
P rognostics and Health Management (PHM) has had 
a recent resurgence for two reasons new service 
offerings for industry that guarantee uptime and 

because military requirements are including cost-containing 
condition-based maintenance implementations. Although 
a chief component of PHM is prognostics, it is also its least 
mature element. Prognostics attempts to estimate remain-
ing component life when an abnormal condition has been 
detected. The key to useful prognostics is not only an ac-
curate remaining life estimate, but also an assessment of the 
confi dence of the uncertainty estimate. The latter is often 
expressed through a probability density function (pdf) that 
allows the computation of confi dence bounds. It is the uncer-
tainty estimate that poses particular challenges to the predic-
tion of remaining component life, since it must account for 
data from measurements, state estimation, model inaccura-
cies, future load uncertainty, etc. 

Batteries are a core component of many machines and are 
critical to the system’s functional capabilities. Battery failure 
could lead to reduced performance, operational impairment, 
and even catastrophic failure, especially in aerospace systems. 
An effi cient method for battery monitoring would greatly im-
prove the reliability of such systems.

The phrase “battery health monitoring” has a wide variety 
of connotations, ranging from intermittent manual measure-
ments of voltage and electrolyte specifi c gravity to fully auto-
mated online supervision of various measured and estimated 
battery parameters. In the aerospace application domain, 
researchers have looked at the various failure modes of the 

battery subsystems. An aerospace catastrophic battery failure 
occurred in NASA’s Mars Global Surveyor, which stopped 
operating in November 2006. Preliminary investigations re-
vealed that the spacecraft was commanded to go into a safe 
mode, which positioned the radiator for the batteries toward 
the sun. This increased the temperature of the batteries, and 
they lost their charge capacity. This failure is not the only one 
of its kind in aerospace applications. 

 Different battery diagnostic methods have been evaluated 
for aerospace applications, like discharge to a fi xed cut-off 
voltage, open circuit voltage, voltage under load, electro-
chemical impedance spectrometry (EIS) [1], and combining 
conductance technology with other measured parameters like 
battery temperature/differential information and the amount 
of fl oat charge [2]. An effi cient method of PHM for batteries 
would greatly improve the reliability of these systems.

In applications for use in hybrid electric and plug-in hybrid 
electric vehicles, PHM dynamic models have been built for 
lithium ion batteries. These models take into consideration 
nonlinear equilibrium potentials, rate and temperature de-
pendencies, thermal effects, and transient power response [3]. 
Sophisticated reasoning schemes have been applied to feature 
vectors with the goal of estimating state-of-charge (SOC), 
state-of-health (SOH), and state-of-life (SOL). However, it still 
remains diffi cult to accurately predict the end-of-life of a bat-
tery from estimates of SOC and SOH when environmental and 
load conditions differ from the training data set. 

In this article, we examine PHM issues using battery health 
management of Gen 2 cells, an 18650-size lithium-ion cell, as 
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a test case. We will show where advanced regression, clas-
sification, and state estimation algorithms have an important 
role in the solution of the problem and in the data collection 
scheme for battery health management that we used for this 
case study [4].

Data from Lithium-ion Cells
Life-cycle test data have been collected from second genera-
tion, Gen 2, 18650-size lithium-ion cells at the Idaho National 
Laboratory (INL) under the Advanced Technology Develop-
ment (ATD) Program. This program was initiated in 1998 by 
the U.S. Department of Energy, Office of Vehicle Technologies 
to find solutions to the barriers that limit the commercializa-
tion of high-power lithium-ion batteries for hybrid electric 
and plug-in hybrid electric vehicles. The barriers limiting 
these batteries are poor low-temperature performance, abuse 
tolerance, and accurate life prediction. Many other researchers 
in electric and hybrid vehicles have also focused on battery 
health monitoring [5]. 

Cells were aged at various temperatures, states of charge, 
and other stress conditions to establish behavior. Performance 
tests were used to establish changes in the baseline. The Gen 
2 cell testing involved exhaustive evaluation of baseline and 
variant cells and was distributed among three national labora-
tories with a test matrix consisting of three SOCs (60, 80, and 
100% ), four temperatures (25, 35, 45, and 55˚C), and three 
life tests (calendar-life, cycle-life, and accelerated-life) [6]. 
Completion of all the tests took four years.

 The data used in our study were from cells that were cycle-
life tested at 60% SOC and temperatures (25˚C and 45˚C). Table 
1 gives the chemical details of the cells under test.

