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Abstract—Particle filters (PF) have been established as the de 

facto state of the art in failure prognosis. They combine 
advantages of the rigors of Bayesian estimation to nonlinear 
prediction while also providing uncertainty estimates with a 
given solution. Within the context of particle filters, this paper 
introduces several novel methods for uncertainty representations 
and uncertainty management. The prediction uncertainty is 
modeled via a rescaled Epanechnikov kernel and is assisted with 
resampling techniques and regularization algorithms. 
Uncertainty management is accomplished through parametric 
adjustments in a feedback correction loop of the state model and 
its noise distributions. The correction loop provides the 
mechanism to incorporate information that can improve solution 
accuracy and reduce uncertainty bounds. In addition, this 
approach results in reduction in computational burden. The 
scheme is illustrated with real vibration feature data from a 
fatigue-driven fault in a critical aircraft component. 
 

Index Terms— Failure prognosis, particle filtering, 
uncertainty representation, uncertainty management 

I. INTRODUCTION 
 Uncertainty management of prognostics holds the key for 

a successful penetration of prognostics as a key enabler to 
health management in industrial applications. While 
techniques to manage the uncertainty in the many factors 
contributing to current health state estimation – such as signal-
to-noise ratio (SNR) on diagnostic features, optimal features 
with respect to detection statistics and ambiguity set 
minimization – have received a fair amount of attention due to 
the maturity of the diagnostics domain, uncertainty 
management for prognostics is an area which still awaits 
significant advances. 

Those shortcomings non-withstanding, a number of 
 

Marcos Orchard is with the Electrical Engineering Department, University 
of Chile, Santiago, Chile (phone: +56-2-978.42.15; fax: +56-2-6720162; 
e-mail: morchard@ing.uchile.cl). 

Gregory Kacprzynski is with Impact Technologies, LLC. 200 Canal View 
Blvd., Rochester, NY 14623. (e-mail: Greg.Kacprzynski@impact-tek.com ). 

Kai Goebel is with NASA Ames Research Center, MS 269-4, Moffett 
Field, CA. 94035, USA (e-mail: kai.goebel@nasa.gov) 

Bhaskar Saha is with MCT, NASA Ames Research Center, MS 269-4, 
Moffett Field, CA 94035, USA (e-mail: bsaha@email.arc.nasa.gov).   

George Vachtsevanos is with the School of Electrical and Computer 
Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA 
(e-mail: gjv@ece.gatech.edu). 

approaches have been successfully suggested for uncertainty 
representation and management in prediction. In particular, 
probabilistic, soft computing methods and tools derived from 
evidential theory or Dempster-Shafer theory [1] have been 
explored for this purpose. Probabilistic methods are 
mathematically rigorous assuming that a statistically sufficient 
database is available to estimate the required distributions. 
Possibility theory (fuzzy logic) offers an alternative when 
scarce data and even incomplete or contradictory data are 
available. Dempster’s rule of combination and such concepts 
from evidential theory as belief on plausibility (as upper and 
lower bounds of probability) based on mass function 
calculations can support uncertainty representation and 
management tasks.  The authors in [2] introduced a Neural 
Network construct called Confidence Prediction Neural 
Network to represent uncertainty in the form of a confidence 
distribution while managing uncertainty via learning during 
the prediction process.  The scheme employs Parzen windows 
as the kernel and the network is based on Specht’s General 
Regression Neural Network [3]. Radial Basis Function Neural 
Nets (RBFNN), Probabilistic Neural Nets (PNN) and other 
similar constructs from the neural net and neuro-fuzzy arena 
have been deployed as candidates for uncertainty 
representation and management. For example, Leonard et al. 
[4] used an RBFNN to obtain confidence limits for a 
prognosticator. Probabilistic reliability analysis tools 
employing an inner-outer loop Bayesian update scheme [5, 6] 
have also been used to “tune” model hyperparameters given 
observations. However, the scalability of this rigorous 
approach for more than a few parameters is unproven and 
relies on the assumption that all distributions are unimodal. 

