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Significant technology advances will enable future aerospace systems to safely and 

reliably make decisions autonomously, or without human interaction. The decision-making 

may result in actions that enable an aircraft or spacecraft in an off-nominal state or with 

slightly degraded components to achieve mission performance and safety goals while 

reducing or avoiding damage to the aircraft or spacecraft. Some key technology enablers for 

autonomous decision-making include: a continuous state awareness through the maturation 

of the prognostics health management field, novel sensor development, and the considerable 

gains made in computation power and data processing bandwidth versus system size. 

Sophisticated algorithms and physics based models coupled with these technological 

advances allow reliable assessment of a system, subsystem, or components. Decisions that 

balance mission objectives and constraints with remaining useful life predictions can be 

made autonomously to maintain safety requirements, optimal performance, and ensure 

mission objectives. This autonomous approach to decision-making will come with new risks 

and benefits, some of which will be examined in this paper. To start, an account of previous 

work to categorize or quantify autonomy in aerospace systems will be presented.  In 

addition, a survey of perceived risks in autonomous decision-making in the context of piloted 

aircraft and remotely piloted or completely autonomous unmanned autonomous systems 

(UAS) will be presented based on interviews that were conducted with individuals from 

industry, academia, and government. 

I. Introduction 

he Aviation Safety Program (AvSafe) under the Aeronautics Research Mission Directorate (ARMD) at NASA 

is investigating the safety aspects that are necessary to realize the full potential of the Next Generation Aircraft 

Transportation System (NextGen). State-of-the-art networking and data acquisition and data fusion technology will 

continually update NextGen’s state data and share relevant information with pilots and air traffic controllers. 

Aircraft will be able to rapidly and safely adjust to changing factors such as weather, traffic congestion, flight 

trajectories, aircraft spacing, and any terrestrial or airborne security concerns. Working with partners, AvSafe 

provides fundamental research on existing safety challenges and on new and emerging challenges created by the 

transition to NextGen, including significant increases in air traffic, introduction of new vehicle concepts, continued 

operation of legacy vehicles, increased reliance on automation, and increased operating complexity. Under the 

umbrella of NASA's Aviation Safety Program, the System-wide Safety Assurance Technologies (SSAT) Project 
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provides knowledge, concepts and methods to proactively manage increasing complexity in the design and operation 

of vehicles and air transportation systems, including automation design tools and prognostic algorithm design.
1
  

Significant advances in several technology areas will enable future aeronautic systems to safely and reliably 

make decisions autonomously, or without interacting with humans or other technological systems. By using system 

health monitoring information to determine remaining useful life (RUL) of components of an aircraft, autonomous 

decision-making algorithms may be able to mitigate the detrimental effect of degrade health and increase the safety 

of aircraft systems operation. Such autonomous decision-making could enable aircraft to achieve mission 

performance and safety goals despite the presence of an off-nominal state, or with slightly degraded components. 

Some key technology enablers for this type of autonomous decision-making include: the maturation of the 

prognostics health monitoring (PHM) field, novel sensor development, and the considerable gains made in 

computation power versus system size and data processing bandwidth. 

The science of prognostics involves modeling the underlying physics of a component or subsystem, modeling 

the physics of damage propagation mechanisms in the subsystem, determining criteria for an end-of-life threshold, 

and developing algorithms to propagate damage into the future that are robust to uncertainty. Sophisticated 

algorithms and physics based models coupled with these technological advances, enable prognostic health 

monitoring systems to reliably predict remaining useful life of components or subsystems. Decisions that balance 

mission objectives and constraints with remaining useful life predictions can be made autonomously to maintain 

safety requirements and achieve mission performance. This autonomous approach to decision-making will come 

with risks and benefits to the aerospace community.  

In this paper, we first provide a survey of previous work to quantify and assess autonomy in aerospace systems. 

A  applicable to piloted, remotely piloted, or unpiloted aircraft. Analysis and assessment of risks in autonomous 

decision-making with input from government, industry, and academic stakeholders will be presented. 

II. Autonomous Systems 

Humans design and build many types of complex, dynamical systems that operate in different time-scales in 

unpredictable, uncertain, and sometimes hostile environments. Often, some degree of autonomy is designed into 

systems and subsystems to address a number of issues, including, but not limited to: safety, cost, reliability, 

efficiency, robustness, accessibility, and physical size. The decision to include autonomy in a system is affected by 

many factors, such as availability, expense, and reliability of appropriate technology, the ability to verify and 

validate the autonomy for safety, and public trust of the autonomous system. Usually complex systems have some 

level of human interaction during operation, and therefore are not totally autonomous, with exceptions including 

robotic missions to distant locations in space where time and distance inhibit communication for operations. In this 

paper, autonomous systems include systems with some form of human interaction. 

