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Abstract—Many diagnostic datasets suffer from the adverse 
effects of spikes that are embedded in data and noise. For 
example, this is true for electrical power system data where 
the switches, relays, and inverters are major contributors to 
these effects. Spikes are mostly harmful to the analysis of 
data in that they throw off real-time detection of abnormal 
conditions, and classification of faults. Since noise and 
spikes are mixed together and embedded within the data, 
removal of the unwanted signals from the data is not always 
easy and may result in losing the integrity of the 
information carried by the data. Additionally, in some 
applications noise and spikes need to be filtered 
independently. The proposed algorithm is a multi-resolution 
filtering approach based on Haar wavelets that is capable of 
removing spikes while incurring insignificant damage to 
other data. In particular, noise in the data, which is a useful 
indicator that a sensor is healthy and not stuck, can be 
preserved using our approach. Presented here is the 
theoretical background with some examples from a realistic 
testbed.1 2  
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1. INTRODUCTION 
Interference and unwanted currents or voltages in an 
electrical device or system create noise; whereas, spikes are 
usually a result of quick transitions in the electrical circuit 
equilibrium. Examples include switching and relaying 
operation in power grid networks, current and voltage 
inversions, short-circuits, lightning, and discharge of 
inductive or capacitive loads. Despite the short time-span of 
spikes compared to the steady state of the circuit, or the low 
amplitude of noise compared to the entire signal, they can 
affect the circuit analysis immensely.  

 
1 978-1-4244-3888-4/10/$25.00 ©2010 IEEE. 
2 IEEEAC paper#1327, Version 1, Updated 2009:11:03. 

A new approach, based on wavelets, to suppress spikes and 
preserve noise is presented in this paper. The approach is 
motivated by computational methods for diagnostics and is 
illustrated using electrical power system data obtained from 
ADAPT (Advanced Diagnostics and Prognostics Testbed) 
as shown in figures 1 and 2 [8, 9]. The probabilistic model 
in this study is a Bayesian network (BN) [4-7]. As shown in 
figure 1, the proposed filtering approach sits in between the 
plant and diagnoser. It has to act on the raw data before the 
data is processed for diagnosis. The “de-spiked” data serves 
two purposes: 1) the diagnoser uses the noise to determine 
the health of the sensors and 2) the data is used to realize 
the overall state of the system and to calculate the 
probability of any faults occurring. 

In this research, data from a real-world diagnostic platform, 
namely ADAPT at NASA Ames, have been used in a 
graphical model (based on Bayesian network, BN) in 
conjunction with the proposed digital filter (discrete Haar 
wavelet) algorithm [1-3, 16, 17]. The research presented in 
this paper is an effort to further optimize the diagnostics 
approaches by applying advanced signal processing 
algorithms for noise preservation and spike removal. Using 
the multi-resolution and multi-orientation properties of 
digital signal processing (DSP) such as Haar Wavelet 
Filters, datasets can be decomposed into their components. 
Spikes embedded in the data (and noise) can be manipulated 
in advance of the probabilistic diagnostics using BNs. 

Generally, for most physical systems, spike removal and de-
noising are both beneficial to diagnosis. For certain systems, 
such as ADAPT EPS, noise may be used as an indication 
for sensor health where a sensor could be stuck at a 
particular value with no noise. Spike (outlier) and noise 
removal are both fairly old disciplines. In most of previous 
approaches either noise or spike has been removed from 
data while affecting the other parameter. The significance of 
this work is in its approach to make this process selective by 
means of customized wavelet transform filters and addition 
of translation and scale invariance to make threshold 
adjustable.  

Spike could also carry some diagnostic information. Spikes 
are necessary for detection of intermittent events such as 
short circuits or arcs caused by lightning. Removal of spikes 
or other signatures that are noticeable only in the transient 
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response would be detrimental to diagnosis in these cases. 
Additionally, one should be able to extract information such 
as time of occurrence from spikes. The new set of filters 
presented here are capable of removing spikes that are 
anomalies to dataset without interfering with transient 
response. Furthermore, the threshold adjustment feature 
allows for replacing the spikes with data points that are very 
close to real data values at a given point. 