This paper introduces a generic and systematic 
methodology to the uncertainty representation and 
management problem in failure prognosis by capitalizing on 
notions from Bayesian estimation theory and, specifically, 
particle filtering (PF) [7], [9]-[10] for long-term prognosis in 
non-linear dynamic systems with non-Gaussian noise, 
appropriate kernels to reduce the impact of model errors and 
feedback correction loops to improve the accuracy and 
precision of the remaining useful life estimates. Prediction 
uncertainty is modeled via rescaled Epanechnikov kernels, 
considering the current state pdf estimate as initial condition 
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of stochastic dynamic models, and is assisted with 
regularization algorithms. Uncertainty management is 
accomplished through parametric adjustments in a feedback 
correction loop of the state model and its noise distributions. It 
is assumed that for a specific application domain, the sources 
of uncertainty have been identified, raw data are available (for 
example, vibration data, load profiles, etc.), key fault 
indicators or features are extracted on-line from such sensor 
data that are characteristic of the health of critical 
components/subsystems, and fault detection, isolation and 
identification routines exploit these features to classify with 
prescribed confidence and false alarm rates the presence of a 
fault. In a probabilistic fault diagnosis framework, these 
features are expressed as probability density functions and are 
used to initialize the prognostic algorithms. 

II. UNCERTAINTY REPRESENTATION AND MANAGEMENT IN 
LONG-TERM PREDICTION: A PARTICLE FILTERING-BASED 

APPROACH 

A. Failure Prognosis and Uncertainty Representation 
Nonlinear filtering is defined as the process of using 

noisy observation data to estimate at least the first two 
moments of a state vector governed by a dynamic nonlinear, 
non-Gaussian state-space model. From a Bayesian standpoint, 
a nonlinear filtering procedure intends to generate an estimate 
of the posterior probability density function )|( :1 tt yxp  for the 
state, based on the set of received measurements. Particle 
Filtering (PF) is an algorithm that intends to solve this 
estimation problem by efficiently selecting a set of N particles 

( )
1{ }i

i Nx = "  and weights ( )
1{ }i

t i Nw = " , such that the state pdf may 
be approximated by [7] 
 

( ) ( )

1
( ) ( )

N
N i i
t t t t t

i
x w x xπ δ

=

= −∑� .            (1) 

 
Prognosis, and thus the generation of long-term 

prediction, is a problem that goes beyond the scope of filtering 
applications since it involves future time horizons. Hence, if 
PF-based algorithms are to be used, it is necessary to propose 
a procedure with the capability to project the current particle 
population in time in the absence of new observations [7].  

Any adaptive prognosis scheme requires the existence of 
at least one feature providing a measure of the severity of the 
fault condition under analysis (fault dimension). If many 
features are available, they can always be combined to 
generate a single signal. In this sense, it is always possible to 
describe the evolution in time of the fault dimension through 
the nonlinear state equation: 
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where x1(t) is a state representing the fault dimension under 
analysis, x2(t) is a state associated with an unknown model 
parameter, U are external inputs to the system (load profile, 
etc.), F(x(t), t, U) is a general time-varying nonlinear function, 
y(t) represents feature measurements, and ω1(t), ω2(t) and υ(t) 
are white noises (not necessarily Gaussian). The nonlinear 
function F(x(t), t, U) may represent a model based on first 
principles, a neural network, or even a fuzzy system. 

By using the aforementioned state equation to represent 
the evolution of the fault dimension in time, it is possible to 
generate long term predictions for the state pdf in a recursive 
manner using the current pdf estimate for the state [7]: 
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The evaluation of these integrals, though, may be 

difficult and/or may require significant computational effort. 
This paper proposes a methodology to solve this problem 
using a PF algorithm to estimate the current state pdf (from 
feature measurements associated to the fault dimension) and a 
combination of rescaled kernel functions and resampling 
schemes to reconstruct the estimate of the state pdf for future 
time instants. 

Consider, in this sense, a discrete approximation for the 
predicted state pdf 
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where ( )K ⋅  is a kernel density function, which may 
correspond to the process noise pdf, a Gaussian kernel or a 
rescaled version of the Epanechnikov kernel: 
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where 

xnc  is the volume of the unit sphere in xn\ . 

Furthermore, if the density is Gaussian with unit covariance 
matrix, the optimal bandwidth is given by 
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The Epanechnikov kernel is particularly recommended in 

the special case of equally weighted samples [8], and thus it is 
well suited for uncertainty representation in long term 
predictions where no future measurements are available for a 
weight update procedure. 
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Given ( )
1{ }i

t i Nx = "  and ( )
1{ }i

t i Nw = "  as initial conditions, it 
is possible to represent the uncertainty inherent to the 
predicted state pdf by performing an inverse transform 
resampling procedure for the particle population [7]. This 
method obtains a fixed number of samples for each future 
time instant, avoiding problems of excessive computational 
effort. In fact, after the resampling scheme is performed, the 
weights may be expressed as: ( ) 1

1{ }i
t k i Nw N −
+ = =" . Furthermore, 

if only Epanechnikov kernels are used, it is ensured that the 
representation of the uncertainty will be bounded. 

