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Abstract: Failure prognosis, and particularly representation and management of uncertainty in long-term 

predictions, is a topic of paramount importance not only to improve productivity and efficiency, but also to ensure 

safety in the system’s operation. The use of particle filter (PF) algorithms - in combination with outer feedback 

correction loops - has contributed significantly to the development of a robust framework for online estimation of 

the remaining useful equipment life. This paper explores the advantages and disadvantages of a Risk-Sensitive PF 

(RSPF) prognosis framework that complements the benefits of the classic approach, by representing the probability 

of rare and costly events within the formulation of the nonlinear dynamic equation that describes the evolution of the 

fault condition in time. The performance of this approach is thoroughly compared using a set of ad-hoc metrics. 

Actual data illustrating aging of an energy storage device (specifically battery capacity measurements [A-hr]) are 

used to test the proposed framework. 
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1. Introduction 

A number of approaches have been suggested 

in the recent years for uncertainty 

representation and management in prediction. 

Probabilistic, soft computing methods, and 

tools derived from evidential theory or 

Dempster-Shafer theory [1] have been 

explored for this purpose. Although 

probabilistic methods offer a mathematically 

rigorous methodology, they typically require a 

statistically sufficient database to estimate the 

required distributions. Soft-computing 

methods (fuzzy logic) offer an alternative 

when scarce data or contradictory data are 

available. Dempster’s rule of combination and 

similar concepts from evidential theory such 

as belief or plausibility (upper and lower 

bounds of probability) based on mass function 

calculations can support uncertainty 

representation and management tasks. 

Confidence Prediction Neural Networks (NN) 

[2] have also been used to represent and 

manage uncertainty using Parzen windows as 

the kernel and a structure based on Specht’s 

General Regression NN [3]. For tuning of 

model hyper-parameters given observations. 

probabilistic reliability analysis tools 

employing an inner-outer loop Bayesian 

update scheme [4] have been employed. 

 Particle-filtering (PF) based prognostic 

algorithms [5]-[12] have been established as 

the de facto state of the art in failure 

prognosis. PF algorithms allow to avoid the 

assumption of Gaussian (or log-normal) 

mailto:morchard@ing.uchile.cl
mailto:liang.tang@impact-tek.com
mailto:bhaskar.saha@nasa.gov
mailto:kai.goebel@nasa.gov
mailto:gjv@ece.gatech.edu


 2  

probability density function (pdf) in nonlinear 

processes, with unknown model parameters, 

and simultaneously help to consider non-

uniform probabilities of failure for particular 

regions of the state domain. Particularly, the 

authors in [6] have proposed a mathematically 

rigorous method (based on PF, function 

kernels, and outer correction loops) to 

represent and manage uncertainty in long-term 

predictions. However, there are still unsolved 

issues regarding the proper representation for 

the probability of rare and costly events, since 

these events are associated to particles located 

at the tails of the predicted probability density 

functions. 

 This paper presents a solution for this 

problem. The paper is structured as follows: 

Section 2 introduces the basics of particle 

filtering (PF) and its application to the field of 

failure prognostics. Section 3 presents the 

proposed Risk-Sensitive PF (RSPF) 

framework and analyses the main advantages 

and disadvantages of its implementation, 

using actual failure data measuring battery 

capacity ([A-hr]). Section 4 utilizes 

performance metrics to be used in the 

assessment of prognostic results and evaluates 

the RSPF, when compared to the classic PF 

prognosis framework [5]-[10]. Section 5 states 

conclusions. 

2. Particle Filtering and Failure Prognosis 

2.1. Risk-Sensitive Particle Filtering 

Nonlinear filtering is defined as the process of 

using noisy observation data to estimate at 

least the first two moments of a state vector 

governed by a dynamic nonlinear, non-

Gaussian state-space model. From a Bayesian 

standpoint, a nonlinear filtering procedure 

intends to generate an estimate of the 

posterior probability density function 

)|( :1 tt yxp  for the state, based on the set of 

received measurements. Particle Filtering (PF) 

is an algorithm that intends to solve this 

estimation problem by efficiently selecting a 

set of N particles ( )

1{ }i

i Nx   and weights 

( )

1{ }i

t i Nw  , such that the state pdf may be 

approximated [13]-[16] by 
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where 0:( )t tq x is referred to as the importance 

sampling density function [13]. The choice of 

this importance density function is critical for 

the performance of the particle filter scheme. 

