
 1

Abstract—Distributed prognostics is the next step in the

evolution of prognostic methodologies. It is an important
enabling technology for the emerging Condition Based
Management/Prognostics Health Management paradigm. This
paper provides an overview of such systems with details of the
system architectures and the various possible design
considerations. A distributed particle filter architecture for
battery health management is developed and successfully
implemented using embedded smart sensor devices with wireless
communication capabilities.

Index Terms—Prognostics; Distributed Architecture; Sensor

Network; PHM; Distributed Prognostics; Distributed Health
Management; Distributed PHM.

I. INTRODUCTION
EALTH management is becoming more and more an
enabling technology in the aerospace domain. Given a

complex system, multiple sensors monitor various subsystems.
The measurements taken from these sensors are then
processed by suitable algorithms to determine the health of the
system. Most of the system development assumes a
centralized health management architecture, i.e., a central
computing machine collects all the sensor data, processes
them, and then runs various diagnostic and prognostic
algorithms.

However, such a system architecture has several
disadvantages: (a) increasingly large amounts of sensor data
are being collected for more refined analysis (e.g., high
frequency vibration data for structures health management or
data with high sampling rate for avionics health management),
requiring significant wiring for the transmission of such data;
(b) these data need to be processed by increasingly more
complex algorithms. A single processor with limited memory
resources may not be sufficient to deal with that complexity;
(c) the system becomes more vulnerable to loss of
functionality if the single processor system crashes. The whole
health management system might go down and it would
require considerable amount of time and effort to restore the
system back. In some instances such a recovery may not be

Sankalita Saha is with RIACS/NASA Ames Research Center, Moffett
Field, CA 94035 USA (phone: 650-604-4593; e-mail: ssaha@riacs.edu).

Bhaskar Saha is with MCT/NASA Ames Research Center, Moffett Field,
CA 94035 USA. (e-mail: bhaskar.saha-1@nasa.gov).

Kai Goebel is with NASA Ames Research Center, Moffett Field, CA
94035 USA. (e-mail: kai.goebel@nasa.gov).

possible at all.
In our vision the health management architecture combines

robust functionality with low added weight. This can be
realized through a distributed health management architecture,
where the computation is no longer completely executed on a
single computing machine. Multiple such smart sensor devices
would monitor different parts of a system while running
individual monitoring algorithms. Where heavyweight
algorithms are needed, multiple nodes in the architecture
collaborate to provide the answer. This can be realized by
taking advantage of advances in smart sensor technology that
combine the power of embedded computing devices with
sensors and wireless transmission technology.

An example of such an implementation is where each
embedded device would perform its local diagnostics which is
assumed to be a light-weight operation (although light-weight
diagnostics is not a requirement). When a fault condition has
been detected, and when more computation power is required
to perform remaining life calculations, the task is distributed
among some of the remaining devices. Such an architecture
would support an efficient as well as robust health
management system. We will in the following sections
continue with this illustrative example to demonstrate the
operation of the distributed architecture. Results are shown for
the functionality of the distributed architecture for prognostics
in the context of battery health management. The algorithms
were implemented on Sun Microsystem’s SPOT devices.

II. BACKGROUND
Although many techniques have been investigated for

prognostics, the field itself is still relatively immature.
Distributed prognostics is a topic that has been even less
explored. Nonetheless, some of the techniques used in
prognostics – such as particle filters – have been investigated
in the context of distributed implementations. For example, in
[2] the authors present three different distributed methods for
implementing particle filter system while in [13], the authors
present a parallel particle filter implementation on a shared-
memory multiprocessor cluster. Distributed particle filter
implementation for embedded systems have been presented in
[11]. Of late, sensor networks have gained popularity and
often, sensor networks employ particle filters for tracking
objects. Distributed particle filters for such applications have
also been explored ([3], [8], [14]).

A few efforts have been made recently in the domain of
implementing a prognostics system in a distributed fashion.