To avoid loss of diversity among particles and minimize 
the effect of model errors in the long term predictions, an 
additional step inspired by the Regularized Particle Filter [7] 
is performed for k > 1. In this step, it is assumed that the state 
covariance matrix ˆ

t kS +  is equal to the empirical covariance 
matrix of ˆt kx + : 

 
Long Term Predictions: Regularization of Predicted State 
PDF 
• Apply modified inverse transform resampling procedure. 

For 1, ,i N= " , ( ) 1i
t kw N −
+ =  

• Calculate ˆ
t kS + , the empirical covariance matrix of 

{ }( ) ( ) ( )
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• Compute ˆ
t kD +  such that ˆˆ ˆ T

t k t k t kD D S+ + +=  

• For 1, ,i N= " , draw i Kε ∼ , an Epanechnikov kernel and 
assign ( )* ( ) ˆˆ ˆi i opt i

t k t k t k t kx x h D ε+ + + += +  

 
It must be noted that the proposed method for 

uncertainty representation allows considering information for 
on-line measurements to estimate the uncertainty that is 
present in the system at the moment that the long-term 
predictions are generated. Moreover, the use of kernel 
functions and resampling techniques (with a limited number 
of particles) naturally permits to represent uncertainty in 
future time instants, just as other approaches, but using less 
computational resources. Figure 1 shows a representation of 
the particle filtering-based uncertainty representation scheme. 

 

 
Figure 1: Particle Filtering-based Uncertainty Representation 
  

After the completion of the algorithm, it is possible to 
isolate the particles that define the bounds for the predicted 
pdf at future time instants. The collection of all these particles 
results in minimum and maximum bounds for the predicted 

state in time. Moreover, these bounds intrinsically incorporate, 
measure, and represent model uncertainty (through the 
estimation of unknown parameters) and measurement noise 
(since the initial condition for long-term predictions 
corresponds to the output of the Particle Filtering procedure). 

For the test case of a fatigue failure in a critical aircraft 
component discussed in the sequel, (treated in Section IV of 
this paper), the uncertainty representation results are shown in 
Figure 2. 
 

 
Figure 2: Particle Filtering-based Uncertainty Representation; 
results for the case of a fatigue fault progression in a critical 
aircraft component  

III. UNCERTAINTY MANAGEMENT IN LONG-TERM 
PREDICTIONS 

The issue of uncertainty management, in a Particle 
Filtering-based prognosis framework, is basically related to a 
set of techniques aimed to improve the estimate at the current 
time instant, since both the expectation of the predicted 
trajectories for particles and bandwidth of Epanechnikov 
kernels depend on that pdf estimate. 

In this sense, it is important to distinguish between two 
main types of adjustments that may be implemented to 
improve the current representation of uncertainty for future 
time instants: 

• Adjustments in unknown parameters in the state 
equation. 

• Adjustments in the parameters that define the noise 
pdf’s embedded in the state equation. These 
parameters will be referred to as “hyper-
parameters”. 

Accuracy of long-term predictions is directly related to 
the estimates of xt and the model hyper-parameters that affect  
E[xt |xt-1]. Precision in long-term predictions, on the other 
hand, is directly related to the hyper-parameters that describe 
the variance of the noise structures considered in the state 
equation. In this sense, any uncertainty management system 
for future time instants, within a Particle Filtering-based 
framework, should follow the general structure presented in 
Figure 3, where the performance of the algorithm is evaluated 
in terms of the short-term prediction error (which depends on 
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the PF-based pdf estimate). Whenever the performance 
criteria for the short-term prediction error are not met, an 
outer correction loop directly modifies both model parameters 
and hyper-parameters.  