In the particular case of nonlinear state 

estimation, the value of the particle weights 
( )

0:

i

tw is computed by setting the importance 

density function equal to the a priori pdf for 

the state, i.e., 0: 0: 1 1( | ) ( | )t t t t tq x x p x x   [14]. 

Although this choice of importance density is 

appropriate for estimating the most likely 

probability distribution according to a 

particular set of measurement data, it does not 

offer a good estimate of the probability of 

events associated to high-risk conditions with 

low likelihood. 

 In contrast, the risk-sensitive particle filter 

(RSPF) [17], [18] incorporates a cost model in 

the importance distribution to generate more 

particles in high-risk regions of the state-

space. Mathematically, the importance 

distribution is described as 

 

 
 
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, | , ,
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i i

t t t t t

t t t t t
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where td  is a set of discrete-valued states 

representing fault modes, xt is a set of 

continuous-valued states that describe the 

evolution of the system given those operating 

conditions, ( )tr d is a positive risk function 
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that is dependent on the fault mode, and t  is 

a normalizing constant. . It is critical to note 

that this PF approach makes use of exogenous 

models to evaluate and estimate the risk 

associated with every fault mode. This may 

prove to be difficult for implementation in 

some applications. This methodology was 

employed in FDI applications, improving the 

tracking of states that are critical to the 

performance of a six-wheel robot [18], 

However, this methodology has so far not 

been extended to prognostics 

 The RSPF-based approach for failure 

prognosis presented here ensures the existence 

of particles in the tails of the state pdf to 

represent the probability of events associated 

to high-risk conditions with low likelihood. In 

practice this implies a more conservative 

estimate of the remaining useful life (RUL) of 

a piece of equipment. The weights of the 

particles located at the tails of the pdf (which 

are updated each time a new measurement is 

obtained) represent an estimate of the mass 

probability of the tails, i.e., particles in the 

regions of the state space that are believed to 

have low likelihood; see Fig. 1. In situations 

where the data show no signs of these critical 

types of events, the weights of these particles 

should decrease over time. Nevertheless, the 

information provided by these weights is of 

paramount importance, since it allows 

considering catastrophic events in the 

schedule of the system operation and enables 

fast adjustments in prognosis results when 

incipient critical conditions are present 

[9]-[10]. 

 
 

x1(t0) 

   ( ) ( )

0: 1 0: 1 1: 1:, | , , ( ) , |i i

t t t t t t t t t tq d x d x y r d p d x y    

0: 0: 1 1 1( | ) ( | ) ( | )t t t t t t t tq x x p x x f x x   

 

Figure 1: Particle population using either the a 

priori state pdf or a risk-sensitive pdf as 

importance distribution for x1(t) 

2.2. PF-based Failure Prognosis 

Prognosis, and, more generally, the generation 

of long-term prediction, is a problem that goes 

beyond the scope of filtering applications 

since it involves future time horizons. Hence, 

if PF-based algorithms are to be used for 

prognosis, a procedure is required  that has the 

capability to project the current particle 

population into the future in the absence of 

new observations [7]-[8].  

 Any prognosis scheme requires the 

existence of at least one feature providing a 

measure of the severity of the fault condition 

under analysis (fault dimension). If many 

features are available, they can in principle be 

combined to generate a single signal. In 

Therefore, it is possible to describe the 

evolution in time of the fault dimension 

through the nonlinear state equation [6]: 

1 1 2 1

2 2 2

1

( 1) ( ) ( ) ( ( ), , ) ( )

( 1) ( ) ( )

( ) ( ) ( )

x t x t x t F x t t U t

x t x t t

y t x t v t





    


  

 

,   (3) 

where x1(t) is a state representing the fault 

dimension under analysis, x2(t) is a state 

associated with an unknown model parameter, 

U are external inputs to the system (load 

profile, etc.), ( ( ), , )F x t t U  is a general time-

varying nonlinear function, and 1( )t , 2 ( )t , 

v(t) are white noises (not necessarily 

Gaussian). The nonlinear function 

( ( ), , )F x t t U  may represent a model, for 

example a model based on first principles, a 

neural network, or model based on fuzzy 

logic. 

