (in our case performing 
resampling).  

VI. CONCLUSIONS AND FUTURE WORK 
The paper presents, in detail, a distributed architecture for 

prognostic applications. To demonstrate its functionalities and 
study the nature of such architectures a distributed prognostics 
system for batteries was successfully implemented on smart 
sensor devices with wireless communication capabilities. The 
results indicate the feasibility of using such a distributed 
implementation. The low execution times and program 
memory usage illustrate that for a complex system such a 
distributed architecture would enable a timely management of 
diagnosis and prognosis of multiple subsystems. 

Future work would look into integration with direct sensor 
measurements using the SPOT devices and exploration of 
other devices with higher communication and computation 
power for systems with multiple diagnostic and prognostic 
applications running simultaneously.  
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