 

 
Figure 3: Particle Filtering-based Uncertainty Management 
System 
 

By modifying the hyper-parameters via an outer 
correction loop, short-term predictions may be used to 
improve the efficiency of the particle filtering-based estimate, 
and thus the subsequent generation of long-term predictions. 
There is a large variety of outer correction loops that may be 
applied for this purpose. One of them, aimed to modify the 
variance of the noise term in the state equation, is proposed 
and analyzed in [7].  In this case, let 2 ( )tω  represent the 
model uncertainty.  Then for the example detailed in the next 
section of the paper, the recommended parameters are: 
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where Pred_error(t) is the short-term prediction error 
computed at time t, ⋅  is any well-defined norm (usually L2-

norm), 0 < p < 1, q > 1, and 0 < Th < 1 are scalars. In 
particular, p ∈ [0.925, 0.975], q ∈ [1.10, 1.20], and Th = 0.1. 
These values have been determined through exhaustive 
analysis of simulations considering scenarios with different 
combinations of values for the parameters p, q, and Th. The 
range for short-term predictions depends on the system under 
analysis, although a 5-step is recommended to ensure rapid 
adaptation of the scheme.  

Outer correction loops may be also implemented using 
neural networks, fuzzy expert systems, PID controllers, 
among others. Additional correction loops include the 
modification of the number of particles used for 1-step or 

long-term prediction purposes and the reduction of the 
threshold for the use of the importance resampling algorithm.  

IV. AN ILLUSTRATIVE EXAMPLE 
As an illustrative example, consider the case of 

propagating fatigue crack on a critical component in a 
rotorcraft transmission system. The objective in this seeded 
fault test is to analyze how a cyclic load profile affects the 
growth of an axial crack. Although the physics-based model 
for a system of these characteristics may be complex, it is 
possible to represent the growth of the crack (fault dimension) 
using the much simpler population-growth-based model 
[9,10]: 

 
2

1 1 2 1

2 2 2

1

( 1) ( ) ( ) ( ) ( )
( 1) ( ) ( )

( ) ( ) ( )

mx t x t C x t a b t t t
x t x t t

y t x t t

ω
ω

υ

⎧ + = + ⋅ ⋅ − ⋅ + +
⎨

+ = +⎩
= +

,    (8) 

 
where x1(t) is a state representing the fault dimension, x2(t) is a 
state associated with an unknown model parameter, y(t) are 
vibration-based feature measurements, C and m are constants 
associated with the fatigue properties of the material. The 
constants a and b depend on the maximum load and duration 
of the load cycle (external input U). Given a set of vibration 
feature data such as described in [11], it is possible to use this 
model to obtain an approximate (and noisy) estimate of the 
crack length via the use of a PF-based algorithm [7].  Once the 
estimate of the state pdf is available, it can be used as initial 
condition of the model to generate long-term predictions, if 
the integrals in the aforementioned recursive expression are 
evaluated. 

Figures 4 and 5 show the results for the application of 
the regularization procedure to 1 1:ˆ ˆ( | )t tp x x+ , i.e. the predicted 
state pdf for time t + 1, in the example case. First, the PF-
based algorithm is used to obtain a pdf state estimate for the 
state model (8) at time t = 320. The analysis of feature data at 
that point indicates that the length of the crack is 
approximately 0.35 units. It is of interest to prognosticate the 
time instant when the fault dimension reaches 0.45 units, 
which is the expected value of the hazard zone of the 
component under consideration [7]. Figure 4 illustrates how 
the use of model (8) helps to propagate the particle population 
in time: ( ) ( )

1 ˆ|i i
t tE x x+⎡ ⎤⎣ ⎦  is computed, and the particle weights 

are kept constant. As a result, the expected value of the crack 
length should increase in time. 

The second step of the proposed algorithm is the 
regularization procedure; see Figure 5. This step modifies the 
whole particle population to improve the uncertainty 
representation for the predicted state pdf at time t = 321. As a 
result, a new population of equally weighted samples is 
obtained representing the probability density function at that 
particular time. The procedure may be repeated as needed 
until the expected value of the population reaches 0.45 units. 

For the uncertainty management scheme, a 5-step 
prediction error has been used in the design of the outer 
correction loop. As expected, the longer the period used to 
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calculate the prediction error, the larger the delay in the 
feedback loop. Several aspects must be considered in a proper 
selection of this parameter – as well as for p, q and Th in 
Equation (7) – including time constants of the system and the 
variability of model parameters. 