Autonomy in aerospace systems has been mostly limited to uninhabited aerial vehicles or systems (UAV, UAS) 

and planetary flight vehicles. The American Institute of Aeronautics and Astronautics defines autonomy for UAVs 

as “a system’s own ability of sensing, perceiving, analyzing, communicating, planning, decision-making, and acting, 

to achieve its goal as assigned by human operators.”
2
 It is important to distinguish between the words autonomous 

and automatic. In Bruce Clough’s paper on the subject of autonomy for UAV’s, he compares the functions of an 

automatic system with an autonomous system, describing an automatic system, such as an autopilot, as one that 

executes plans exactly as they are programmed, whereas an autonomous system, such as an autonomous guidance 

system, can decide to execute actions without outside influence.
3
 While this paper here is focused on autonomy, and 

not automatic systems, we consider the decision to use automation a subset of autonomy. 

A. Levels of autonomy 

Much of the early work modeling the interaction between humans and computer systems is documented in the 

seminal book Telerobotics, Automation, and Human Supervisory Control by Thomas Sheridan
4
. Several important 

insights and models are developed in the book although the examples are mainly telerobotic systems (where the 

human is issuing commands to the system remotely) or human supervisory systems. In particular, Sheridan provides 

insight into the effects an operator’s trust, or lack of trust, has on an autonomous system. Trust in autonomy is the 

perceived technical and operational reliability and the confidence placed in the autonomy by a human. 

Sheridan’s work was later extended to create a framework to assist in the design of autonomous systems with 

human interaction
5
. Drawing from the wealth of literature on human factors studies, i.e., studies investigating human 

interaction with computerized systems, the authors identify what they consider to be the most relevant issues 

affecting autonomous systems with human interaction.  A model for types and levels of autonomy in systems with 
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human interaction is proposed along with criteria to determine the type and level of autonomy to design into a 

system with human interaction. 

The authors use a four-stage model of human information processing as a basis for formulating the types of 

autonomous functions a system can perform. The four types proposed for the framework include: information 

acquisition, information analysis, decision and action selection, and action implementation. The relationships 

between the types as these authors saw them are summarized in fig. 1. More recent studies of methods for 

determining the level of autonomy to design into a human spaceflight vehicle have adopted a similar decomposition 

of the types of autonomous functions for a spaceflight vehicle
6
. 

A measure of the level of autonomy of a system is desirable for system design and evaluation. A level of 

autonomy (LoA) value can be assigned for each type of autonomous function. The LoA is a number scale that 

represents low to high levels of automation. The lowest level represents no autonomy (i.e., total human control) and 

the highest level represents total autonomy with no human interaction. The ten levels of autonomy for decision and 

action selection, based on a taxonomy originally proposed by Sheridan are reproduced in Table 1 (using consistent 

grammar). Levels for the other types of autonomy are not presented in the study since the authors expected 

technology to evolve in these areas and there was a lack of empirical research on the interaction between those types 

of autonomy and human performance. 

The proposed model is intended to provide a framework for applying criteria to determine the type and level of 

autonomy to design into a system with human interaction. Design of an autonomous system is performed by 

decomposing the system into the framework described above and applying primary and secondary evaluation 

criteria. The consequence of autonomy on a human operator’s performance is the primary evaluation criteria applied 

in this framework. Based on documented studies of types of human performance affected by autonomy, the authors 

chose the following four categories for evaluating the consequences of autonomy on human performance: 

1) mental workload 

2) situation awareness 

3) complacency 

4) skill degradation 

Mental workload refers to the mental efforts a human must make to perform tasks or achieve goals within a 

temporal setting. Generally accepted components of mental workload include sensory input, cognitive processing, 

and psychomotor response. Situation awareness refers to the human’s awareness of the states of a system and its 

operating environment. A human interacting with an autonomous system can become complacent about the process 

Table 1. Levels of autonomy of decision and action selection. 

Level Value Computer or automation system action 

HIGH 10 Decides everything, acts autonomously, ignoring the 

human 

 9 Informs the human only if it (the computer) decides to 

 8 Informs the human only if asked 

 7 Executes automatically, then necessarily informs the 

human 

 6 Allows the human a restricted time to veto before 

automatic execution 

 5 Executes a suggested action if the human approves 

 4 Suggests one alternative 

 3 Narrows the selection down to a few 

 2 Offers a complete set of decision/action alternatives,  

LOW 1 Offers no assistance; no autonomy, human makes 

decisions and takes actions 

 

 
 

Fig. 1. Categories of autonomous functions. 
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or task that is being performed, trusting the computer to correctly achieve all of its goals or objective and possibly to 

even respond to off-nominal situations. The human may go so far as to cease attending to stimuli that would indicate 

a problem with the system being monitored. Skill degradation can occur when the human operator rarely performs a 

skill due to the fact that the autonomous system is always performing the tasks that require those skills.  