In section 2 of the paper, the need for a new approach in 
signal processing to differentiate between noise and spike in 
a dataset has been explained. Then formulation for the 
proposed approach has been summarized. Section 3 
describes the method in which the proposed algorithms are 
applied to the ADAPT EPS dataset. In section 4, we have 
detailed the experimental settings for this research. Section 
5 of the paper consists of the concluding remarks and a 
series of experiments proposed for future work in this 
research field.  

2. PRELIMINARIES  
Traditionally, Fourier transform (FT) has been applied to 
time-domain signals to analyze them for normal behavior 
and signatures of transient response. The shortcoming of the 
FT is in its dependence on time averaging over entire 
duration of the signal. Due to its short time span, spike 
analysis requires resolution in particular time and frequency 
rather than frequency alone. Wavelets can help processing 
in this respect. Wavelets are the result of translation and 
scaling of a finite-length waveform known as a mother 
wavelet. A wavelet divides a function into its frequency 
components such that its resolution matches the frequency 
scale and translation. To represent a signal in this fashion it 
would have to go through a wavelet transform. Application 
of the wavelet transform to a function results in a set of 
orthogonal basis functions which are the time-frequency 
components of the signal. Due to its resolution in both time 
and frequency, the wavelet transform is a powerful tool for 
detection and classification of signals that are non-
stationary or have discontinuities and sharp peaks. 
Depending on the nature of the function, a continuous 
(CWT), discrete (DWT), or multi-resolution wavelet 
transform (MWT) can be applied.  

In this paper, we use the DWT (Haar basis) to suppress 
spikes in an electric power system (EPS). Due to its ability 
to extract information in both time and frequency domain, 
DWT is considered a very powerful tool. The approach 
consists of decomposing the signal of interest into its 
detailed and smoothed components (high- and low-
frequency). The detailed components of the signal at 
different levels of resolution localize the time and frequency 
of the event. Therefore, the DWT can extract the "short-
time", "extreme value", and "high-frequency" features of 
EPS transient response spikes. DWT has been successfully 
applied to power systems for the analysis and detection of 
single event transients [14-15]. Following is a detailed 

discussion of theory and design methodology for the 
special-purpose filters for this application. 

DWT-based filters can be used to localize abrupt changes in 
signals in time and frequency. The invariance to shift in 
time (or space) in these filters makes them unsuitable for 
pattern recognition problems. Therefore, creative techniques 
have been implemented to cure this problem [10-13]. These 
techniques range in their approach from calculating the 
wavelet transforms for all circular shifts and selecting the 
“best” one that minimizes a cost function [10], to using the 
entropy criterion [13] and adaptively decomposing a signal 
in a tree structure so as to minimize the entropy of the 
representation. In this paper a new approach to detection, 
classification, and cancellation of spikes has been proposed. 
The customized Haar wavelet basis created for this 
application are both translation- and scale-invariant and can 
represent a signal in a multi-scale format. While this is not 
the best fit for entropy criterion, it is well suited for the 
proposed detection, classification, and cancellation purposes 
[10-13].  

From a viewpoint of functional analysis, we propose a new 
way to deal with the translation- and scale-invariant 
problem of discrete wavelet transform (DWT). Firstly, we 
adaptively renormalize the original signal. This procedure 
can be accomplished by using a signal-dependent filter 
whose impulse response is adaptively calculated by the first 
two moments of the original signal and a scale function of 
an orthonormal wavelet. Then, the re-normalized signal is 
decomposed using the conventional DWT. The final 
wavelet coefficients are proved to be both translation- and 
scale-invariant. The adaptive wavelet decomposition we 
propose represents a signal in a multi-scale format, and it 
may be not the “best” according to the entropy criterion, but 
it is very adaptive, therefore, it’s more suited for recognition 
purpose. As an application, we apply our decomposition to 
the task of noise and spikes elimination for EPS. We define 
a new feature in the framework of our adaptive wavelet 
decomposition. This feature, consists of the relative energy 
values of the filters at each scale, is invariant with respect to 
shift, scaling and gray scale transforms, and, as experiments 
show, very effective for the task of scale-invariant 
denoising and discrimination [18]. 
 