As part of the reference performance test for these Gen 2 
cells, EIS measurements were made periodically to determine 
impedance changes in the electrode–electrolyte interface as 
a function of cell life. EIS measurements were initiated by 
discharging the cells from a fully-charged state to the speci-
fied open circuit voltage (OCV) corresponding to the target 
SOC. Changes in the internal parameters of the battery are 
observed as shifts in EIS data plots and characterize battery 
capacity degradation. Following an eight to twelve-hour rest 
at OCV, which allowed the cells to reach electrochemical equi-
librium, the impedance was measured using a four-terminal 
connection over a frequency range of 10 kHz to 0.01 Hz, with 

a minimum of eight points per decade of frequency. This test 
was performed on all cells at 60% SOC. 

All testing was performed with cells placed in envi-
ronmental chambers to control ambient temperature. The 
chambers control the temperature to within ±3˚C, as speci-
fied in the test plan [6]. Also, all Gen 2 cells were placed in 

Table 1 – Li-ion Cell  
(ATD Gen 2 Cell Baseline) Chemistry

Positive
Electrode

8 wt% PVDF binder

4 wt% SFG-6 graphite

4 wt% carbon black

84 wt% LiNi0.8Co0.15Al0.05O2

Negative
Electrode

8 wt% PVDF binder

92 wt% MAG-10 graphite

Electrolyte 1.2 M LiPF6 in EC:EMC (3:7 wt%)

Separator 25 μm thick PE (Celgard)

Fig. 1. (a) Thermal block with cells (INL) (b) Prognostic test bed at NASA ARC.
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thermal blocks to more uniformly control the cell tempera-
ture and minimize temperature transients [see Figure 1(a)]. 
Thermocouples were also placed on each cell to monitor 
temperatures during life testing. Figure 1(b) shows a simi-
lar aging setup at the NASA Ames Research Center (ARC), 
which will be used to further investigate different prognostic 
methodologies.

The cycle-life test consisted of constant power discharge 
and regeneration pulses with interspersed rest periods for a 
total duration of 72 s and was repeated continuously while 
centered around 60% SOC. This profile assumed a full size bat-
tery pack and must be scaled to use for a cell-size level [6]. It 
has been demonstrated that battery capacity degradation can 
be characterized through changes in the internal parameters of 
the battery, and these changes can be observed as shifts in EIS 
data plots. Figure 2 shows the shift in EIS data of a representa-
tive Gen 2 cell that was cycle-life aged at 25˚C and 60% SOC.

To describe the internal parameters, the battery operation 
is expressed in structural and functional models, which aid in 
the construction of the “physics of failure mechanisms” model. 
Features extracted from sensor data of voltage, current, power, 
impedance, frequency, and temperature readings are used to 
estimate the internal parameters in the lumped-parameter bat-
tery model shown in Figure 3. The parameters of interest are 
the double layer capacitance CDL, the charge transfer resistance 
RCT, the Warburg impedance RW, and the electrolyte resistance 
RE. The values of these internal parameters change with vari-
ous aging and fault processes like plate sulfation, passivation, 
and corrosion. 

Data Processing
The values of the internal parameters define the shape and 
position of EIS plots and can be extracted from these plots as 
diagnostic features. Figure 4 shows a section of the data shown 
in Figure 2 with the battery internal model parameters identi-
fied. Since the Nyquist plot of a capacitance and resistance in 
parallel (CDL and RCT as shown in Figure 3) is expected to be a 
semicircle, we used data from the EIS curves in an automated 
fashion to fit semicircles to the middle portion of the graph. 
The fitting was performed in the least square sense as shown 
below:

,	 (1)

Fig. 2. This graph shows the shift in EIS impedance data from a Gen 2 cell 
with ageing at 25°C and 60% SOC. 

Fig. 3. A Lumped-Parameter Model of a Lithium-ion Cell.

Fig. 4. Zoom in EIS Plots (60% SOC) with Internal Battery Model Parameter Identification. 
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where, Zi,Im and Zi,Re are the imaginary and real parts of imped-
ance of data point i in the EIS plots of Figure 4. The center, c, is 
(on the x-axis) and the radius of the fitted semicircle is r. The 
left intercept of the semicircles gives the RE values while the 
diameters of the semicircles give the RCT values. Other internal 
parameters showed negligible change over the aging process 
and are hence ignored for further analysis.

