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Abstract—Prognostics is crucial to providing reliable 

condition-based maintenance decisions. To obtain 

accurate predictions of component life, a variety of 

sensors are often needed. However, it is typically difficult 

to add enough sensors for reliable prognosis, due to 

system constraints such as cost and weight. Model-based 

prognostics helps to offset this problem by exploiting 

domain knowledge about the system, its components, and 

how they fail by casting the underlying physical 

phenomena in a physics-based model that is derived from 

first principles. We develop a model-based prognostics 

methodology using particle filters, and investigate the 

benefits of a model-based approach when sensor sets are 

diminished. We apply our approach to a detailed physics-

based model of a pneumatic valve, and perform 

comprehensive simulation experiments to demonstrate the 

robustness of model-based approaches under limited 

sensing scenarios using prognostics performance metrics. 
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1. INTRODUCTION 

Prognostics is a key enabling technology for applying 

condition-based maintenance. The goal of prognostics is 

to make end of life (EOL) and remaining useful life 

(RUL) predictions that enable timely maintenance 

decisions to be made. As with diagnostics, prognostics 

methods may typically be categorized as either data-

driven or model-based. Data-driven approaches do not 

take advantage of system and domain knowledge, but 

instead use learning methods to identify trends and 

determine EOL and RUL [1] Such methods rely on large 

amounts of run-to-failure data that are used to train the 

algorithms. The training becomes dependent on the set of 

sensors used, and, therefore, is not robust to loss of 

sensors or a possible lack of sensors. Furthermore, the 

required training data, in many cases, does not exist. In 

contrast, model-based approaches exploit domain 

knowledge of the system, its components, and how they 

fail in order to provide EOL and RUL predictions [2]-[5]. 

The underlying physical phenomena are captured in a 

physics-based model that is derived from first principles, 

therefore, model-based approaches can provide EOL and 

RUL estimates that are much more accurate and precise 

than data-driven approaches, if the models are correct. In 

addition, model-based approaches can be robust to sensor 

loss and still work under limited sensing environments 

with an accurate model. 

In this paper, we demonstrate the effectiveness of model-

based approaches under limited sensing conditions. 

Reduction of the number of sensors implies an increase in 

uncertainty. Other sources of uncertainty are also present, 

such as model inaccuracies, sensor noise, and uncertainty 

in future input profiles. To help manage this uncertainty, 

we apply a particle filtering approach that is based on 

joint state-parameter estimation. Particle filters 

approximate the posterior probability distribution as a set 

of discrete, weighted samples. Although suboptimal, the 

advantage of particle filters is that they can be applied to 

systems which may be nonlinear and have non-Gaussian 

noise terms, where optimal solutions are unavailable or 

intractable. Particle filtering approaches have previously 

been successful in prognostics applications. In [4], the 

authors apply a particle filtering approach to prediction of 

end of discharge and EOL in lithium-ion batteries, which 

highlights the performance that can be achieved by having 

accurate models. In [6], the authors apply a particle filter-

based prognosis method to prediction of battery grid 

corrosion. Both [7] and [8] apply particle filtering to 

estimation and prediction of crack growth. Performance 

improvements over standard particle filter methods can be 

achieved in prognostics with advanced filtering 

techniques, such as the use of correction loops [9], fixed-

lag filters [5], Rao-Blackwellized particle filters [10],[11], 

and risk-sensitive particle filters [12]. 

In this paper, we develop a model-based prognostics 

framework that incorporates particle filters. As a case 

study, we construct a detailed physics-based model of a 

pneumatic valve that includes models of different damage 

mechanisms. We run a comprehensive set of prognostics 

experiments in simulation to demonstrate the robustness 

of the approach to limited sensor sets, evaluated using 

established prognostic metrics [13], [14].  



 2 

The paper is organized as follows. Section 2 formulates 

the prognostics problem and overviews the computational 

architecture we adopt. Section 3 develops the damage 

estimation method using particle filters. Section 4 

describes the prediction procedure. Section 5 presents the 

pneumatic valve case study with experimental results in 

simulation. Section 6 concludes the paper. 