 By using the aforementioned state equation 

to represent the evolution of the fault 

dimension in time, one can generate long term 

predictions using kernel functions to 

reconstruct the estimate of the state pdf in 

future time instants [6]-[10]: 
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where ( )K   is a kernel density function, 

which may correspond to the process noise 

pdf, a Gaussian kernel or a rescaled version of 

the Epanechnikov kernel. 

 The resulting predicted state pdf contains 

critical information about the evolution of the 

fault dimension over time. One way to 

represent that information is through the 

expression of statistics (expectations, 95% 

confidence intervals), either the End-of-Life 

(EOL) or the Remaining Useful Life (RUL) of 

the faulty system. A detailed procedure to 

obtain the RUL pdf from the predicted path of 

the state pdf is described and discussed in 

[7]-[8]. Essentially, the RUL pdf can be 

computed from the function of probability-of-

failure at future time instants. This probability 

is calculated using both the long-term 

predictions and empirical knowledge about 

critical conditions for the system. This 

empirical knowledge is usually incorporated 

in the form of thresholds for main fault 

indicators (also referred to as the hazard 

zones). 

 In real applications, hazard zones are 

expected to be statistically determined on the 

basis of historical failure data, defining a 

critical pdf with lower and upper bounds for 

the fault indicator (Hlb and Hub, respectively). 

Let the hazard zone specify the probability of 

failure for a fixed value of the fault indicator, 

and the weights ( )

1

i

t k
i N

w 


 represent the 

predicted probability for the set of predicted 

paths, then the probability of failure at any 

future time instant (namely the RUL pdf) by 

applying the law of total probabilities, as 

shown in Eq. (5).  
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Once the RUL pdf has been computed by 

combining the weights of predicted 

trajectories with the hazard zone 

specifications, prognosis confidence intervals, 

as well as the RUL expectation can be 

extracted. 

3. RSPF-based Prognostic Framework 

and Case Study Definition 

A RSPF-based approach for failure prognosis 

intends to represent the probability of rare and 

costly events within the structure of the 

stochastic nonlinear dynamic equation that 

describes the evolution of the fault condition. 

In particular, this approach proposes to use a 

variant of the RSPF algorithm ([17]-[18]), 

where the cost function (2) allows sampling 

particles x
(i)

(t) (i = 1Nr, Nr << N) from 

regions of the state space representing 

high-risk conditions for the system and where 

the fault dimension has low likelihood 

(usually located in the tails of the pdf). The 

resulting particles are then used to generate a 

EOL estimate, following the framework that 

was presented in Section 2.2. 

 The aforementioned variant of the 

RSPF-based algorithm is implemented by 

modifying the kernel of the noise 1(t) in 

Eq. (3), and thus allowing some particles to be 

created in regions of the state space that 

represent extreme and rare changes in the 

evolution of the fault condition. In practice, 

this kernel modification implies a more 

conservative EOL estimate, and similarly for 

the RUL. The weights of the particles located 

at the tails of the original noise pdf represent 

an estimate of the mass probability of the tails 

and are updated accordingly to the new 

measurements. Information provided by these 

weights allows considering the probability of 

a catastrophic event and enables adjustments 

in prognosis results in the presence of 

incipient critical conditions. 
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 As it has been previously mentioned, an 

arbitrary modification of the a priori state pdf 

has direct impact on the resulting RUL 

estimate for the faulty subsystem. We will 

present below an illustrative example to 

demonstrate the impact of considering sudden 

events on EOL calculation. The particular 

example focuses on energy storage devices. In 

this type of systems, continuous switching 

between charge and discharge cycles may 

cause momentary increments in the battery 

capacity (capacity regeneration), directly 

affecting its RUL.   

 The specific exanmple describes the 

operation of a Li-Ion battery through two 

different operational profiles (charge and 

discharge) at room temperature. Charging was 

carried out in a constant current (CC) mode at 

1.5[A] until the battery voltage reached 4.2[V] 

and then continued in a constant voltage mode 

until the charge current dropped to 20[mA]. 

Discharge was carried out at a constant 

current (CC) level of 2[A] until the battery 

voltage fell to 2.5[V]. Impedance 

measurements provide insight into the internal 

battery parameters that change as aging 

progresses. Repeated charge and discharge 

cycles result in aging of the batteries.  