We noted that there was a very high degree of linear cor-
relation between the C/1 capacity (capacity at nominal rated 
current of 1A) and the internal impedance parameter RE+RCT 
(Figure 5). We will show how this relationship can be exploited 
to estimate the current and future C/1 capacities.

METHODS
The main objective of this study was to develop prognostics 
algorithms to predict remaining life of the batteries with high 
confidence. We also wanted to compare various prediction 
techniques for their strengths and weaknesses in addressing 
the issues of accuracy of predictions and uncertainty manage-
ment against various trade-offs, like complexity and com-
putational burden, which may be crucial for some real-time 
applications. Starting with very simple statistical regression 
techniques, we applied more sophisticated probabilistic re-
gression and advanced state estimation based hybrid algo-
rithms to cover a wide range of algorithms. These techniques 
and corresponding results are presented next.

Statistics Based Baseline Model
We first employed a simple data-driven routine to establish 
a baseline for battery health prediction performance and un-
certainty assessment. We then employed more sophisticated 
models to improve on this baseline. Battery health is directly 
tied to capacity. The battery is considered to be in a failed 
state when its capacity has faded by 30%. We constrained the 
problem by making available only information from batteries 
aged under specific environmental conditions to then predict 
the end-of-life of batteries operating under different environ-

mental conditions (and therefore aging at different, unknown 
rates). EIS measurements were provided as health monitoring 
data to help with the state assessment. Performance assessment 
was done at specified intervals by measuring the accuracy of 
prediction. In addition, an uncertainty assessment was carried 
out to qualify the goodness of the prediction. For the data-
driven approach, one can glean, from the relationship between 
RE+RCT and the capacity C/1 at baseline temperature (25˚C), the 
equivalent damage threshold in the RE+RCT, i.e., dth=0.033. 

We also explored more sophisticated robust linear regres-
sion techniques like robust minimum m (MM)-regression and 
the robust-LTS (Least Trimmed sum of Squares) regression to 
extract this relationship. These methods are resistant to outliers 
and robust to deviations from a Gaussian distribution. The re-
sults are similar to those obtained from the simpler method dis-
cussed above and ratify the damage threshold dth=0.033. Next, 
via extracted features from the EIS measurements, RE+RCT can 
be tracked at elevated temperatures (here, 45˚C). Ignoring the 
first two data points (which behave similar to what is consid-
ered as “wear-in” pattern in other domains), a second degree 
polynomial is used at the prediction points to extrapolate out 
to the damage threshold. Confidence bounds are projected to 

Fig. 5. Linear correlation between capacity, C/1, and impedance parameters, 
RE +RCT.

Fig. 6. Extrapolation to damage threshold and resulting uncertainty 
distribution; (a) Regression on RE+RCT (b) Capacity predictions obtained by 
superimposing predicted RE +RCT into capacity-time domain.
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the damage threshold to show the uncertainty distribution 
around the prediction. Figure 6(a) illustrates that the prediction 
accuracy at prediction point t=32 weeks is rather poor. The pre-
diction is late by 7.55 weeks and the associated uncertainty has 
extremely wide tails, particularly on the right side. 

In contrast, prediction accuracy performed at t=48 weeks is 
almost perfect, with an error of only 0.01 weeks. The resulting 
uncertainty distribution is much narrower, although it is still 
somewhat large on the right. Therefore, we establish that sim-
pler methods can yield a fairly good estimate in situations like 
these. However, the confidence in these predictions is rather 
low and may not be favorable in critical applications. Note that 
in the example shown in Figure 6(b), the time when capacity has 
faded by 30% (at time t=64) does not agree completely with the 
time at which dth=0.033 (t=59). This reflects that the RE+RCT mod-
el is not a very good model for damage propagation after all.

Probabilistic Regression Model
We then explored a Gaussian Process Regression (GPR) method 
to estimate the end-of-life. GPR is a probabilistic technique 

for nonlinear regression that computes posterior degradation 
estimates by constraining the prior distribution to fit the avail-
able training data [7]. It provides variance around its mean 
predictions to describe associated uncertainty in the predictions. 
We used GPR to regress the evolution of internal parameters 
(RE+RCT) of the battery with time at 45˚C. The relationship be-
tween these parameters and the battery capacity was again 
learned from experimental data at 25˚C. As stated earlier, battery 
capacity was linearly related to the internal parameter values, 
and when regressed through GPR, almost constant confidence 
bounds were obtained for this relationship. We regressed the in-
ternal parameters with time and transferred the predicted values 
to the capacity domain to express capacity decay with time. 