2. PROGNOSTICS APPROACH  

Problem Formulation 

The problem of prognostics is to predict the EOL and/or 

the RUL of a component. In this paper, we develop a 

general model-based approach, where the system model is 

given by  

))(),(),(),(,()(

))(),(),(),(,()(

tntuttxthty

tvtuttt







 xtfx  

where xn
Rtx )( is the state vector,  n

Rt )( is the 

parameter vector, un
t R)( u  is the input vector, 

vn
t R)( v is the process noise vector, f  is the state 

equation, yn
ty R)(  is the output vector, nn

tn R)(  is the 

measurement noise vector, and h is the output equation. 

Our goal is to predict EOL at a given time point tP using 

the discrete sequence of observations up to time tP, 

denoted as 
Pt:0y . In order to determine when EOL has 

been reached, we require a condition that is a function of 

the system state and parameters, ))(),(( ttCEOL θx , which 

determines whether EOL has been reached, where 






.otherwise,0

reached is EOL if,1
))(),(( ttCEOL θx  

Using this function, we can define EOL with 

,1))(),((minarg)( 


ttCtEOL EOL
tt

P

P

θx  

and RUL with 

.)()( PPP ttEOLtRUL   

Because of the noise inherent in the process, the 

measurements, and future inputs, we must compute a 

probability distribution of the EOL or RUL, i.e., the goal 

is to compute, at time tP, )|)(( :0 PtPtEOLp y  or 

)|)(( :0 PtPtRULp y . 

Prognostics Architecture 

We adopt a model-based approach, wherein we develop 

detailed physics-based models of components and systems 

that include descriptions of how fault parameters evolve in 

time. These models depend on unknown and possibly 

time-varying wear parameters, )(tθ . Therefore, our 

solution to the prognostics problem takes the perspective 

of joint state-parameter estimation. In discrete time k, we 

estimate 
kx   and 

kθ , and use these estimates to predict 

EOL and RUL at desired time points. 

We employ the prognostics architecture in Fig. 1. The 

system is provided with inputs 
ku  and provides measured 

outputs 
ky . The fault detection, isolation, and 

identification (FDII) module provides a fault set F, which 

is used by the damage estimation module to determine 

estimates of the states and unknown parameters, 

represented as a probability distribution )|,( :0 kkkp yθx . 

This distribution is used by the prediction module which 

computes EOL and RUL using hypothesized future inputs. 

EOL and RUL are computed as probability distributions 

)|( :0 PP kkEOLp y  and )|( :0 PP kkRULp y . In this paper, we 

focus on the damage estimation and prediction modules, 

and assume a solution to FDII. 

3. DAMAGE ESTIMATION 

To estimate the damage, we need to estimate 

)|,( :0 kkkp yθx . In this paper, we use the particle filter for 

this purpose [15],[16]. With particle filters, the state 

distribution is approximated by a set of discrete weighted 

samples, or particles, N

i

i

k

i

k

i

k w 1}),,{( θx , where N denotes 

the number of particles, and for particle i, i

kx  denotes the 

state estimates, i

kθ  denotes the parameter estimates, and 

i

kw denotes the weight.  

Particle filters are best suited to estimation in nonlinear 

systems with possibly non-Gaussian noise, where optimal 

solutions are unavailable or intractable. In this respect, 

they may be viewed as a general (suboptimal) solution to 
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Figure 1 - Prognostics architecture. 
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the state estimation problem. Performance can be 

improved by increasing the number of particles, but this 

also results in higher computational costs. The number of 

particles must be chosen to suit the application 

requirements. 

We employ the sampling importance resampling (SIR) 

particle filter, and implement the resampling step using 

systematic resampling [17]. In particle filters, the 

posterior density is approximated by 





N

i

kk

i

kkkk ddwp i
k

i
k

1
),(:0 ),()|,( θxyθx

θx
  

where )(
),( kk ddi

k
i
k

θx
θx

 denotes the Dirac delta function 

located at ),( i

k

i

k θx . 