Distributed Prognostics Using Wireless
Embedded Devices

Sankalita Saha, Member, IEEE, Bhaskar Saha, Member, IEEE, and Kai Goebel

 H

 2

For example, a concept similar to our work has been outlined
in [9], where the authors briefly outline a distributed
prognostics system architecture. However, the distributed
architecture in this case refers only to the distribution of tasks
at the prognostics algorithm level, i.e., identifying the different
system modules and where they fit into a given system using
prognostics. In [5], the authors present a high-level CAD
(Computer Aided Design) tool for designing distributed
prognostics system employing varied computing platforms
such as FPGAs as well as embedded processors like ARM.
The design capabilities were demonstrated using small
examples: a PID tank controller and an XOR gate.

III. DISTRIBUTED PROGNOSTICS

A. Overview
We envision a distributed prognostics system where

multiple smart sensor devices are employed that monitor
various subsystems or modules and perform diagnostics
operations and trigger the prognostics mode based on user
defined thresholds and rules in which case the prognostics for
the whole system or a part of the system is carried out in a
distributed fashion.

Before going into further details, we first define the basic
components of our architecture. We define a computing
element (CE) as a device that contains a sensor or a set of
sensors, a processing element (computing device) and a
communication device i.e., a wireless transreceiver or wired
communication capabilities. These devices could be placed in
actual modules or subsystems where they would use the
sensors as well as the processing elements (PEs). They could
also be used just as a computing device in which case they
could act as monitors for the rest of the system – schedule
tasks, detect failures and initiate recovery, provide access to
resources such as an external database etc – or act as “helpers”
to offload the computation requirements from other CEs to
maintain real-time constraints of the application. The PEs may
not have sufficient computation capabilities for a large and
complex system in which case a central server can be used. A
central server is a more powerful computing device that
collects data from the CEs – the CEs only preprocess the
sensor data which involves minor computations such as simple
filtering –, processes them and communicates the result back
to the CEs. Note that the central server can be a
multiprocessor platform and use parallel computations. Thus,
the central servers can vary from a personal laptop to a cluster
of microprocessors. The other important design element is the
network connection architecture which determines how the
various components are interconnected with each other. The
network connection varies chiefly depending on the following
factors:

• Wired or wireless connection capability,
• Processing power of CEs,
• Communication bandwidth.
Given the above definitions, a distributed prognostics

system, thus, comprises of CEs connected using a network

connection and may or may not contain central servers. There
are two operating modes for a CE: diagnostics and
prognostics. A CE runs in the default mode of diagnostics
until a prognostics flag is raised by some CE in which case
depending on the current state i.e., availability of its resources,
it switches to prognostics mode. Thus, in the prognostics mode
it is not necessary that all the CEs are utilized; some of them
may be busy monitoring critical components or may not have
enough computing power to simultaneously execute both
default operations along with a part of the prognostics
operation. When the prognostics mode is triggered, either
central server or the CE that triggered the mode makes an
estimate of how many computing resources are available and
partition and delegate tasks accordingly. An overview of the

system is provided in Figure 1.
In terms of system architecture there are three possible

models:
1. Single CE with multiple helpers
2. Multiple CEs with a single helper
3. Multiple CEs with no helpers
4. Multiple CEs with multiple helpers
 Note that for model 4, there are two possible scenarios: a)

the CEs do not distribute their tasks and only share sensor data
and b) the CEs share data and tasks. In our discussions,
henceforth, we assume that the computation is always
distributed and hence we do not consider case 3 for which the
design considerations are much simpler.

B. Particle Filter based Prognostics Systems
Particle filters provide a powerful technique for prognostics.

They are based on Bayesian learning networks and are often
used to track progression of system state in order to make
estimations of remaining useful life (RUL), which is at the
core of system prognostics and health management. Bayesian
techniques also provide a general rigorous framework for such
dynamic state estimation problems. The core idea is to
construct a probability density function (pdf) of the state based

Computing
Element

Computing
Element

Computing
Element

Computing
Element

Computing
Element

Computing
Element

Computing
Element

Basestation

Central Server

Fig. 1. Overview of distributed prognostics system architecture. Note that all
the CEs may not have wireless connectivity.