Under normal operating conditions, ADAPT EPS exhibits 
colored background noise and spikes, impulse noise and 
spikes. In our experimental runs, we have collected data 
from various sensors over different lengths of time. It 
should be pointed out that the noise and spikes in EPS 
dataset may be modeled as nonstationary [19-21]. In this 
work, we assume that the changes in the noise and spikes 
PSD (power spectral density) are slow enough to allow a 
correct estimation of the prediction coefficients. The task of 
creating the filter banks for this study is based on 
translations and scaling of a set of basis functions (Harr 
basis in this case). An example of the generating function 
(mother wavelet) based on the Sinc function for the CWT 
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is: 
ψ (t) = 2Sinc(2t) – Sinc(t) = 

t
tSintSin

π
ππ )()2( −  (1) 

The subspaces of this function are generated by translation 
and scaling. For instance, the subspace of scale (dilation) a 
and translation (shift) b of the above function is: 

)(1)(, a
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a
tba

−= ψψ   (2) 

When a function x is projected into this subspace, an 
integral would have to be evaluated to calculate the wavelet 
coefficients in that scale:  

dtttxxbaxWT ba
R

ba )()(,),}({ ,, ψψψ ∫==  (3) 

And therefore, the function x can be shown in term of its 
components: 

.)().,}({)( , dbtbaxWTtx ba
R

a ψψ∫=   (4) 

Due to computational and time constraints it is impossible 
to analyze a function using all of its components. Therefore, 
usually a subset of the discrete coefficients is used to 
reconstruct the best approximation of the signal. This subset 
is generated from the discrete version of the generating 
function:  

ψm,n(t) = a − m / 2ψ(a − mt − nb).  (5) 
Applying this subset to a function x with finite energy will 
result in DWT coefficints from which one can closely 
approximate (reconstruct) x using the coarse coefficients of 
this sequence:  

).(.,)( ,, txtx nm
Zm Zn

nm ψψ∑∑
∈ ∈

=   (6) 

The MWT is obtained by picking a finite number of wavelet 
coefficients from a set of DWT coefficients. However, to 
avoid computational complexity, two generating functions 
are used to create the subspaces:  

Vm Subspace: φm,n(t) = 2 − m / 2φ (2 − mt − n) (7) 
and 

Wm Subspace: ψm,n(t) = 2 − m / 2ψ(2 − mt − n). (8) 
From which the two (fast) wavelet transform pairs (MWT) 
can be generated: 

)2(2)( ntht
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and 
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Zn
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∈

φψ   (10) 

In this paper the DWT has been used to suppress noise and 
reduce order of data in a wireless sensor network. Due to its 
ability to extract information in both time and frequency 
domain, DWT is considered a very powerful tool. The 
approach consists of decomposing the signal of interest into 
its detailed and smoothed components (high-and low-
frequency). The detailed components of the signal at 
different levels of resolution localize the time and frequency 
of the event. Therefore, the DWT can extract the coarse 
features of the signal (compression) and filter out details at 
high frequency (noise). DWT has been successfully applied 
to system analysis for removal of noise and compression 

[22, 23]. In this paper we present how DWT can be applied 
to detect and filter out noise and compress signals. A 
detailed discussion of theory and design methodology for 
the special-purpose filters for this application follows. 
 