The secondary design criterion for the proposed framework balances reliability and costs of autonomy. Both the 

costs of decisions and the costs of action outcomes are included in this criterion. Design would then involve 

applying the two design criteria to determine the optimal level of autonomy to include in a system. Some limitations 

of the framework noted by the authors are the absence of suitable rules or guidance on selection of levels of 

autonomy and on assignment of weights for the criteria. 

The Observe, Orient, Decide, and Act (OODA) loop
8
, developed by John Boyd and presented in his presentation 

“The Essence of Winning and Losing,” was designed to describe the battlefield decision-making process required to 

win against any opponent, see fig. 2. The OODA loop has been used for successful design and analysis of 

autonomous systems
6
. The basic premise of the OODA loop is to cycle through the loop, using information, 

decisions, or actions to inform the other elements of the loop. By understanding the opponent’s decision-making 

process and thereby anticipating his or her decisions, hopefully the actor can cycle through the loop before the 

opponent can make tactical changes. The task decomposition is similar to the decomposition shown in fig. 1; 

however, there is an idea of feedback between some of the components. 

Observations are made using information from the environment, decisions or hypotheses formed from a previous 

cycle, and observations of outcomes of actions performed in a previous cycle. During the orient task, information 

from the observe task is analyzed and synthesized in an attempt to understand the opponent and his or her next 

move. The observations are analyzed, filtered, and synthesized using a number of contexts, such as genetic heritage, 

cultural traditions, new information, and previous experiences. The decide task takes the synthesized information 

and makes decisions or forms new hypotheses which are then passed to the act task and back to the observe task. In 

this way, a hypothesis can inform the observe task about relevant observations to be made. The act task may perform 

an action or it may perform no action at all. The action or lack of action is fed back to the observe loop, which then 

can observe the unfolding interaction of the action with the environment. The OODA loop is really many loops 

working together. By observing the environmental changes resulting from action or inaction and by making 

observations that are informed by a hypothesis, the orient and decision-making tasks can improve their 

effectiveness.  

 
Fig. 2. John Boyd’s OODA Loop Diagram
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B. Decomposition of autonomous systems 

The Charles Stark Draper Laboratory proposed a hierarchical decomposition of autonomy requirements in the 

context of Unmanned Combat Air Vehicles (UCAV)
9
. This effort involved developing autonomy requirements for 

four mission scenarios, including: air-to-ground missions, close air support, air-to-air missions, and logistics re-

supply. Information from internal and external mission experts was distilled to understand the current practice using 

manned aircraft for these missions and how the missions might be accomplished using UCAVs. The hierarchical 

approach decomposes the missions into components that were shared among the missions and those that were 

unique to a mission. Five mission phases were identified as being shared by the four mission scenarios, including:  

 

I. Pre-mission plan 

II. Launch 

III. Enroute operations 

IV. Engagement or delivery 

V. Land and secure 

To further decompose the missions, ten elements were identified that apply throughout each mission. Among the ten 

elements, the following are common to non-military missions:  

1) Intelligent autonomy 

2) Sensing for situational awareness 

3) Communication 

4) Vehicle health management and monitoring 

5) Collaboration 

6) Data security 

7) Re-evaluation of mission feasibility 

The mission phases were further sub-divided and details were provided in three areas that were expected to 

illuminate potential difficulties for autonomous aircraft, including: 

a) Coordination between UCAVs and manned assets (fighter aircraft, carrier ATC and crew) 

b) Contingencies, or conditions or situations that might arise to affect the mission 

c) Situational awareness requirements 

Using the hierarchical decomposition of the missions described above, requirements for UCAV missions were 

derived. Since the intent of that work was to examine autonomy challenges driving design of future autonomous 

platforms, attention was focused on missions that were considered more challenging for UCAVs. 

A team of specialists for the National Academy of Sciences reviewed the Draper Lab research effort
42

 presented 

in ref.
 
9.  While ONR’s vision of complete intelligent autonomy as the goal of all future UAV/UCAV systems was 

ruled as unrealistic, the review team valued the insights into future research and development needs gained from the 

detailed mission analyses.  Software development, complexity, and cost were seen as critical elements affecting 

autonomous systems. The reviewers cited significant technology risks due to the lack of adequate tools providing a 

systematic approach for partitioning functions between machines and humans and for assessing benefits of 

autonomy. Human trust of an autonomous component or system was deemed to be the most difficult, yet important, 

attribute to attain when deploying autonomous systems. 

A later report describing robust autonomy and motivating scenarios
 
defines a robust autonomous system to be an 

autonomous system that is flexible and adaptable, capable of operating successfully in a dynamic, uncertain and 

possibly hostile environment, and in the face of imperfect information about both itself and its environment
10

. An 

approach combining functional and hierarchical decomposition with closed-loop planning and control is proposed to 

achieve robust autonomy. Problem decomposition is used to make the problem more tractable. First, the problem is 

decomposed into the following functions: perceiving, reasoning, and acting. Then the problem is decomposed into a 

hierarchy of smaller, partially coupled problems that can be solved independently, for fixed coupling constraints. 