We observed that GPR, being a probabilistic approach, fails 
to learn internal parameter evolution with only a few training 
data points when exposed to data up to only t=32 weeks. Figure 
7(a) shows three predictions (at 32, 48, and 52 weeks) for the 
evolution of RE+RCT with time. A 95% confidence bound has 
been included in the plots. Increasing width of these bounds 
represents low confidence in prediction points where no learn-
ing data were available. It should be noted that only the mean 
values from the RE+RCT evolution curve [Figure 7(a)] were used 
to predict the capacity. This prediction was based on capacity 
versus time mapping and thus inherited its almost constant 
confidence bounds. As shown in Figure 7(a) since the predic-
tion at t=32 weeks fails to follow the actual trend, it leads to ex-
tremely late end-of-life predictions. However, with some more 
learning data up to t=48 weeks it picks up the trend fairly well. 
Corresponding end-of-life pdf is shown in Figure 7(b). The end-
of-life prediction at t=48 weeks is 70 weeks with an error of +6 
weeks of late prediction. These predictions got more accurate 
and precise as more data were made available for learning. 
Therefore, we conclude that although more sophisticated ap-
proaches like GPR are helpful in characterizing the uncertainty 
in the predictions, they need sufficient statistical data to prop-
erly learn the nonlinear dynamics of the process.

Particle Filter Model
The behavior of the previous methods indicates that the 
regression techniques fail to learn non-linear trends in the ab-
sence of full-range training data. For such situations, one must 
be able to track trends as they change and modify predictions 
to conform to established degradation models. With this goal 
in mind, we then examined particle filters: the state of the art 
in prediction technology. Particles filters not only use the infor-
mation available from the process measurements but also in-
corporate any models available for the process. This technique 
also has the ability to tune non-stationary model parameters 
simultaneously with state estimation, which combined with 
the representation of state space as multiple weighted par-
ticles, makes it ideal for state tracking and prediction. 

In this application, we combine them with Relevance Vec-
tor Machines (RVMs). The RVM is a form of machine learning 
that uses Bayesian inference to obtain sparse solutions for 
regression and classification. In RVM regression, the task is to 
probabilistically learn the nonlinear patterns in data, which is 

Fig. 7. (a). RE +RCT predictions (with 95% confidence bounds) using GPR at 
weeks 32, 48, and 52 (b). End-of-life predictions (with 95% confidence bounds) 
for battery capacity using GPR at week 48.
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multidimensional (say ndim), using an ndim-1 dimensional hy-
perplane in kernel-transformed hyperspace where the problem 
becomes linear [8]. The overall process is broken down into an 
offline (learning) and an online (tracking and prediction) part. 
During offline analysis, relevance vector machine regression 
is performed to find representative aging curves. Exponential 
growth models, as shown in equation 2, are then fitted on 
these curves to identify the relevant decay parameters like C 
and l:

,	 (2)

where q is a internal battery model parameter like RCT or RE. 
The overall model development scheme is depicted in the 
flowchart of Figure 8.

Particle Filters Background
Bayesian techniques provide a general rigorous framework 
for dynamic state estimation problems. The core idea is to 
construct a pdf of the state based on all available information. 
For a linear system with Gaussian noise, the method reduces 
to the Kalman filter. The state space pdf remains Gaussian 
at every iteration, and the filter equations propagate and 
update the mean and covariance of the distribution. For 
nonlinear systems or non-Gaussian noise, there is no gen-
eral analytic (closed form) solution for the state space pdf. 
The most popular solution to the recursive nonlinear state 
estimation problem is the extended Kalman filter (EKF). In 
that approach, the estimation problem is linearized about the 
predicted state so that the Kalman filter can be applied. The 
desired pdf is approximated by a Gaussian, which may have 
significant deviation from the true distribution causing the 
filter to diverge. 

In contrast, for the Particle Filter (PF) approach [9], the pdf 
is approximated by a set of particles (points) representing 
sampled values from the unknown state space and a set of 
associated weights denoting discrete probability masses. The 
particles are generated and recursively updated from a nonlin-
ear process model that describes the evolution in time of the 
system under analysis, a measurement model, a set of avail-
able measurements, and an a priori estimate of the state pdf. 
In other words, PF is a technique for implementing a recursive 
Bayesian filter using Monte Carlo (MC) simulations and is 
known as a sequential MC (SMC) method.