Here, the parameters 
kθ evolve by some unknown random 

process that is independent of the state 
kx . To perform 

parameter estimation within a particle filter framework, 

however, we need to assign some type of evolution to the 

parameters. The typical solution is to use a random walk, 

i.e., for parameter , 
11   kkk  , where 

1k  is 

typically Gaussian noise. With this type of evolution, 

during the sampling step particles are generated with 

parameter values that will be different from the initial 

guesses for the unknown parameters. The particles with 

parameter values closest to the true values should be 

assigned higher weight, thus allowing the particle filter to 

converge to the true values. The selected variance of the 

random walk noise must be large enough so as to allow 

convergence in a reasonable amount of time, but small 

enough such that when convergence is reached, the 

parameter can be tracked smoothly. Since the parameter 

values are unknown to start with, this can be a difficult 

task, but knowledge of the correct order of magnitude of 

the parameter is helpful. Additionally, correction loop 

methods can be used to tune this value online as a function 

of performance [9]. 

The pseudocode for a single step of the SIR filter is shown 

as Algorithm 1. Each particle is propagated forward to 

time k by first sampling new parameter values and 

sampling new states. The particle weight is assigned using 

ky . The weights are then normalized, followed by the 

resampling step (see [15] for pseudocode of the 

systematic resampling algorithm). 

4. PREDICTION 

In the prediction phase, we wish to compute at time kP, 

)|( :0 PP kkEOLp y  and )|( :0 PP kkRULp y . The particle filter 

computes 
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We can approximate a prediction distribution n steps 

forward as [18] 
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So, for a particle i propagated n steps forward (without 

new data), we can simply take its weight as i

kP
w . 

Similarly, we can approximate the EOL as 





N

i

kEOL

i

kkk P
i

PkPPP
dEOLwEOLp

1
)(:0 ).()|( y  

To compute EOL, then, we propagate each particle 

forward to its own EOL and use that particle's weight at kP 

for the weight of its EOL prediction. 

The pseudocode for the prediction procedure is given as 

Algorithm 2. Each particle i is propagated forward until 

),( i

k

i

kEOLC θx evaluates to 1, at this point EOL has been 
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reached for this particle. Prediction requires hypothesizing 

future inputs of the system, 
kû . The inputs must be chosen 

carefully because different inputs often have different 

effects on damage progression. If future inputs are 

unknown, inputs for each particle may be selected based 

on a distribution of possible anticipated input values.  

5. CASE STUDY 

In order to illustrate our prognostics methodology, we 

take a pneumatic valve as a case study. We develop a 

physics-based model of the valve and its damage 

mechanisms. We then present simulation experiments to 

demonstrate joint state-parameter estimation and 

EOL/RUL prediction for different sets of sensors and 

noise levels. The scenarios are compared using 

prognostics performance metrics established in [13], [14]. 

Component Modeling 

Pneumatic valves are complex mechanical systems used in 

many domains. These valves are actuated by gas, and can 

use different types of actuators. A normally-closed valve 

with a linear cylinder actuator is depicted in Fig. 2. The 

valve is opened by filling the chamber below the piston 

with gas up to the supply pressure, and evacuating the 

chamber above the piston down to atmospheric pressure. 

The valve is closed by filling the chamber above the 

piston, and evacuating the chamber below the piston.  The 

return spring ensures that when pressure is lost, the valve 

will close due to the force exerted by the return spring. 

We develop a physics model of the valve based on mass 

and energy balances. The system state includes the 

position of the valve, x(t), the velocity of the valve, v(t), 

the mass of the gas in the volume above the piston, mt(t), 

and the mass of the gas in the volume below the piston, 

mb(t): 

.
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The position when the valve is fully closed is defined as 

x=0. The stroke length of the valve is denoted by Ls; when 

the valve is fully open its position is x=Ls. 

 

The derivatives of the states are described by 
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where m is the combined mass of the piston and plug, 

 )(tF  is the sum of forces acting on the valve, and ft(t) 

and fb(t) are the mass flows going into the top and bottom 

pneumatic ports, respectively. 

The inputs are considered to be  

,
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where pl(t) and pr(t) are the fluid pressures on the left and 

right side of the plug, respectively, and ut(t) and ub(t) are 

the input pressures to the top and bottom pneumatic ports. 

These pressures will alternate between the supply pressure 

and atmospheric pressure depending on the commanded 

valve position. 