Top levels of the hierarchy deal with the overall problem goals and constraints and have longer time horizons and 

lower levels of detail. Bottom levels of the hierarchy deal with detailed goals and constraints and have shorter time 

horizons and higher levels of detail. The researchers at Draper Labs had some success with their approach for 

specific applications; however, they acknowledged that control of a hierarchical planner is a difficult task, especially 

in dynamic and uncertain environments. They are continuing to develop a meta-controller to control the flow of data 

and commands within the hierarchy to help achieve overall consistent optimized system solutions in uncertain 

environments. 
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C. Autonomy metrics in robotic and aerospace systems 

When evaluating autonomous systems, it is desirable to have metrics for meaningful comparisons. Assessing the 

ability of an autonomous system to perform its task is a relevant goal of a metric. The so called intelligence of an 

autonomous system cannot be used to predict its ability to attain goals. Thus, intelligence metrics such as the Turing 

Test
11

 are not considered here. Several research teams have worked on categorizing and defining metrics for 

autonomous systems that describe the Levels of Autonomy (LOA) of systems
3,9,12-15

.  

Researchers at Los Alamos National Laboratory in New Mexico developed the “Mobility, Acquisition, and 

Protection” (MAP) survival metric space
12

. Six levels were used to describe a simple robot’s ability to perform the 

following tasks: 

1) Move in its environment 

2) Acquire energy 

3) Protect itself 

A radar chart is a simple way to graphically represent multivariate data in two dimensions. Researchers from the 

Air Force Research Laboratory (AFRL) at Wright-Patterson AFB used the three MAP metrics to form an axis of a 

radar chart. They showed the versatility of the MAP metric space by demonstrating that disparate objects such as an 

ant, a toaster, and a human can all be represented on one MAP radar chart. However, they found MAP to be 

inadequate when applied to assess autonomy of UAVs
3
. 

Besides evaluating the MAP metric space, AFRL explored work done by Draper Labs (see previous section) and 

decided to combine elements of each metric with some of their own ideas to develop the Autonomous Control Level 

(ACL) chart for UAVs
3
. See Table 2 for a copy of the ACL chart that was given in ref. 13. Eleven levels of 

autonomy were represented on the chart from the lowest level of autonomy to the highest level of autonomy. The 

lowest level, level 0, corresponds to a remotely piloted vehicle and the highest level, level 10, corresponds to a 

completely autonomous vehicle. The original metric space had three axes, but it was deemed inadequate to separate 

important issues, leading to the adoption of four axes based on Boyd's observe, orient, decide, and act loop. AFRL 

obtained satisfactory results when the ACL chart was applied to assess UAV efforts and to determine future UAV 

research directions. 

Table 2. AFRL Autonomous Control Level (ACL) chart.
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The Army’s System Simulation Development Directorate (SSDD) evaluated the AFRL ACL metrics and found 

them useful for measuring autonomy of relatively large UAVs operating in the Air Force mission space
13

. The 

SSDD analysis team modified the ACL chart to tailor its ability to analyze UAVs in their application area, e.g., 

tactical UAVs operating in an urban environment. Additional satisfaction criteria were included for the ACL levels 

along each of the four OODA dimensions. The satisfaction criteria were in the form of questions specific to a 

particular level of autonomy and task. 

An ad hoc working group of government and industry experts was developing a framework for autonomy levels 

of unmanned systems (ALFUS) in the early 2000’s
14-15

. Using a three axis system, the ALFUS Detailed Model was 

created to characterize autonomy levels for unmanned systems and their missions. The axes for the ALFUS Detailed 

Model are:  

1) Mission complexity 

2) Human interface 

3) Environmental difficulty 

To use the framework, the user decomposes a UAV mission into subtasks, and assigns a metric score to each of 

the three axes for that subtask. Moving from the lowest level subtasks to the highest, a metric score and weight is 

assigned to each axis for a given subtask. The metric scores and weights are averaged for each subtask level and 

combined with the next higher level’s subtask score. This process continues until the highest level subtask is 

included, resulting in a composite score for the mission and vehicle. The group reported that guidelines for 

decomposing tasks, prioritizing and weighting the metrics, correlating interdependencies among metrics, developing 

scoring scales for the metrics, and integrating the metrics to develop a concise set of indices for the autonomy levels 

need to be developed
15

. The ALFUS group was absorbed by the SAE-AS4D Committee on Performance Measures. 