 3

on all available information.
In contrast, for the Particle Filter (PF) approach ([1], [6])

the pdf is approximated by a set of particles (points)
representing sampled values from the unknown state space,
and a set of associated weights denoting discrete probability
masses. The particles are generated and recursively updated
from a nonlinear process model that describes the evolution in
time of the system under analysis, a measurement model, a set
of available measurements and an a priori estimate of the state
pdf. In other words, PF is a technique for implementing a
recursive Bayesian filter using Monte Carlo (MC) simulations,
and as such is known as a sequential MC (SMC) method.

For nonlinear systems or non-Gaussian noise, there is no
general analytic (closed form) solution for the state space pdf.
The extended Kalman filter (EKF) is the most popular solution
to the recursive nonlinear state estimation problem [8]. In this
approach the estimation problem is linearized about the
predicted state so that the Kalman filter can be applied. In this
case, the desired pdf is approximated by a Gaussian, which
may have significant deviation from the true distribution
causing the filter to diverge.

Particle filter methods assume that the state equations can
be modeled as a first order Markov process with the outputs
being conditionally independent which can be written as:

xk = f(xk-1) + ωk
yk = h(xk) + υk (1)

where, k is the time index, x denotes the state, y is the output
or measurements, and both ω and υ are samples from noise
distributions.

In terms of computation, a particle filter based system
essentially consists of the following three computational steps:

1. Sampling: In this step, samples (particles) of the
unknown state are generated based on the given
sampling function which provide an estimate of the
current state of the system and also propagate the
particles from the previous time step to the current time

2. Weight Calculation: Based on the observations, an
importance weight is assigned to each particle

3. Resampling: This step involves redrawing particles
from the same probability density based on some
function of the particle weights such that the weights of
the new particles are approximately equal.

Particle filters are expensive with respect to computation as

well as memory requirements. However, they exhibit
considerable amount of data parallelism to enable parallel
processing. All steps enlisted above except resampling can be
completely parallelized. Though, various efforts to derive
parallelized versions of particle filters have been made, it has
not been possible till now to formulate a complete parallel
version. However, the resampling technique being used is
often dictated by the application and system requirements and
hence parallel versions cannot be used in all designs.

Based on the above observations, several architectures for
particle filter based systems have been proposed ([2], [3]);
some of which employ a central base-station/monitor while
others do not. In our case, the resampling technique enforces
use of a central base-station. The details of the architecture are

presented in Figure 2. In this Figure, the CEs perform
sampling and weight calculation while the central server
performs all the steps in particle filtering. Thus, steps 1 and 2
in the particle filter are shared amongst the CEs and the central
server while the resampling is done solely by the central
server after collecting all the updated particle weight from the
rest of the CEs.

 The operational flow of the system is as follows:
1. When a prognostics flag is raised, the central server

starts the prognostics algorithm by initializing the
particle filter either based on a given fixed algorithm or
reading from a file.

2. The central server collects information regarding which
CEs are available for sharing the prognostics task.

3. The central server divides the computational load based
on number of particles among the rest of the available
CEs and sends this information to the CEs. It also sends

the initial particle values.
4. The participating CEs read in the above information and

read only the particle values assigned to them.
5. The CEs and the central server perform the sampling

step.
6. If there is only one sensor, the CE responsible for

reading that sensor value updates the central server with
the reading which is then communicated to the rest of the
CEs. If there are multiple sensors, the same is done for
all the sensor readings.

7. Once the relevant sensor readings are obtained, the CEs
and the central server perform the weight update step.

8. The CEs send the updated particle and their weight
information to the central server which then performs
resampling.

9. After resampling the central server sends the new
particle information only to the CEs if the load
distribution based on particles is constant for all the
iterations. However, if the distribution varies over time –
for example because any of the CEs notifies the central
server that it cannot participate any more or its other jobs
require more attention and hence this load needs to be
reduced – the central server sends new load assignment
as well.