The sum of forces acting on the piston includes (1) the 

forces from the pneumatic gas: (pb(t)-pt(t))Ap, where pb(t) 

and pt(t) are the gas pressures on the bottom and the top of 

the piston, respectively, and Ap is the surface area of the 

piston, (2) the forces from the fluid flowing through the 

valve: (pr(t)- pl(t))Av, where Av is the area of the valve 

contacting the fluid, (3) the weight of the moving parts of 

the valve: -mg, where g is the acceleration due to gravity, 

(4) the spring force: -k(x(t)-xo), where k is the spring 

constant and xo is the amount of spring compression when 

the valve is closed, (5) friction: -rv(t), where r is the 

coefficient of kinetic friction, and (6) the contact forces at 

the boundaries of the valve motion: 

Return Spring

Piston

Plug

Top 

Pneumatic Port

Bottom 

Pneumatic Port

Fluid Flow

 

Figure 2 - Pneumatic valve. 
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where kc is the (large) spring constant associated with the 

flexible seals. 

The pressures pt(t) and pb(t) are calculated as: 
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where we assume an isothermal process in which the 

(ideal) gas temperature is constant at T, Rg is the gas 

constant for the pneumatic gas, and 
0t

V and 
0bV are the 

minimum gas volumes for the gas chambers above and 

below the piston, respectively. 

The gas flows are given by: 

))(),(()(

))(),(()(
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where fg defines gas flow through an orifice for choked 

and non-choked flow conditions [19]: 
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where   is the ratio of specific heats, Z is the gas 

compressibility factor, Cs is the flow coefficient, and As is 

the orifice area. Choked flow occurs when the pressure 

ratio exceeds   )1/(

2

1   . 

We select our complete measurement vector as 
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where fv is the fluid flow through the valve: 
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Cv is the (dimensionless) flow coefficient of the valve, ρ is 

the liquid density, and we assume a linear flow 

characteristic for the valve. The open(t) and closed(t) 

measurements are discrete sensors which output 1 if the 

valve is in the fully opened or fully closed state: 
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Figure 3 - Nominal valve operation. 
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It should be noted how the discrete position sensors (open 

and closed) are treated within the particle filter 

framework. In a particle filter, a certain amount of sensor 

noise must be assumed for sensors, but, in practice, the 

discrete position sensors have no noise. If an artificial 

amount of noise is not assumed within the particle filter 

for these sensors, then sever degeneracy will result, 

because very few, if any, particles will be able to predict 

the transitions of these sensor values. The degeneracy is 

severe enough that it cannot be remedied by resampling 

methods. Assuming some amount of sensor noise 

addresses this issue. 

Fig. 3 shows a nominal valve cycle. The valve is 

commanded to open at 0 s. The top pneumatic port opens 

to atmosphere and the bottom opens to the supply pressure 

(approximately 5.3 MPa, or 750 psig). When the force on 

the underside of the piston is large enough to overcome 

the return spring, friction, and the gas force on the top of 

the piston, the valve begins to move upward as the 

pneumatic gas continues to flow into and out of the valve 

actuator. At about 8 s the valve is completely open. The 

valve is commanded to close at 15 s. The bottom 

pneumatic port opens to atmosphere and the bottom opens 

to the supply pressure. When the force balance becomes 

negative, the valve starts to move downward, and 

completely closes at around 20 s. The valve closes faster 

than it opens due to the return spring. 

Damage Modeling 

Our general approach to damage modeling is as follows. 

First, we identify parameters in the model that 

characterize the extent of specific forms of damage, and 

these augment the state vector x . We then incorporate 

models of how those parameters change over time with 

system operation. It is the parameters of these equations 

that are unknown and must be estimated, and also 

augment x  for that purpose. In the valve model, we 

consider damage or wear characterized by the increase in 

friction coefficient, the decrease in spring constant, the 

appearance and growth of an internal valve leak between 

the volumes on either side of the piston, and the 

appearance and growth of external leaks at the pneumatic 

ports. 

One damage mechanism present in valves is sliding wear. 

The equation for sliding wear takes on the following form 

[20]: 

,)()()( tvtFwtV   

where V(t) is the wear volume, w is the wear coefficient 

(which depends on material properties such as hardness), 

F(t) is the sliding force, and v(t) is the sliding velocity. 