The process to construct the proposed customized filters 
starts with discrete wavelets defined by wavelet and scaling 
functions introduced in equations (9) and (10) which are 
repeated here: 
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The masks for these functions are obtained as: 
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As these two masks are convolved, the generating function 
(mother wavelet) mask can be obtained as: 
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Where for every integer k, integers k
q

kk nnn ,.....,, 21  can be 
found to satisfy the inequality: 
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The corresponding values from mother wavelet mask can 
then be taken to calculate: )
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Decomposing the re-normalized signal )(, Zk
c km ∈−

α
 

according to the conventional wavelet transform, will result 
in the entire filter basis for different scales: 

αααααα
kkkmkmkmkm dcdcdc ,0,0,2,2,1,1 ,,....,,,, +−+−+−+−   (17) 

These filter basis then can be applied to the diagnostic 
datasets of EPS and the coefficients of the reconstructed 
dataset (with spikes removed) can be extracted.  

3. METHODOLOGY  
As discussed in section 2 and as shown in figure 1, the 
proposed approach makes it possible to decompose a signal 
to its coarse and detailed components and adaptively filter 
out the undesired components. Scaling and translation 
properties of wavelet bank basis allows for a precise 
dissection of the signal in time and frequency domains. 
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Therefore, certain undesired time and/or frequency 
components of the signal can be separated accordingly.  

Figure 1 shows the details of this transaction. Starting with 
the raw data from ADAPT S(t), the wavelet-based filters 
decompose the signal into the proper components U(t), 
depending on the basis, scale, and transition level chosen. 
The unwanted parts of the signal (in this case spikes) are 
removed to create the reconstructed signal U^(t). Then, the 
signal gets processed by diagnosis software which indicates 
the health status of components and sensors. The 
significance of the proposed method is that the 
reconstructed signal (after removal of spikes) has not been 
deteriorated by filters and still carries the information (and 
noise) it contained to begin with. Therefore, the noise as 
well as the original data can be used for further processing.  

For diagnostic purposes, and specifically for detecting 
"stuck" components or sensors, removing noise may be 
harmful, because lack of noise indicates that a 
component/sensor is stuck. So, in general, it would make 
sense to distinguish these three cases:  
(i) Removing spikes BUT NOT noise [of interest to 
diagnostic community] 
(ii) Removing noise BUT NOT spikes  
(iii) Removing noise AND spikes 

A multiresolution analysis of the filter output suggests that 
noise can be preserved and spikes can be separated from the 
original signal by simply cancelling the proper layers in the 
output signal. Depending on the desired resolution in the 
output signal the detailed layers can also be dropped 
(keeping only coarser layers) so that the spike removal goal 
is achieved. 

4. EXPERIMENTS 
The proposed experimental setting consists of 3 main 
components as described below and illustrated in figures 1 
and 2: 

ADAPT EPS—A uniquely designed facility to enable the 
development, maturation, and benchmarking of diagnostic, 
prognostic, and decision technologies for system health 
management applications.  

ProDiagnose—A software that processes all incoming 
environment data and acts as a gateway to a probabilistic 
inference engine. The inference engine analyzes the 
observations given to it by ProDiagnose, and computes 
diagnostic inferences. ProDiagnose uses the Arithmetic 
Circuit Evaluator, or ACE. ACE uses arithmetic circuits 
(ACs), which are compiled from Bayesian network models.  

Haar Wavelet Filters—Algorithms serve to manipulate data 
produced by ADAPT so that they would be a good fit for 
ProDiagnose analysis. As has been the case in several 
experimental procedures on ADAPT, unwanted transient 

response, high order of data to be computed, and noise have 
adverse effects on computations and have the potential to 
throw off the diagnostic and prognostic analysis.  

The DSP algorithms (Haar wavelet filters) serve to enhance 
data produced by ADAPT so that they would be a good fit 
for diagnostic analysis. As has been the case in several 
experimental procedures on ADAPT, spikes have the 
potential to throw off the diagnostic analysis. In this set of 
algorithms designed for ADAPT EPS, a wavelet based 
approach has been considered to suppress the effect of 
anomalies on datasets. As shown in figures 3 and 4, the 
proposed wavelet-based filters decompose the dataset into 
its detailed and coarse components.  