The final implementation of the correction loop is shown 
in (9), while Figure 6 shows the results. 
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Figure 4: One-step ahead prediction from a Particle Filtering 
standpoint. The blue samples represent the state pdf at time 
t = 320, while the magenta samples illustrate 321 1:320ˆ ˆ( | )p x x   
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Figure 5: Illustration of the Regularization Procedure 

 
Figure 6 clearly shows a period of time where the outer 

correction loop actually increments the variance of the noise 
profile ω2(t) in the dynamic model (8); see blue line in 
Figure 6. After this period, it is observed that the state 
estimate (magenta line) rapidly converges. After that 
condition is reached, the prediction error decreases 
considerably and, therefore, the variance of the noise used for 

the “artificial evolution” estimation method decreases 
exponentially. 
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Figure 6: Uncertainty Management Procedure; results of 
hyper-parameters update via an outer correction loop. 
 

Figure 7 depicts the results obtained when computing the 
pdf of the Remaining Useful Life (RUL) for the same test case 
under study, considering that the critical fault dimension 
corresponds to 0.45 units. A procedure to obtain the RUL pdf 
from the predicted path of the state pdf is detailed and 
discussed in [7]. Basically, the RUL pdf is the probability of 
failure at future time instants. This probability can be obtained 
from long-term predictions, when the empirical knowledge 
about critical conditions for the system is included in the form 
of thresholds for main fault indicators, also referred to as the 
hazard zones. The hazard zone in this case is represented as an 
orange horizontal band around 0.45 units in Figure 7. Once 
the RUL pdf estimate is generated, it is possible to obtain any 
necessary statistics about the evolution of the fault in time, 
either in the form of expectations or 95% confidence intervals. 

 

 
Figure 7: Particle Filtering-based Uncertainty Management 
System. Prognosis results for the case of axial crack in a 
gearbox plate 
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It is desired for the expected value of this RUL pdf 
(computed at time t = 320) to be close to the actual time-to-
failure. In this sense, the efficacy of the approach can be 
evaluated using two performance metrics: accuracy and 
precision. Accuracy measures how close the RUL expectation 
is to the actual time-to-failure. Precision, on the other hand, 
indicates the variance associated to RUL estimates. Precise 
RUL estimates imply a pdf with small variance. 

The performance of the proposed Particle filtering-based 
approach has been compared with another implementation that 
uses the Extended Kalman filter to generate an estimate of the 
current state pdf. Results indicate that the Particle filtering-
based approach, in combination with the proposed outer 
correction loop, provides better results in terms of accuracy 
and precision  of the RUL pdf estimates; see Figure 8. 
Moreover, both applications require a similar amount of time 
to perform all the calculations, given that the Particle filter-
based prognosis algorithm does not necessitate an extremely 
large number of particles to achieve its objective [7]. 
 

 
Figure 8: Prognosis results for the case of axial crack in a 
gearbox plate, using an Extended Kalman filter-based 
approach 

 
More accurate and more precise pdf estimates provide 

the basis for timely corrective actions and thus, help to avoid 
catastrophic failure events during the operation of the 
unit/process under supervision. In this sense, the proposed 
methodology has proven to be a valuable tool in Prognostics 
and Health Management (PHM) systems.  

V. CONCLUSION 
Uncertainty representation and management in failure 

prognosis present major challenges to the PHM user 
community.  The stochastic nature of long-term predictions 
necessitates appropriate and effective means that can represent 
and manage uncertainty in almost real time. The on-platform 
utility of health and usage monitoring systems must be 
accompanied by robust prognostic algorithms if these 
technologies are to provide useful health information 
impacting safety of operation and cost of ownership. This 

paper proposes advances to uncertainty representation and 
management that will help in faster, more accurate, and more 
precise prognostics. Specifically, an architecture has been 
proposed that features feedback correction loops that in turn 
can reduce the impact of model errors and thus improve the 
accuracy and precision of the remaining useful life estimates. 
In addition, the use of appropriate kernels allows for an 
elegant and fast updating mechanism within the particle filter 
paradigm. 

Results were obtained using data from a cracked gearbox 
plate. The performance (accuracy and precision) of the 
particle filter was superior when compared to a more 
traditional Extended Kalman Filter approach. Future work 
should explore the impact of injecting additional information 
into the correction loop such as domain expert information, 
maintenance information, etc. In addition, learning algorithms 
should be investigated that can automatically establish optimal 
or near-optimal values for parameters p, q, and Th and for the 
range for short-term prediction (here arbitrarily set to 5).   
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