Friction will increase linearly with sliding wear, because 

the contact area between the sliding bodies becomes 

greater as surface asperities wear down [20]. Lubrication 

between the sliding bodies can also degrade over time. 

We therefore model the change in friction coefficient in a 

form similar to sliding wear: 

,)()()( tvtFwtr fr  

where wr is the wear coefficient, and Ff(t) is the friction 

force defined in the previous subsection. Fig. 4 shows the 

effect of an increase in friction on the valve cycle. From 

the simulation, we can determine the value of the friction 

parameter, r
*
, at which the valve has reached EOL. At this 

value, the friction force becomes large enough that the 

valve cannot open within the 15 s limit, as shown in Fig. 

4. So, 1))(),(( ttCEOL θx  if *)( rtr  . 

We assume the same equation form for spring damage: 

,)()()( tvtFwtk sk  

where wk is the spring wear coefficient and Fs(t) is the 

spring force. The more the spring is used, the weaker it 

becomes. We define k
*
 as the largest value of k at which 

the valve will not fully close upon loss of supply pressure. 

Fig. 4 shows the effect of a decrease in the spring 

parameter on the valve cycle. In normal operation, without 
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Figure 4 - Valve operation with increasing wear. 
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the spring tending the valve to close, the valve will open 

faster and close slower. However, the spring must be 

strong enough to close the valve against system pressure 

when the actuating pressure is lost. So, 

1))(),(( ttCEOL θx also if *)( ktk  . 

An internal leak in the valve can appear at the seal 

surrounding the piston as a result of sliding wear. The 

pneumatic gas is then able to flow between the volumes 

above and below the piston, decreasing the response time 

of the valve. We parameterize this leak by its equivalent 

orifice area, Ai(t), described by: 

,)()()( tvtFwtA fii   

where wi is the wear coefficient. The mass flow at the 

leak, fi(t), is computed using the gas flow equation: 

))(),(()( tptpftf btgi   

As sliding wear occurs, the leak size keeps increasing. 

The presence of an internal leak makes it more difficult to 

actuate the valve, because it causes gas to flow into the 

lower pressure volume that is being evacuated and out of 

the higher pressure volume that is being filled. We define 
*

iA as the minimum internal leak area at which the valve 

cannot open within the 15 s limit. So, 1))(),(( ttCEOL θx  

also if *

ii AA  . Fig. 4 shows the effect of an internal leak 

on the valve cycle. 

External leaks can also form, most likely at the actuator 

connections to the pneumatic gas supply, due to corrosion 

and other environmental factors. Without knowledge of 

how the leak size progresses, we assume the growth of the 

area of the leak holes, Ae(t), is linear: 

,)( ee wtA   

where we is the wear coefficient. We use additional t and b 

subscripts to denote leaks at the top and bottom pneumatic 

ports, respectively. The effect of the formation of a leak at 

the top pneumatic port is that it becomes easier to open 

the valve but more difficult to close it. Conversely, the 

effect of a leak at the bottom pneumatic port is that it 

becomes more difficult to open but easier to close the 

valve. Through simulation we can determine the minimum 

size leak holes at which the valve cannot open or close 

within the 15 s limit, *

,teA  and *

,beA . (An alternative is to 

use a maximum allowable leakage rate to define EOL.) 

So, 1))(),(( ttCEOL θx  also if *

,, )( tete AtA   or 

*

,, )( bebe AtA  . Fig. 4 shows the effect of external leak on 

the valve cycle.  

Experimental Results 

We performed a number of simulation experiments to 

validate our prognostics methodology and evaluate how it 

performs under different sensor sets using the prognostics 

performance metrics described in [13], [14]. 

In each experiment, we considered additive zero-mean 

process and measurement noise, used N=500 particles, 

and used a sample time of 0.01 s. We assumed that only a 

single damage mechanism was active, and, in each 

experiment, started from the point where damage has been 

identified and the only unknown is the wear coefficient 

(initially assumed to be 0 for parameter estimation). The 

wear coefficients were chosen so that EOL would be 

reached between 100 and 150 cycles. 