10. After all the iterations are over, the central server notifies
all participating CEs.

Note that all communication is acknowledgment based.

Computing
Element 1

Computing
Element 4

Computing
Element 2

Central
Server

Computing
Element 3

Fig. 2. System architecture for particle filter based prognostics system.

 4

Thus, if acknowledgment(s) for a message is not obtained
within a timeout period, the sender resends the message again.
In the above discussions, we assume that a central server
exists. However that may not be true for all applications, in
which case one of the CEs is used as a central base
station/monitor and could also be the CE that raised the
prognostics flag.

IV. SUN SPOT (SMALL PROGRAMMABLE OBJECT
TECHNOLOGY) DEVICE

A. Hardware Overview
The Sun SPOT device (Figure 3) is a small, wireless,

battery powered experimental platform. It allows
programming almost entirely in Java to allow regular
designers to create and implement standalone systems in an
easy and convenient way. The hardware platform includes a
range of built-in sensors as well as the ability to easily
interface to external devices.

In terms of hardware, there are two SPOT devices. One is a
base station while the other is free range or remote device.
The base station can connect to the development or host
machine (a PC, or a laptop) and allows writing programs that
can run on the host machine. The base station's radio can then
be used to communicate with remote Sun SPOTs. Note that
this does not imply that the free range SPOT devices have to
be used in conjunction with the base stations always; they can
be used independent of the base station and a host computing
machine. The base station can also be used by the
development tools to deploy and debug applications on remote
Sun SPOTs. Thus the base stations mainly provide additional
modes of operation as well as debugging capabilities. Note
that a remote Sun SPOT can also be used as a base station, in
which case its sensor board would not be used.

A full, free range Sun SPOT device is built by stacking a
Sun SPOT processor board with a sensor board and battery. It
is packaged in a plastic housing. The smaller base station Sun
SPOT consists of just the processor board in a plastic housing.

In terms of processing power, each Sun SPOT has a 180MHz
32-bit ARM920T core processor with 512K RAM and 4M
Flash. The SPOT devices communicate using radio channels.
The processor board has a 2.4GHz radio with an integrated
antenna on the board. The radio is a TI CC2420 (formerly
ChipCon) and is IEEE 802.15.4 compliant. Each processor
board has a USB interface (used to connect to a PC). There are
two LED's, one red and one green. Finally there is an 8-bit
microcontroller Atmel Atmega88 used as a power controller.
The battery used to power a SPOT device is a 3.7V
rechargeable, 750 mAh Lithium-ion battery which is
recharged whenever the USB interface is connected to a PC or
powered USB hub. Note the base station Sun SPOT does not
have a battery, getting its power via the USB connection to the
host PC.

B. Software Overview
The Sun SPOTs unlike a lot of other embedded device do

not require either hardware coding (using hardware
description languages) or assembly language coding. It runs
Java VM (Virtual Machine) on the processor directly. The VM
executes directly out of flash memory. A Java Virtual
Machine (JVM) is a set of computer software programs and
data structures which use a virtual machine model for the
execution of other computer programs and scripts. The model
used by a JVM accepts a Java byte code which is a form of
computer intermediate language normally but not necessarily
generated from Java source code. Thus, the designer can
develop the whole system in Java. The Java source code can
then be compiled and the generated bytecode directly
downloaded to the SPOTs.

The Sun SPOTs use a fully capable Java ME (Micro
Edition) implementation called Squawk that provides basic OS
functionality. Java ME is a specification of a subset of the
Java platform aimed at providing a certified collection of Java
APIs (Application Programming Interface) for the
development of software for small, resource-constrained
devices such as cell phones, PDAs. All the device drivers for
the SPOTs are written in Java.

The software platform provided to develop Java programs
for Sun SPOTs is Java Netbeans IDE. The NetBeans IDE
allows applications to be developed from a set of modular
software components called modules. Applications built on
modules can be extended by adding new modules. The
modules enable direct interaction with I/O (Input/Output)
APIs as well.