In a study to develop a method for determining the level of autonomy to design into a human spaceflight vehicle 

management system, tasks were decomposed into a four-tiered architecture based on the OODA Loop
6
. The authors 

of this study wanted to devise a questionnaire and scale to assess costs, benefits, and the level of trust a human has 

in the autonomy. The level of human trust in an autonomous system is a subjective measure; hence the authors 

looked to the Cooper-Harper scale and questionnaire that is used to rate test-pilot assessments of aircraft handling 

qualities
16

. A questionnaire and scale was created, combining two metrics in this study, one to assess how much a 

human user trusts the autonomy in a system and a second to measure the cost/benefit ratio of the system. The 

objective was for the metric to distinguish systems with undesirable qualities. In particular, the metric was designed 

to identify systems in which there is 1) a high level of trust in the autonomy and a high cost/benefit ratio of the 

autonomy or 2) a low level of trust and a low cost/benefit ratio of the autonomy. 

D. Analysis of robotic and aerospace systems 

Work done to define metrics for robotic systems can be useful when defining metrics for autonomous aerospace 

systems. In ref. 17, metrics are proposed for several general tasks that robots would perform. Metrics are defined to 

evaluate the effectiveness, efficiency (in terms of time and effort), ability of a system to present information to a 

human, confidence or trust generated in a human, and various errors specific to the task. The authors also attempt to 

account for biasing effects, such as system latency differences, which could impact the metric across different 

solutions. The authors further suggest giving the system the ability to choose its level of autonomy to improve 

performance as measured by the metrics. Several papers report on various performance metrics for evaluation of 

autonomous systems
18-20

. 

A detailed study of the impact of autonomous system technology on uninhabited aerial vehicles was performed 

from a systems analysis point of view
21

. A number of different measures and metrics are proposed to estimate costs 

and benefits of autonomy, to estimate and track mission success, to assess autonomy intelligence and elegance. 

According to the authors, intelligence measures how well actions, tasks or roles are performed under varying 

degrees of task and environmental complexity and other associated constraints and conditions. Autonomy elegance  

is defined to be the computation efficiency by which the autonomous vehicle intelligence is implemented. Hence, 

two autonomous systems can be at nominally equivalent autonomy levels by exhibiting radically different levels of 

intelligence. First order functional relationships were proposed that relate autonomy metrics to vehicle 

characteristics and mission requirements. Analysis was performed using the proposed tools and metrics to gain 

insight into the amount of autonomy to include in a UAV mission. Development and implementation costs were 

kept to a minimum and vehicle performance was optimized in the context of vehicle autonomy and intelligence, 

while allowing for acceptable levels of success and risk. The general return on investment trends as a function of 

intelligence of the autonomy suggests the most benefit when incorporating a mid-level of intelligence for a mid-

level of autonomy. The contribution of individual autonomous system technologies were related conceptually and 

quantitatively to high-level programmatic goals, mission cost, risk, and return on investment criteria. The 
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quantitative analysis of the relative importance of individual autonomous system technologies identified 

technologies having statistically significant importance. 

An autonomy focused assessment methodology was developed and analyzed in ref. 22. In particular, the 

methodology is evaluated to consider its applicability and fitness in understanding and demonstrating the perceived 

strengths and weaknesses of autonomous solution options for representative military requirements. The intent of the 

assessment tool is to map solution options against requirements and to identify important operational analysis (OA) 

issues with capability development, procurement, cost of ownership, use, maintenance, and delivery risk. The 

assessment approach adopted in this study was to quantitatively link key measures such as cost and risk to levels of 

autonomy. A limitation identified by the study
22

 was the inability of the tool to capture the attributes of robustness of 

the system, that is, the ability of a system to continue working towards a specified goal notwithstanding a number of 

unpredicted events and degraded sub-system performance. It was deemed imperative that the assessment criteria be 

able to discriminate robust solution options. Consequently, a range of potential failure events were folded into the 

criteria. The assessment tool was developed to allow the use of different weighting sets and mappings of the criteria 

and to apply bounds to the criteria. The study proposes and demonstrates an integrated modeling and simulation 

approach that is then incorporated within an OA framework for analysis. 

The proposed integration of UAS into the civil airspace is prompting agencies throughout the world to examine 

the implications of autonomous systems. Researchers are developing architectures for system health management on 

civil UAS to ensure the safe operation of UAS in the civil airspace
23

. A framework for testing robust autonomy of 

UAS during design and certification has been proposed for implementation in Australia
20

. 

E. Human trust in autonomous systems 

It is important to be able to estimate the level of human trust in an autonomous system, since this affects 

adoption of the technology by operators. Trust in autonomy is generally needed if the human can choose whether to 

make use of the autonomy. However, it can be dangerous if humans trust an autonomous system that is unreliable. 

In ref. 4, the author describes the following seven attributes of autonomous systems that can positively or negatively 

affect human trust, see Table 3. 