Figures 3 and 4 show two datasets from sensors in ADAPT 
that have undergone filtering by the proposed wavelet-based 
filters. The figures show the original signal (in red) vs. the 
reconstructed version (in yellow) with spikes and/or noise 
removed. Of course, the ideal signal for ADAPT EPS 
diagnostic purposes is the one with spikes (only) removed 
and is highlighted in green background. Additionally, we 
have tried this technique on a signal that is nominally non-
flat. Figure 5 verifies that in the absence of spikes the signal 
is unaffected and the process works equally well.   

5. CONCLUSIONS 
Using discrete Haar wavelets, we have successfully 
removed spikes without removing noise and damaging data 
in diagnostic signals. The technique shows promise on 
ADAPT EPS data. This effort has resulted in a set of Haar 
wavelet filters that are shift invariant and can adaptively 
adjust so that the desired components of a signal (noise) are 
preserved while the unwanted components (spikes) are 
removed. The experiments show that the proposed 
technique is also capable of removing both noise and spikes 
as well as removing noise and preserving spikes (see figures 
3 and 4). By setting thresholds for the wavelet basis (as 
discussed in section 2 of this paper) one can even filter out 
certain components of the noise as though a high-pass, 
band-pass, or low-pass filter were applied to the dataset. 

Another important aspect of the proposed technique is its 
low cost computational requirements and high speed results. 
These filters can now be implemented in hardware where 
speeds in the order of nano-seconds can be obtained. 
Together with low power consumption, this creates the 
perfect environment for diagnostics platforms in most EPSs 
(i.e. spacecrafts, aircrafts, powerstations, etc.) where real-
time decision making is of great importance.  

Compared to standard methods or standard wavelet filters, 
the proposed techniques offers more improved resolution, 
accuracy, and efficiency.  As is evidet from figures 3, 4, and 
5, the approach is well suited for removing anomalies from 
dataset. At the same time, the filters are adaptive in terms of 
time and frequency so to match the proper unwanted signals 
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(nois, spike, or both) at the right instant. Threshold 
adjustment is anothe rfeature that allows for filtering each 
anomaly by the right amount. This feature helps 
differentiate between unwanted spikes and the desired 
transient response. 

In future work we hope to investigate how this technique 
can be used as a filtering step before performing diagnosis 
using probabilistic methods, for example by means of 
Bayesian networks or arithmetic circuits. The data obtained 
from filtered datasets will be used in diagnostics algorithms 
and compared to non-filtered data to measure any 
improvements and assess the proposed filtering technique. 
Additionally, the multiresolution and multiorientation 
properties of the proposed filters will be used to reduce the 
order of datasets and improve the speed of the diagnostic 
algorithms. 
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Figure 1 – General and specific functional block diagram of the proposed diagnostic system.  
 
 

 
 

Figure 2 -- The ADAPT EPS at NASA Ames Research Center. (Courtesy of NASA Ames) 
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Figure 3 -- Enhancements made to ADAPT 957-IT140 dataset to cancel noise and spikes in the dataset. 
For the purposes of EPS diagnostics, only the set with noise and no spike is desirable (Green background).  
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Figure 4 -- Enhancements made to ADAPT 957-XT167 dataset to cancel noise and spikes in the dataset. 
For the purposes of EPS diagnostics, only the set with noise and no spike is desirable (Green background). 
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Figure 5 -- Enhancements made to ADAPT 957-E240 dataset to cancel noise and spikes in the dataset. 
Original signal (top left - red) and de-noised signal (yellow) at three different levels and thresholds have been shown. 

As can be seen, the transient response has been preserved whether the noise is cancelled or not. 
 
 