V. EXPERIMENTS AND RESULTS

A. Application
The application domain chosen for the implementation of

our proposed methodology is battery health monitoring.
Batteries form a core component of the power supply system
for many machines, and their degradation often leads to
reduced performance, operational impairment and even
catastrophic failure. Battery health monitoring has a wide
variety of connotations, ranging from intermittent manual Fig. 3. Anatomy of a free ranging Sun SPOT device (courtesy of

www.sunspotworld.com).

 5

measurements of voltage and electrolyte specific gravity to
fully automated online supervision of various measured and
estimated battery parameters. In our chosen application
electrochemical impedance spectroscopy (EIS) is used to
probe the internal electrochemical reactions of batteries. The
measurement process involves the injection of a small AC
voltage, swept over a large range of frequencies (e.g. 0.1Hz –
10kHz), superimposed over a fixed DC voltage at the
terminals of the cells, while the impedance spectrum (Nyquist
or Bode plot) is recorded.

The data collected is from second generation 18650-size
lithium-ion cells (i.e., Gen 2 cells) that were cycle-life tested
at the Idaho National Laboratory under the Advanced
Technology Development (ATD) Program. The cells were
aged at 60% state-of-charge (SOC) and various temperatures
(25oC and 45oC). The full dataset is divided into a training set
(25oC data) and a test set (45oC data), so as to examine the
ability of the prognostic algorithm to handle the uncertainty in
the different aging rates. Features extracted from the training
data are used to estimate the internal parameters of the battery
model (shown in Figure 4), which are subsequently used to
initialize prognosis in the test case.

Fig. 4. Lumped Parameter Model of a Battery.

The parameters of interest are the double layer capacitance
CDL, the charge transfer resistance RCT, the Warburg
impedance RW and the electrolyte resistance RE, whose values
change with various ageing and fault processes like plate
sulfation, passivation and corrosion. From the aging data
collected, RE and RCT are found to be changing significantly in
value, and hence, are considered to be the state variables of
interest. Exponential growth models, as shown in equation 2,
are fitted onto their aging curves to identify the relevant decay
parameters like C and λ:
θ  = C·exp(λt) (2)

where, θ  is the model predicted value of RE or RCT.
The state and measurement equations that describe the

battery model are given below:
z0 = C; Λ0 = Λ
zk = zk-1.expΛk + ωk
Λk = Λk-1 + νk
xk = [zk ; Λk]
yk = zk + υk (3)
where, the vector z comprises of RE and RCT, and C and Λ

contain their C and λ values respectively. The z and Λ vectors
are combined to form the state vector x. The measurement
vector y comprises of the battery parameters inferred from the
test data. The noise samples ω, ν and υ are picked from zero

mean Gaussian distributions whose standard deviations are
derived from the training data. The particle filter uses the
parameterized model described in equation (3) for the
propagation of the particles (samples from the pdf of xk).
Taking advantage of the highly linear correlation between
RCT+RE and C/1 capacity (capacity at rated current) as derived
from training data, predicted values of the internal battery
model parameters are used to calculate expected charge
capacities of the battery. The predictions are compared against
RUL thresholds (end-of-life criteria) to derive the RUL
estimates. Further details about the applied particle filtering
framework can be found in [11].

B. Experimental details
 The system architecture being used is the same outlined in

section III.B. The CE in our experiments is the SunSpot and
the software development for the Sun SPOTs was done using
Netbeans IDE version 5.0. The base station – which can be
connected to a PC – is used as a central monitor. The free
ranging SPOT devices form the rest of the CEs. Experiments
with 2 SPOTs – one free ranging and the other a base station –
and 3 SPOTs – two free ranging and the other a base station –
were carried out. However, since the in-built sensor
capabilities of the SPOTs were not sufficient for the
observations required for the batteries, sensor observations
were read from an offline database via the SPOT base station.
Note that a slight variation of such indirect sensor reading
might be encountered commonly if some of the participating
CEs do not make sensor readings i.e., act as helpers (as
mentioned in III.A) in which case they read sensor values via
the base station. The base station was connected to laptop
using a USB cable. The files containing the sensor information
and other initialization information were read through the
USB cable and communicated to the free ranging SPOTs
appropriately.