The Air Force Research Laboratory (AFRL) has conducted human factors research on supervision of simulated 

autonomous UAVs to explore issues associated with automation management
24

. In particular, AFRL has focused on 

operator performance, situation awareness, and trust in the autonomous system with different levels of autonomy 

and system reliability. Results of this study indicated that the operators would avoid using the autonomous 

functionality provided unless they had insufficient time to accomplish the task without assistance from the 

computer. When the study was recast to reduce the allowed time for operators to accomplish the desired task, the 

operators rated the work load as being higher and their trust ratings were lower. The study authors concluded that 

there is a complex relationship between LoA, time limits, and perception of task difficulty and confidence in 

autonomy. They also suggest exploring additional LoAs that are contingency/task specific and can be changed 

during a mission.  

A recent piloted simulation study of an emergency landing planner (ELP) provided interesting insights into 

human interaction with autonomy
25

. The researchers developed a sophisticated planner, designed to assist pilots in 

choosing the best emergency landing site when damage or failures occur in an aircraft. The planner was integrated 

into the cockpit of a 6 degree-of-freedom full-motion simulator for 757/767 category transport aircraft. Experiments 

were performed to evaluate the software using crews of professional airline pilots. The ELP proved to be helpful to 

the pilots in poor weather or wind conditions, where the ranking of best runway was more complex. The 

Table 3. Seven attributes of autonomous systems that can affect trust
4
. 

Attribute Example 

Reliability System consistently and repeatedly performs or functions correctly 

Robustness System can perform under a variety of conditions or circumstances 

Familiarity System employs procedures, terms, and cultural norms that are familiar or seem 

natural 

Understandability Human can form a mental model and predict future system behavior 

Explication of 

intention 

System explicitly communicates how it will behave (like having a contract) 

Usefulness System responds or behaves in a way that is useful to the human 

Dependence Dependence of the trusting person on the system 
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experiments provided interesting insights into the decisions pilots made in poor weather conditions. In one scenario, 

some of the pilot teams chose a longer runway with poor weather conditions that was lower ranked by the ELP over 

a shorter runway with better conditions. Generally, the pilots who chose the shorter runway that was ranked highest 

by the ELP were able to safely land the plane. However, in almost every case where the pilots chose the lower 

ranked but longer runway, the outcome was a fatal accident in simulation.    

III. Autonomous Decision-making using PHM Information 

We define autonomous decision-making using PHM information to be the process that is carried out in reaction 

to changed health management information or to changed mission goals. The result of the decision-making is a set 

of appropriate mitigating actions that are meant to resolve the issue stemming from the degraded state of health or 

changed goals. The selection process involves, or is, a general decision-making process that is either 1) reactive, to 

ensure immediate proper functionality or safety; or 2) goal seeking, to re-plan activities or modify system or 

subsystem operation to mitigate future events that would require reactive decision-making. The determination of 

which of the activities are carried out depends to a large degree on the prognostic horizon, or, more specifically, the 

time to expected failure.  If, for example, the time-to-failure is very short (say, in the range of milliseconds), one 

needs to generally react fast using adaptive control mechanisms at the machine controller level.  If the prognostic 

horizon is in the second range, appropriate contingencies may involve control reallocation or reconfiguration, i.e., 

the use of other components or subsystems.  If the prognostic horizon is even longer, one can consider mission re-

planning.  Finally, if the prognostic horizon is considerably longer, perhaps even extending beyond the duration of 

the mission at hand, one could integrate the logistics operations and consider various optimal maintenance actions.  

It should be noted that these contingency management actions are realized with very different decision-making 

techniques. If the contingency management is realized via adaptive controls, then the controller needs to be modified 

to react to changed objectives. This can be accomplished by either modification of the controller gains, modification 

of the control modifiers, modification of the control schedules, or modification of the control structure. To account 

for the short time scale, these solutions may have been pre-compiled and it is just a matter of a look-up to execute 

the right solution. 

Work in integrating fault information has been performed for a long time in fault tolerant control
26-27

, but also in 

life-extending controls
28-29

. Generally, life-extending control attempts to modify control logic or control hardware to 

influence life consuming factors. This approach has been applied to aircraft engines where reduction of creep 

damage to turbine blades was accomplished by incorporating an engine damage model into the flight mission. 

Through optimization over flight time, fuel consumption, and component damages overall operation cost was 

reduced
29

. In other work, a model-based detection scheme was coupled with controller adjustments that were pre-

compiled off-line using evolutionary algorithms to identify optimal biases and adaptive control
30

.  

A PHM-based reconfigurable controls framework that is part of hierarchical control architecture is defined in ref. 

31. The low-level reconfigurable controller is defined as a time-varying multi-objective criterion function with 

appropriate constraints to determine optimal set-point reconfiguration. A set of necessary conditions are established 

to ensure the stability and boundedness of the composite system. The integration of prognostics in the control loop 

using receding horizon control principles is presented in ref. 32. Life-extending control of multi-degree of freedom 

mass-beam structure where the control policy is formulated based on the analysis of stochastic time series data of 

sensors is described in ref. 33. 