The particle filters must be tuned to use the appropriate 

amount of noise. Assuming the variance of the process 

was known, the particle filters were set to sample with the 

same amount of process noise. The random walk 

variances were selected assuming the orders of magnitude 

of the wear coefficients were known. The particle filters 

were also set to assume 10 times the amount of actual 

measurement noise (assumed to be known). For the 

discrete position sensors, a value of 0.1 was used for the 

variance of these sensors, which resulted in the best 

overall estimation performance for these scenarios. With 

these settings fixed, we then varied only the measurement 

set, denoted as M. 

First, we provide an example scenario that demonstrates 

our model-based methodology and explains the metrics 

used to evaluate performance. We consider the case of 

spring damage, where wk=0.14, EOL
*
=106.6 cycles 

(where EOL
*
 and RUL

*
 denote the true EOL and RUL), 

and examine two cases in detail: one with M={x,f,pt,pb}, 

and one with M={open,closed}. Fig. 5 shows the 

estimation of the hidden parameter, wk for these two cases. 

As observed, the estimates converge then track the true 

wear parameter value. The two cases appear to have 

comparable estimation accuracy. Clearly though, the 

M={open,closed} case is slower to converge, achieving 

convergence within 15 cycles, whereas the M={x,f,pt,pb} 

converges within 10. We evaluate the performance of the 
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wear parameter estimation using three metrics, for 

quantifying accuracy, spread, and convergence.  

Accuracy is calculated using the percentage root mean 

square error (PRMSE), which expresses relative 

estimation accuracy as a percentage: 

,
ˆ

Mean100PRMSE

2

*

*



























 


k

kk

k
w

ww  

where 
kŵ  denotes the estimated wear parameter value at 

time k, *

kw  denotes the true wear parameter value at k, and 

Meank denotes the mean over all values of k. In computing 

PRMSE, we ignore the first 10 cycles (300 s), where most 

of the error is associated with convergence. In this case, 

the PRMSE is 5.11% for M={x,f,pt,pb}, and 5.23% for 

M={open,closed}.  

We calculate the spread using the relative median absolute 

deviation (RMAD), which expresses the spread relative to 

the median as a percentage: 

 
)(Median

)(MedianMedian
100)(RMAD

jj

jjii

X

XX
X


  

where X is a data set and Xi is an element of that set. For 

estimation spread, for time k we use the distribution of 

wear parameter values given by the particle set at k as the 

data set. Note that since we use the SIR filter, all particles 

are equally weighted and the median can be directly 

applied. We denote the average RMAD over multiple k 

using wRMAD : 

)RMAD(MeanRMAD .kwkw   

where 
kw.RMAD denotes the RMAD of the wear 

parameter at time k. In this example, wRMAD =11.00% for 

M={x,f,pt,pb} and wRMAD =16.23% for 

M={open,closed}. Although estimation accuracy is 

comparable, the spread is significantly better when using 

the full set of continuous sensors. 

The final estimation metric is convergence of the wear 

parameter estimate, denoted as Cw. We use the definition 

of the convergence metric described in [13], where the 

convergence of a curve is expressed as the distance from 

the origin to the centroid under the curve (a shorter 

distance is better). We use the absolute error of the hidden 

parameter estimate as the curve. In this case, Cw=27.99 for 

M={x,f,pt,pb}, and Cw =44.04 for M={open,closed}. Since 

the wear parameter is many orders of magnitude smaller 

than the time scale, the convergence score is 

approximately in units of seconds. We take convergence 

only over the first 100 s so that errors after convergence 

do not contribute. Otherwise, a curve with fast 

convergence but poor tracking could score higher than a 

curve with slow convergence but excellent tracking. The 

poor tracking in the former case is captured using the 

PRMSE metric. 

High estimation performance should translate to high 

prediction performance if future inputs are known. In the 

case of the pneumatic valve, the inputs that describe a 

complete valve cycle are known, so there is no uncertainty 

in input prediction for our purposes. Therefore, a low Cw 

score means that accurate predictions are available sooner, 

i.e., a prognostics horizon is arrived at earlier. A low 

PRMSE score means that on average, estimates of the 

wear rate are closer to the true value, so point predictions 

of EOL and RUL will on average be closer to their true 

values. Accordingly, a low wRMAD  score translates to 

more precise predictions. 