The main issue faced in the design was limitations imposed
by the restrictions on the message length by the
communication channel; all the state information for a single
iteration could not be packed into a single message. Thus, the
message had to be broken into multiple parts and sent
iteratively both by the base station to send state information to
the free ranging SPOT and the free ranging SPOT to
communicate updated state information to the base station.
The sensor values were broadcast at the beginning of every
iteration of the particle filter. Since, there was only one
application being executed by all the SPOTs, the availability
of the SPOTs as well as the workload divisions were known a
priori and hence this was not separately communicated. The
initial particle values for each SPOT were sent individually
using dedicated radio channels by the base station to the free
ranging SPOTs.

Each state was a 2-dimensional vector. Also, since the
parameter identification was done along with state estimation,
2-dimensional parameter values were also send along with
each state value. The number of particles used was 100. First
state tracking was performed for a few iterations followed by
computation of the RUL or time-to-failure (TTF).

 6

C. Results

Fig. 5. Particle Filter Output using 2-SPOT configuration

Figure 6 shows both the state tracking and future state

prediction plots for data collected at 45oC. RUL or TTF is
used as the relevant metric for the state-of-life (SOL). This is
derived by projecting out the capacity estimates into the future
(Figure 6) until expected capacity hits a certain predetermined
RUL threshold (end-of-life criteria). The particle distribution
is used to calculate the RUL pdf by fitting a mixture of
Gaussians in a least-squares sense. As shown in Figure 5, the
RUL pdf improves in both accuracy (centering of the pdf over
the actual failure point) and precision (spread of the pdf over
time) with the inclusion of more measurements before
prediction. The average (over 10 executions) RUL values
computed at 32 weeks and 48 weeks for the 2-SPOT
configuration are 58.06 weeks and 61.17 weeks respectively,
while the corresponding values for the 3-SPOT configuration
are 59.93 and 61.99 weeks.

Fig. 6. Particle Filter Prediction using 3-SPOT configuration

The static program memory usages of the SPOT devices for
both 2 SPOT and 3 SPOT configurations are as follows:

• Free range SPOTs: 29KB,
• Base station: 101KB.

The execution times (averaged over 10 separate executions
of the whole system) for prediction after 8 weeks and
prediction after 12 weeks using the 2-SPOT and 3-SPOT
configurations are shown in Figure 7. An average was taken
since the execution time varies – within a margin of 10-15 ms
– mainly based on the wireless communication time which is
dependent on the distance between the SPOTs. The execution
time decreases for the 3-SPOT configuration compared to the
2-SPOT. However, a significant decrease is not observed due
to the resampling step which is serial in nature and is executed
completely on the base station. Also, as the number of SPOTs
is increased, the amount of time spent on communication
increases, which diminishes the effect of the gain in execution
time obtained by distributing the computation workload.

Fig. 7. Execution time results for 2SPOT and 3SPOT configurations

The low program memory utilization of the free ranging
SPOTs demonstrate that more multitasking can be delegated
to them; instead of executing a single application as discussed
here more allocated tasks would enable more efficient use of
resources. As shown by the results in Figure 9, for a multiple
SPOT system, significant amount of time may be spent in
communication. Thus, a free ranging SPOT can execute its
own set of monitoring applications when the base station is
busy communicating and collecting intermediate results from
other SPOTs and processing them (in our case performing
resampling).

VI. CONCLUSIONS AND FUTURE WORK
The paper presents, in detail, a distributed architecture for

prognostic applications. To demonstrate its functionalities and
study the nature of such architectures a distributed prognostics
system for batteries was successfully implemented on smart
sensor devices with wireless communication capabilities. The
results indicate the feasibility of using such a distributed
implementation. The low execution times and program
memory usage illustrate that for a complex system such a
distributed architecture would enable a timely management of
diagnosis and prognosis of multiple subsystems.

Future work would look into integration with direct sensor
measurements using the SPOT devices and exploration of
other devices with higher communication and computation
power for systems with multiple diagnostic and prognostic
applications running simultaneously.