For situations with somewhat larger prognostic horizon, re-planning and rescheduling may be the appropriate 

action (perhaps in conjunction with controller changes). An agent-based architecture that integrates fault detection 

and re-planning activities is described and demonstrated with fault injection aboard a spacecraft
34

. A similar fault 

tolerant planning environment is described in ref. 35. 

Finally, if the prognostic horizon is sufficiently large, one can consider various long-term actions that might 

include maintenance and inclusion of logistics elements. Challenges arise from the large amount of different 

information pieces upon which a decision-maker has to act.  Consider, as an example, a decision support system for 

use in operational decision-making in the context of running missions and performing maintenance.  The decision 

support system enables the user to make optimal decisions based on his/her expression of rigorous trade-offs 

through guided evaluation of different optimal decision alternatives under operational boundary conditions using 

user-specific and interactive collaboration.  An Evolutionary Multi-Objective Optimization can perform the search 

in this space and generate a set of optimal solutions (the “Pareto frontier”).  This will result in the identification of 

alternative mission allocations and maintenance plans that are optimal along IVHM-specific objectives (e.g., overall 

mission success, safety, and maintenance cost)
36

. Because this set of optimal solutions may still be too large to just 

choose any arbitrary one, it is required to further down-select the solutions using appropriate techniques that allow 
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an assessment of the trade-offs across numerous dimensions. Depending on present and future requirements, the 

end-user would use context-dependent criteria to constrain the number of solutions using interactive tools to finally 

select the operational plan that best meets the field requirements.  Such an interactive method would also allow users 

to employ what-if situations, permitting them to manually test the robustness of the solution. Finally, the mitigation 

of faults in an autonomous setting through stochastic optimization integrating fault risk assessment and risk 

management techniques is described in ref. 37. 

IV. Perceived Risks in Acceptance of Autonomous Decision-making 

Interviews were conducted with a few dozen individuals from industry, government, and academia. The 

objective of the interviews was to determine perceived risks in acceptance of autonomous decision-making in the 

context of piloted aircraft. The results are summarized below. 

A. Human performance consequences in mixed initiative scenarios 

There are many aspects of autonomous decision-making using PHM that could impact the performance of 

humans interfacing with the aircraft, including pilots, mechanics, air traffic controllers, and ground operations 

crews. In mixed-initiative scenarios, i.e., where autonomous systems have to interact with humans in some ways, 

human performance may be impacted in positive ways but also in negative ways. Finding the appropriate balance of 

autonomy is one key aspect to increasing the positive performance consequences. For mixed-initiative scenarios, a 

medium level of autonomy appears to be generally the best approach
4,6,10,22,23

. A higher level of autonomy is 

perceived as having possible negative consequences on human performance. Below is a summary of the types of 

human performance that can be affected by mixed-initiative systems. 

 

1. User workload 

Autonomous decision-making can reduce the pilot workload by performing tasks without pilot interaction. If the 

actions are completely reliable, the benefits are clear. However, since there are few cases of 100% reliability in 

complex systems, there is a change of increased workload because the pilot or ground crew would have additional 

work to clear the erroneous action from the system. Where an autonomous system requires increased level of 

interaction with a pilot input the benefits may be negated if the user could have come up with the same resolution in 

the same amount of time. Further, autonomous decision-making could increase user workload do to the complexities 

of communicating the changes to the operator. If frequent active scans are required to keep abreast of the latest 

changes, the benefits are again diminished. 

 

2. Situation awareness 

If changes in the state or dynamics of a system are masked by autonomous decision-making, the human could 

encounter a situation where critical decisions are made with incomplete or inaccurate information
15

. This problem 

would be compounded by time constraints on the human operator. Humans might miss important trends in low 

criticality areas where the system is autonomously changing due to PHM information without appropriate human 

notification. In 1991, there was an SAS incident in which a McDonnell Douglas MD-81 aircraft was not properly 

de-iced
38

. The engines ingested clear ice from the wings, which broke free during take-off, causing engine surges. 

The surges destroyed the engines, requiring the pilots to crash land. Fortunately, there were no fatalities. About 25 

seconds after take-off, the pilots perceived banging, vibrations, and jerks in the aircraft. They responded to an engine 

2 surge by throttling back the engine. However, due to the operating point in the flight envelope, the throttle was 

simultaneously controlled by an automatic thrust restoration (ATR) system, which increases throttle setting with 

altitude. The ATR system caused additional engine surges that eventually destroyed the engines. The airline was 

unaware of the existence of the ATR system; consequently they had not trained the pilots on proper response to the 

situation. This case illustrates automation causing a lack of situation awareness for the crew, since the crew was 

unaware of the ATR system and its affect on throttle position. It is also noteworthy that the ATR system designers 

did not appear to include the OODA Loop philosophy of having the automation observe the results of its actions, 

i.e., that the engines were surging.  