Impedance measurements were done through 

an electrochemical impedance spectroscopy 

(EIS) frequency sweep from 0.1[Hz] to 

5[kHz]. The experiments were stopped when 

the batteries reached end-of-life (EOL) 

criteria, which was a 40% fade in rated 

capacity (from 2[A-hr] to 1.2[A-hr]). This 

dataset can be used both for the prediction of 

both remaining charge (for a given discharge 

cycle) and remaining useful life (RUL). 

 Instead of a physics-based model we will 

employ here a population-growth-based 

model [6] that has been trained using online 

capacity measurements  (fault dimension in 

[A-hr]): 

 

2

1 1 2 1

2 2 2

3 3 3

1 3

( 1) ( ) ( ) ( ) ( )

( 1) ( ) ( )

( 1) ( ) ( )

( ) ( ) ( ) ( )

mx t x t C x t a b t t t

x t x t t

x t x t t

y t x t x t v t





 

         


  
    

  

,   (6) 

where x1(t) is a state representing the fault 

dimension, x2(t) is a state associated with an 

unknown model parameter, a, b, C and m are 

constants associated to the duration and 

intensity of the battery load cycle (external 

input U), and 0 1   is a parameter that 

characterizes the capacity regeneration 

phenomena. 

The objective of a prognostic routine 

applied to the system defined by (6), and 

particularly for the ones based on PF 

algorithms, is to estimate (preferably in an 

online fashion) the current battery capacity, 

isolating the effect of the regeneration 

phenomena, and to use that information to 

estimate the amount of cycles remaining until 

this quantity falls below the threshold of 

1.2[A-hr]. 

 As it has been previously described, the 

implementation of a RSPF-based algorithm 

differs from classic PF-based approaches in 

the fact that it modifies the noise kernel 1( )t , 

allowing to sample from regions of the state 

space associated to events that could imply 

strong (or rapid) changes in the current RUL 

estimate (by direct modification of the 

importance probability distribution, [13]-

[14]). Particularly, this case study defines the 

noise kernel 1( )t  as independent noise 

distributing as a Gaussian mixture; that is, the 

distribution of the process noise 1( )t  can be 

written as: 

 
*

1 1 1( )  ( ) (1 ) ( )t t t        , (7) 

 

where * *2

1 ( ) ( , )t N d  ,  *

1 ( ) 0d E t  , 

2

1( ) (0, )t N   , and 0 ≤  ≤ 1. 



 6  

 Consequently, RSPF-based prognostic 

algorithms have three extra parameters to be 

defined, when compared with classic PF-

based implementations. However, if the 

variances of the Gaussian kernels are selected 

such that *   , and both of them are equal 

to the process noise variance of the classic PF 

approach, then only d and  must be 

considered as extra design parameters.  

 In the test case used for the analysis, 

feature data associated to the fault is fed into 

the RSPF-based prognostic algorithm to 

estimate the EOL pdf. Arbitrary initial 

conditions are set for the unknown model 

parameter in Eq. (6), and it is known that 

failure mechanisms may undergo changes.  

The result analysis will focus on the quality of 

the estimate for the unknown model 

parameter,  2 ( )E x t , after each capacity 

regeneration and on the accuracy exhibited by 

the corresponding EOL pdf estimate. 

Performance comparison is done with respect 

to a classic (SIR) PF-based prognostic 

framework [7]-[8], given same initial 

conditions. It should be noted that the 

implementation chose here considers a 

correction loop that simultaneously updates 

the variance of kernel associated to the white 

noise 2(t) according to the short-term 

prediction [6], [9]. 

 Three qualitative aspects are considered in 

the design of the RSPF-based prognosis 

framework: (1) Effect of parameter d in online 

state estimates, (2) effect of parameter  in the 

aforementioned estimates, and (3) effect of 

parameter d in EOL pdf estimates. Guidelines 

suggested in [10] have been used to select 

adequate values for the aforesaid parameters.  

 The implementation of the scheme 

presented in this section has been performed 

using MATLAB® environment. A complete 

description of the results obtained when 

implementing the suggested RSPF-based 

prognosis approach for RUL estimation in the 

case study, and a comparison with classic PF-

based routines, follows in Section 4. 

4. RSPF-based Prognostic Framework: 

Assessment and Evaluation Using 

Performance Metrics 

Estimates obtained from a Particle Filtering 

algorithm are based on the realization of a 

stochastic process and measurement data. 