We summarize prediction performance in the α-λ metric 

[13], [14]. Here, ]1,0[  defines bounds as a function of 

the true RUL, i.e., *)1( RUL , and ]1,0[  denotes the 

fraction of the time from the first prediction to the true 

EOL. We use the extended version of the metric, which 

incorporates a third parameter, ]1,0[ , which defines a 

bound on the fraction of the probability mass of a 

prediction that falls within the α-bounds [14]. The α-λ 

metric requires that for given prediction times, a desired 

portion of the predicted RUL distribution fits within a 

cone of accuracy defined by α. The α-λ plot for 

M={x,f,pt,pb} is shown in Fig. 6, where α=0.1 and β=0.4 

for all λ (all kP). The distribution at each prediction point 

is represented using a box plot. The percentage of the 

probability mass that falls within the α-bounds is shown 

above each box plot, along with the result of the metric at 

that point (true or false).  As shown in the figure, the 

desired performance criteria are met at each prediction 

point except for the 60-cycle prediction point. Note, 

however, that at this point, the median prediction is within 

the α-bounds, and the mean is only just outside. With 

α=0.11, the metric is satisfied at all prediction points. Fig. 

7 shows the α-λ plot for M={open,closed}. Although the 

mean and median are typically within the α-bounds, on 

average only about 32% of the probability mass is 

contained within the bounds. With α=0.18, the metric is 

satisfied at all prediction points.  

For a particular prediction point kP, we compute measures 

of accuracy and prediction. For accuracy, we use the 

relative accuracy (RA) metric: 

*

* )(Median
1

P

PP

P

k

i

kik

k
RUL

RULRUL
RA


  

Here, we have chosen the median as the measure of 

central tendency of the distribution. The mean could also 
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be used, but we have found the median to be more 

accurate in our experiments. We calculate prediction 

spread using RMAD, which we denote as RMADRUL. As a 

second measure of spread, we compute the fraction of the 

probability mass that falls within specified α-bounds, 

denoted as πα. To summarize these metrics over a 

particular experiment, we average them over all prediction 

points. We use RA to denote the averaged RA, 

RULRMAD to denote averaged RMAD, and  to denote 

the average fraction of the probability within the α-

bounds. In the current example, for M={x,f,pt,pb}, 

RA =0.953,  =0.487, RULRMAD =10.23%, and for 

={open,closed}, RA =0.934,  =0.326, 

RULRMAD =16.16%. We also consider worst-case 

performance over all prediction points. We use the 
-
 

superscript to denote a minimum and the 
+
 superscript to 

denote a maximum. For M={x,f,pt,pb}, RA
-
=0.927, πα

-

=0.384, and 

RULRMAD =14.81%. For M={open,closed}, 

RA
-
=0.901, πα

-
=0.326, and 

RULRMAD =21.92. In these 

cases, a clear connection is observable between 

performance in estimation and performance in prediction 

(e.g., for M={x,f,pt,pb}, PRMSE=5.11% where 

RA =0.953, and wRMAD =11.00% where 

RULRMAD =10.23%. Both sensor sets have fairly good 

accuracy, but using M={x,f,pt,pb} achieves significantly 

better precision.  

We now present a comprehensive set of simulation results 

for each sensor set for all considered faults. The results 

are shown in Table 1. We report PRMSE of the wear 

parameter (in %), wRMAD  (in %), Cw (approximately in 

seconds), RA , RA
-
,   for α=0.1, πα

-
, RULRMAD  (in %), 

and 

RULRMAD  (in %). The results presented are averaged 

over 10 experiments per scenario. 

Overall, the expected results are obtained. The PRMSE is 

under 10% for all cases, and is around 5% for most. 

Correspondingly, RA is, in most cases, above 95%. The 

  score is typically desired to be at least 50%, but here 

it is lower. For some faults, the prediction variance is 

large because the random walk variances were not 

optimally tuned. In general, this cannot be done 

beforehand since wear parameters are unknown. In an 

online setting however, correction loops can be used to 

reduce this variance over time [9].  