 

3. Complacency of humans 

If the autonomous decision-making is highly reliable, but not completely reliable or robust to unmodeled 

dynamics, then the human operator could relax their vigilance for off-nominal behavior, missing the occasional time 

that there is an undetected problem. When the human work load is the highest, it is natural for the human to become 

even more reliant on autonomously controlled tasks. Even though the human might know that a system has a certain 
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probability of making an error when suggesting options, the human can get distracted by the information presented 

and the choices to be made, forgetting that either of these two things could be incorrect. 

 

4. Skill degradation 

With a lack of use of certain skills, humans are liable to forget certain elements. Literature from cognitive 

psychology states that humans forget information and their skills decay over time with disuse
4
. Studies have shown 

that when an autonomous system fails, an intermediate level of autonomy tends to result in better performance by 

the human operators, presumably because they have had more skill practice
4
. 

 

5. Human trust in the system 

Lack of trust in autonomous systems may be some of the biggest hurdles in adopting autonomy in mixed-

initiative settings. Numerous experimental results suggest that humans have a difficult time giving up control of a 

complex task that they can perform proficiently, especially when they have to give control to a complex computer 

system
24-25

. This has in part to do with awareness of the failings of previous autonomous systems but it may also be 

due to other psychological elements where the human simply wants to “stay in control”. Where operators do 

relinquish their decision-making authority, it is often only due to time constraints
22-23

. The emotional response to 

autonomous systems may even be manifested in fear
39

. It is expected that autonomy in mixed-initiative systems will 

slowly gain acceptance, in part through adoption of automated tasks such as auto-pilot and the automatic control of 

subsystems (such as jet engines).  

B. Autonomy reliability 

Many of the interviewed individuals cited reliability of autonomous systems, including the reliability of sensors, 

communication, and algorithms, as being one of the greatest risks. The reliability of the autonomous system must be 

end-to-end, i.e., it is not sufficient to reliably detect a fault if the response (maybe just simple logging for 

maintenance) has lower reliability. The guiding mantra is that an autonomous system must do no harm. Proving that 

an autonomous system is on average more reliable will be difficult because the avoidance of a situation that would 

have had negative safety implications is hard to validate. The required degree of reliability will be determined 

criticality of a task. 

C. Autonomy effectiveness and robustness 

Adding autonomy to a system greatly increases the amount of verification and validation required and with that 

the cost for deployment. Adding complexity to a system increases also the probability of errors, possibly negating 

any beneficial effects. If, after all the additional investment of resources, the resulting system is not more effective 

or at improving safety than a non-automated system (or less robust), then its use is not justifiable. Obtaining 

certification from the FAA could be another major stumbling block. The difficulties that commercial operators have 

in obtaining maintenance credits for aircraft with on-board health and usage monitoring systems will likely be 

magnified for certification attempts of autonomous subsystems. From a commercial perspective, providing the 

appropriate business case for autonomous systems will be needed to justify adding autonomous functions. 

Deployment of autonomy on civil transport aircraft is dependent on development of new methodologies to 

certify airborne software and to satisfy FAA airworthiness requirements. Adaptive controllers that use real-time 

system input/output information and some form of on-line learning algorithm to adaptively set controller gains can 

be seen as providing a low level of autonomy. Current research and development of adaptive flight control for 

aircraft operating in off-nominal situations shows promise, however many issues exist for their verification and 

validation by the U.S. Federal Aviation Administration
40

.  

D. Costs of Decisions 

The costs of the decisions made by an autonomous system must be heavily balanced to increase safety of 

humans affected by the system and secondarily to decrease damage to a system. Autonomous systems that have to 

choose solutions in a multi-objective environment are faced with the difficulty of making context-dependent 

choices. These are hard to encode since the plurality of all possible contexts is difficult to encapsulate. Furthermore, 

the weights of individual objectives may change dynamically due to unforeseen circumstances which further 

complicate the decision choice. 

E. Public perception 

In the end, commercial operators need to be sensitive to the way their system is perceived by the public. A bias 

exists that a human would handle certain situations in a more sensible way than a completely autonomous system
41

. 
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In a hypothetical scenario where a piloted aircraft and an unpiloted aircraft both crash into a school, it would be 

more likely that public would perceive the pilot as having tried to avoid hitting the school, whereas the autonomous 

system would be perceived as “cold-hearted.” Public belief tends to be that designers are incapable of adding a 

“humane” aspect to the decision-making used in autonomous systems. The public’s perception of autonomy can 

have serious consequences for airline carriers. Similar issues have been considered for advanced terrestrial 

applications, such as platooning (autonomous following of several cars on highways)
42

. Currently, there is a slow 

migration towards the public acceptance of autonomy, for example in parallel parking assist
43 

and autonomous 

distance keeping for luxury cars. However, it is still a long way from adoption in aerospace settings. 

V. Conclusions 

Prior research into metrics and design for autonomy were presented. At this time, the prospect of adding 

significant autonomous decision-making on a piloted aircraft is viewed with some degree of concern for the ability 

of the system to add value without adding risk.  
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