Assessment or comparison between different 

strategies should consider performance 

statistics rather than a performance assessment 

based on a single experiment or realization. 

For that reason, all results presented in this 

paper consider the statistical mean of 40 

realizations for the particle filter algorithm 

and a single measurement data set. 

 In addition, the assessment and evaluation 

of prognostic algorithms require appropriate 

performance metrics capable of incorporating 

concepts such as “accuracy” and “precision” 

of the RUL pdf estimate [19]. “Accuracy” is 

defined as the difference between the actual 

failure time and the estimate of its 

expectation, while “precision” is an 

expression of the spread (e.g., standard 

deviation). These indicators should also 

consider the fact that both the RUL and 

Et{RUL} (estimate, at time t, of the 

expectation of the equipment RUL) are 

random variables. Moreover, it is desirable 

that all indicators assume that, at any time t, it 

is possible to compute an estimate of the 95% 

confidence interval (CIt) for the EOL. 

 In particular this paper uses three indicators 

to evaluate prognostic results, which are 

presented and detailed in [9]: (1) RUL 

precision index (RUL-OPI), (2) RUL 

accuracy-precision index, and (3) RUL online 

steadiness index (RUL-OSI). RUL-OPI 

considers the relative length of the 95% 

confidence interval computed at time t (CIt), 

when compared to the RUL estimate. It is 

expected that the more data the algorithm 

processes, the more precise the prognostic 

becomes. The RUL accuracy-precision index, 

measures the error in EOL estimates relative 

to the width of its 95% confidence interval 

(CIt). It also penalizes late predicionts, i.e., 
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whenever the expected EOL 

Et{EOL} > GroundTruth{EOL} (actual 

failure happened before the expected time). 

This indicator can be computed only after the 

end of the simulation.  Finally, the RUL-OSI 

considers the quality of the current EOL 

expectation, which is computed given 

measurement data available at time t. Good 

prognostic results are associated to small 

values for the RUL-OSI. All performance 

metrics will be evaluated at all time instants. 

 In the case study presented in this paper 

(RUL/EOL estimation of a Li-Ion battery) the 

time is measured in cycles of operation. A 

cycle of operation consists of two different 

operational states applied to the battery at 

room temperature (charge and discharge).  

 It is essential to note that algorithm 

assessment (both for the classic PF and  

RSPF-based prognosis frameworks) only  

considered RUL estimates generated until the 

120
th

 cycle of operation, which corresponded 

to about 75% of the actual useful life of the 

battery (actual EOL of the experiment is 159 

cycles).  PF-based prognostic algorithms tend 

to improve their performance as the amount of 

available data increases. Therefore it is of 

more interest to evaluate performance at early 

stages when little data have been collected. 

This needs to be kept in mind when analyzing 

results presented both in Figure 2 and 

Figure 3.  
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Figure 2: Case study. (a) Measurement data 

(dotted line), PF-based estimate (black solid 

line), and 95% confidence interval (vertical 

read dashed lines). (b) EOL pdf estimate using 

classic PF-based prognosis framework and its 

expectation 

 Figure 2 (a) shows online tracking for the 

battery capacity (solid line) using a classic 

PF-based prognostic approach until the 120
th

 

cycle of operation, the hazard zone around 

1.2 [A-hr] (this horizontal red line), and the 

95% confidence interval of EOL (thick 

vertical dashed lines) computed at the 120
th

 

cycle. Figure 2 (b) only shows the EOL pdf 

estimate computed at the end of the 120
th

 

cycle of operation. The result of the classic 

PF-based prognostic approach is accurate to 

two cycles (the expected value of the EOL pdf 

is 161 cycles, while the ground truth data for 

the EOL is 159 cycles). However, the state 

estimate does not exhibit the same level of 

accuracy when describing capacity 

regeneration phenomena registered at the 19
th

, 

30
th

, and 47
th

 cycles of operation. 

Regeneration phenomena momentarily 

modify algorithm performance, in particular 

in terms of steadiness of the solution [9] as the 

analysis based on performance metrics will 

corroborate shortly. 

 One can overcome these difficulties to 

some degree using the RSPF-based prognosis 

a) 

b) 
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framework. We implemented the RSPF as 

outlined in Section 3, where the risk noise 

kernel * 4

1 ( ) (0.04,1.25 10 )t N    and 

0.95   are used to build the process noise 

kernel 
1( )t  of the first component of the 

state vector in model equation (6). 