Implementation
The state and measurement equations that describe the battery 
model are given below:

(3)

where the vector z is comprised of RE and RCT, and the matrices 
C and Λ contain their decay parameters C and l values, respec-
tively. The z and Λ vectors are combined to form the state vector 
x. The measurement vector y is comprised of the battery param-
eters inferred from measured data. The time index is denoted by 
k. The values of the C and Λ vectors (for both RE and RCT) learned 
from RVM regression are used to initialize the particle filter. The 
noise samples w, n, and u are picked from zero mean Gauss-
ian distributions whose standard deviations are derived from 
the given training data, thus accommodating for the sources 
of uncertainty in feature extraction, regression modeling, and 
measurement. System importance resampling of the particles is 
carried out in each iteration to reduce the degeneracy of particle 
weights. This helps in maintaining the track of the state vector 
even under the presence of disruptive effects like unmodeled 
operational conditions (in our case, high temperatures).

The system description model developed in the offline pro-
cess is fed into the online process where the particle filtering 
prognosis framework is triggered by a diagnostic routine. The 
algorithm incorporates the model parameter as an additional 
component of the state vector and performs parameter iden-
tification in parallel with state estimation. Predicted values 
of the internal battery model parameters are used to calculate 
expected charge capacities of the battery. The current capacity 
estimate is used to compute the SOC while the future predic-
tions are compared against end-of-life thresholds to derive 
remaining useful life (RUL) estimates. Figure 9 shows a simpli-
fied schematic of the process described above.

For the test data, the estimated l value for the RCT growth 
model (equation 2) is considerably larger than of the train-
ing data (collected at 25˚C), i.e., ltest=0.1123 compared to 
ltrain=0.0125. RUL is derived by extrapolating out the capacity 
estimates (of the 100 particles used in this application) into the 
future (Figure 10) until predicted capacity hits a certain pre-
determined end-of-life threshold. The weight vector of the PF 
algorithm is used to calculate the RUL distribution.

The particle filter approach yields an RUL error of 5.8545 
weeks early, at week 32, and an error of 2.59 weeks early for pre-
dictions made at week 48. In comparison to the other approaches 
that have been discussed, the PF results are more accurate. More 

Fig. 8. Schematic of Decay Model Development.

Fig. 9. Particle Filter Framework.
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importantly, early predictions are considered more favorable 
than late predictions to avoid any unanticipated failures pro-
vided, of course, that the error is reasonable. In terms of error 
bounds, it simply means that the acceptable limit is wider for 
early predictions than for those that are late. The results also 
show that the RUL pdf improves in both accuracy (closeness of 
the mean to the actual RUL) and precision (narrowness of the 
pdf, indicating higher confidence in the mean value) as more 
measurements are included. This indicates that Bayesian statisti-
cal approaches are well suited to handle various sources of un-
certainties since they define probability distributions over both 
parameters and variables and integrate out the nuisance terms.

Conclusion
Batteries represent complex systems whose internal state vari-
ables are either inaccessible to sensors or hard to measure un-
der operational conditions. This work exemplifies how more 
detailed model information and more sophisticated prediction 
techniques can improve both the accuracy as well as the re-
sidual uncertainty of the prediction in Prognostics and Health 
Management. The more dramatic performance improvement 
between various prediction techniques is in their ability to 
learn complex non-linear degradation behavior from the train-
ing data and discard any external noise disturbances. 

An algorithm that manages these sources of uncertainty 
well can yield higher confidence in predictions, expressed by 
narrower uncertainty bounds. We observed that the particle 
filter approach results in RUL distributions which have better 
precision (narrower pdfs) by several σs (if approximated as 
Gaussian) as compared to the other regression methods. How-
ever, PF requires a more complex implementation and compu-
tational overhead than the other methods. This illustrates the 
basic tradeoff between modeling and algorithm development 
versus prediction accuracy and precision. For situations like 
battery health management where the rate of capacity degrada-
tion is rather slow, one can rely on simple regression methods 
that tend to perform well as more data are accumulated and 
still predict far enough in advance to avoid any catastrophic 
failures. Techniques like GPR or even the baseline approach can 

offer a suitable platform in these situations by managing the 
uncertainty fairly well with much simpler implementations. 
Other data sets may allow much smaller prediction horizons 
and hence require precise techniques like particle filters.

In this study, we conclude that there are several methods 
one could employ for battery health management applica-
tions. Based on end user requirements and available resources, 
a choice can be made between simple or more elegant tech-
niques. The particle filter based approach emerges as the 
winner when accuracy and precision are considered more 
important than other requirements. 
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