In general, it is observed that not much difference exists in 

relative accuracy over the different sensor sets. In fact, in 

some cases, estimation of the wear parameter is better 

using only the discrete position sensors rather than the full 

set of continuous measurements. This means that accurate 

point predictions can still be achieved even under limited 

sensing scenarios. However, the prediction spread is 

significantly larger with limited sensor sets. This is 

observed best using  . For example, for the bottom 

external leak, there is a 27% decrease from the full set of 

continuous measurements to the sensor set containing only 

the discrete position sensors. Convergence of the wear 

parameter estimate is also affected, although there is no 

significant difference for the top external leak, which we 

attribute to the fact that a top external leak of the selected 

wear rate is easily visible in the pressure measurements, so 

convergence is quickly forced for all choices of M.  

The results also demonstrate the usefulness of different 

sensors. The flow measurement effectively provides a 

redundant position measurement, so dropping either x or f 

from the sensor set has little effect on performance. Some 

sensors also give more useful information on specific 

faults, as observed in the cases were M is a singleton. For 

 

Figure 6 - α-λ metric for spring damage prediction, 

where α=0.1, β=0.4, and M={x,f,pt,pb}. 

 

Figure 7 - α-λ metric for spring damage prediction, 

where α=0.1, β=0.4, and M={open,closed}. 
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changes in the friction coefficient and spring rate, M={x} 

outperforms {pt}, {pb}, and also {pt,pb}. This is because 

the position measurement gives more direct information 

on changes in friction. Similarly, for the cases with leaks, 

the pressure measurements are more useful. For the 

internal leak and bottom external leak, pb is most useful, 

and for the top external leak, pt is most useful. 

As observed, even by just using the discrete position 

sensors, accurate point predictions can still be made. In 

addition to the uncertainty management capabilities of 

particle filters, this robust performance is largely due to 

having a good model of the component and its wear 

mechanisms, which is why we favor model-based 

approaches. To investigate how the performance changes 

when both measurements and the model are less reliable, 

we ran a set of experiments with increased process and 

measurement noise. The results are presented in Table 2 

for the bottom leak fault. We evaluate performance using 

the key metrics PRMSE, RA ,   for α=0.1, and 

RULRMAD . Results were averaged over 15 runs for each 

choice of M. The baseline noise level is denoted by ξ, 

Table 1 - Average performance for each fault under different sensor sets 
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which corresponds to about 0.1% process noise and 1% 

measurement noise. We increased the noise variances by 

factors of 10 (denoted by 10ξ) and 100 (denoted by 100ξ). 

The 100ξ noise level corresponds to 1% process noise and 

10% measurement noise. 

As shown in the table, performance degrades as noise is 

increased. However, even with 100ξ, the average RA has 

only decreased to about 90% for all choices of M. 

Significant reductions in prediction spread are also 

observed. The difference in performance between the full 

sensor set and using only the discrete position sensors, 

though, is reduced in the higher noise scenarios. 

Performance is the best when the bottom pressure sensor 

is used, as this provides the most direct information for 

the bottom leak fault.  

6. CONCLUSIONS 

In this paper, we developed a general model-based 

prognostics methodology using particle filters, formulated 

as a joint state-parameter estimation problem. State-

parameter estimates are propagated forward in time to 

obtain EOL and RUL predictions, based on models that 

capture the progression of damage over time, 

characterized by a set of unknown parameters. We 

evaluated the performance under limited sensor sets using 

prognostics performance metrics [13]. It was shown that, 

with an accurate model, accurate predictions can still be 

made even when only discrete position sensors are 

utilized. The disadvantage is that prediction spread may 

increase significantly. We also investigated how 

performance degrades when model uncertainty (i.e., 

process noise) and sensor noise are increased. Even with 

the maximum amount of noise considered, an average of 

90% accuracy was still achievable, although under much 

wider prediction spread. 

In future work, we will investigate how methods to 

decrease prediction spread such as correction loops [9] 

and fixed-lag filters [5] can improve performance under 

limited sensor sets. In addition, we assumed only single 

damage mechanisms were active in our experiments. 

While the approach presented can still be applied to 

estimation of multiple wear parameters, a decrease in 

performance is expected. Investigating that case under 

limited sensor sets is also of interest.  
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