REFERENCES
[1] S. Arulampalam, S Maskell, N. J Gordon and T. Clapp, “A Tutorial on

Particle Filters for On-line Non-linear/Non-Gaussian Bayesian

Execution Time Results

22000

23000

24000

25000

26000

27000

28000

29000

32 weeks 48 weeks
Time of starting prediction (weeks)

Ex
ec

ut
io

n
tim

e
(m

s)

2 SPOT
3 SPOT

 7

Tracking”, IEEE Trans. on Signal Processing, vol. 50, no. 2, pp. 174-
188, 2002.

[2] A. S. Bashi, V. P. Jilkov, X. R. Li and H. Chen, “Distributed
Implementations of Particle Filters”, in Proc. Of Sixth International
Conference of Information Fusion, 2003. Volume: 2, pp: 1164- 1171.

[3] M. Bolic, P. M. Djuric and S. Hong, “Resampling Algorithms and
Architectures for Distributed Particle Filters”, IEEE Transactions on
Signal Processing, Vol. 53, Issue: 7 pp. 2442- 2450 July 2005.

[4] M. Coates, “Distributed Particle Filters for Sensor Networks”, in Third
Intl. Symp. on Information Processing in Sensor Networks, 2004, pp.
99- 107.

[5] K. M. Goh, B. Tjahjono and A. J. R. Aendenroomer, “A Rapid
Configurable Embedded Development Framework”, In IEEE Conf. on
Emerging Technologies & Factory Automation, 2007, pp. 135-140.

[6] N. J. Gordon, D. J. Salmond and A. F. M. Smith, “Novel Approach to
Nonlinear/Non-Gaussian Bayesian State Estimation”, Radar and Signal
Processing, IEE Proceedings F, vol. 140, no. 2, pp. 107-113, April 1993.

[7] G. Ing and M. J. Coates, “Parallel Particle Filters for Tracking in
Wireless Sensor Networks”, In IEEE 6th Workshop on Signal Processing
Advances in Wireless Communications, 5-8 Jun. 2005, pp. 935- 939.

[8] A. H. Jazwinski, “Stochastic Processes and Filtering Theory”,
Academic Press, New York, 1970.

[9] M. Roemer, C. Byington, G. Kacprzynski and G. Vachtsevanos, “An
Overview of Selected Prognostic Technologies with Reference to an
Integrated PHM Architecture”, In Proc. of the First Intl. Forum on
Integrated System Health Engineering and Management in Aerospace.

[10] M. Rosencrantz, G. Gordon and S. Thrun, “Decentralized Sensor Fusion
with Distributed Particle Filters”, in Proc. Conf. Uncertainty in Artificial
Intelligence Acapulco, Mexico, Aug.2003.

[11] B. Saha and K. Goebel, “Uncertainty Management for Diagnostics and
Prognostics of Batteries using Bayesian Techniques”, in Proc. 2008
IEEE Aerospace Conference, March 2008.

[12] S. Saha, N. Bambha and S. S. Bhattacharyya, “A Parameterized Design
Framework for Hardware Implementation of Particle Filters”, in Proc. of
the Intl. Conf. on Acoustics, Speech, and Signal Processing, pp. 1449-
1452, Las Vegas, Nevada, March 2008.

[13] S. Saha, C. Shen, C. Hsu, A. Veeraraghavan, G. Aggarwal, A. Sussman
and S. S. Bhattacharyya, “Model-based OpenMP Implementation of a
3D Facial Pose Tracking System”, in Proc. of the Wkshp. on Parallel
and Distributed Multimedia, Columbus, Ohio, Aug. 2006, pp. 66-73.

[14] X. Sheng, Y.-H. Hu and P. Ramanathan, “Distributed Particle Filter with
GMM Approximation for Multiple Targets Localization and Tracking in
Wireless Sensor Network”, in Fourth Intl. Symp. on Information
Processing in Sensor Networks, 2005, pp. 181- 188.