Figure 3 (a) shows online tracking for the 

battery capacity (solid line) using the 

aforesaid RSPF-based prognostic approach 

until the 120
th

 cycle of operation, the hazard 

zone around 1.2 [A-hr], and the 95% 

confidence interval of EOL computed at the 

120
th

 cycle. Figure 3 (b) shows the EOL pdf 

estimate computed at the end of the 120
th

 

cycle of operation. 

 Figure 3 shows that the RSPF-based 

prognostic approach is equally capable of 

providing an accurate estimate of the battery 

RUL with an expected value of the EOL pdf 

(computed at the 120
th

 cycle of operation) of 

160 cycles, while the ground truth data for the 

EOL is 159 cycles). However, it is more 

interesting to note that the RSPF noticeably 

improves the state estimate at early stages of 

the test, allowing a better description of the 

regeneration phenomena that affect the Li-Ion 

battery. This demonstrates how the existence 

of particles in areas of low likelihood (as a 

direct consequence of the use of the risk 

kernel *

1 ( )t ) can help to improve the state 

estimate when rare and unlikely events occur.  
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Figure 3: (a) Measurement data (dotted line), 

PF-based estimate (solid line), and 95% 

confidence interval. (b) EOL pdf estimate 

using RSPF-based prognosis framework and 

its expectation 

 Even more compelling, similar conclusions 

can be drawn when using prognostic 

performance metrics to assess the 

performance of the plain vanilla PF and the 

RSPF-based approaches; Figure 4 summarizes 

tracking and prediction with all tracking 

estimates generated until the 120
th

 cycle. 

 Figure 4 (a) shows the evaluation of RUL-

OPI as measurement data are included in a 

sequential manner into the prediction 

algorithm. One of the main characteristics of 

this indicator is that it penalizes the width of 

the 95
th

% confidence interval as the system 

approaches EOL. The value of this indicator is 

comparable for both algorithms (around 0.5 

near the end of the experiment) More 

important than the absolute value of the 

indicator is the fact that in the performance (as 

expressed by RUL-OPI) the RSPF-based 

prognostic routine does not suffer in 

comparison to the classic approach, even 

though the prior density is modified at each 

time instant to include particles in areas of the 

state space with low likelihood (according to 

measurements).  

a) 

b) 
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    However, both the accuracy-precision and 

the RUL-OSI indices - indicate noticeable 

advantages of the RSPF-based prognostic 

framework when compared to its classic 

version as illustrated in Figure 4 (b) and 

Figure 4 (c). The evaluation of the accuracy-

precision index shows comparable 

performance in the case of the former 

algorithms. Similar conclusions can be 

obtained from Figure 4 (c), where the 

steadiness RUL-OSI index shows smaller 

values for extended periods of time (and thus 

better performance) for the RSPF-based 

algorithm.  

 The ability of this type of algorithms to 

anticipate possible sudden changes in the 

system’s operating condition (such as changes 

from discharge to charge) helps to adjust 

states estimates in a rapid manner, therefore 

improving its capability to predict future 

behaviors. 

 Previous research work [5]-[12] has 

already shown better results when using 

classic PF-based prognostic framework, 

compared to other approaches. For this 

reason, this performance analysis did not 

consider other methods such as the extended 

Kalman filter in its formulation. 
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Figure 4: Performance metric evaluation in 

case study. Comparison between classic PF 

(dotted line) and RSPF-based prognosis 

framework (solid line) 

5. Conclusions 

This paper presents a case study where a 

RSPF-based prognosis framework is applied 

to estimate the remaining useful life of an 

energy storage device (Li-Ion battery). A 

comparison based on prognosis performance 

metrics indicates that the RSPF-based 

prognostic approach is more suitable than 

classic PF methods to represent rare events 

such as capacity regeneration phenomena 

between charging periods, in terms of 

accuracy of the state estimate and steadiness 

of the RUL estimate. We surmise that the 

existence of particles in the tails of the state 

pdf allow the RSPF-based prognostic 

algorithm to generally provide a more 

conservative estimate of the RUL of the faulty 

piece of equipment. We surmise that it also 

helps to incorporate the probability of rare and 

costly events in the evolution of the fault 

condition in time. 
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