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Abstract. The translation of temporal logic specifications constisuan essen-
tial step in model checking and a major influence on the effjieof formal
verification via model checking. We devise a new explicitstranslation of Lin-
ear Temporal Logic to automata for the class of LTL specifices that describe
safety propertiesarguably the most used formal specifications in real-wsykt
tems. By exploiting the inherent determinism in safety fftions, we can
build deterministic Promelaever claims that accept only the bad prefixes of
the safety specification. In contrast to previous works, @@i§ on compilation
tonever claims rather than simply automata and measure Spin mbeeking
time separately from compilation time and automata sizeektensive experi-
mental evaluation over a space of configurations demoesttaat our new trans-
lation consistently results in better model-checking penfance, for a large array
of benchmarks, over the best current translation.

1 Introduction

In linear-time model checking, the negation of the tempepacification is translated
into a nondeterministic Biichi automaton, combined with siystem model, and then
checked for nonemptiness [33]. The model checker searcneddsso-shaped coun-
terexample tracén this combined model, a trace that starts at an initialesysstate
and reaches a cycle that contains an accepting state. Thieitesgate translation of
Linear Temporal Logic (LTL) formulas to Biichi automata stitutes an essential step
in explicit-state linear-time model checking and has a migjftuence on the efficiency
of model checking [10]. Consequently, this topic has rezebia significant level of at-
tention over the past two decades and there are many aeatlatis; see [27] for an
extensive survey. Most of that research has focused on nzimigithe size of the gen-
erated automata. The rationale was that minimizing the gfizbe automaton would
minimize the size of the space in the product of the systemetald the automaton
that the model checker must search. Yet this heuristic @mbréhas no experimental
evidence that would demonstrate its efficacy [32]. In faot, éxtensive experimental
investigation reported on in [27], which focused satisfiability checkinga special
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case of model checking, shows little correlation betweedoraaton size and model-
checking time. It is argued in [9] that larger automata malen less work for LTL
model checking. In this paper we revisit the translation B formulas to automata,
which we callLTL compilation specifically focusing on model-checking performance.

We concentrate on model checkisgfety propertieswhich assert “something bad
never happens” [1]. Safety properties are the most ofted fesenal properties in prac-
tice, capturing the desired behaviors of a wide variety af-veorld systems, such as of
fault tolerance [11] and hardware resets [7]. Safety prigeecan also describe most
intended properties of real-time systems, since respargeasually required within
bounded intervals [15].

Intuitively, “something bad” only needs to happen once inoenputation for the
property to be violated. Thus, a violation of a safety propean always be witnessed
by a finite prefix of a violating infinite trace. Rather thanrebathe system model for
a violating infinite trace, we can search the system modethiierbad prefix This in-
sight forms the basis for an alternative automata-theoagiproach for model checking
safety properties, proposed in [20]: construaleterministicautomaton for the lan-
guage of bad prefixes, take its product with the system mauohel,then search for
an accepting finite trace. A disadvantage of this approattaiswhile the translation
from LTL to nondeterministic Buchi automata is, in the wocase exponential [34],
the translation from safety LTL formulas to deterministit@mata for bad prefixes is,
in the worst case, doubly exponential [20]. Perhaps beaaiutés additional blow-up,
this approach, which we refer to deterministic compilationhas yet to be seriously
explored.

There has been recent evidence that deterministic congpilatay be a viable
approach in spite of the possible additional exponentiavhlip. Deterministic com-
pilation proved to be effective for SAT-based model chegkiB] and explicit-state
hybrid-systems analysis [26]. Determinizing finite autéteneepresenting safety for-
mulas has been correlated with smaller system model/attorpaoducts even without
minimizing the formula automaton [21]. Intuitively the mhact—system model times
automaton—is simpler when the automaton is determiniaicyondeterminism in the
product stems solely from nondeterminism in the systenuitimély, in the standard
approach the search algorithm has to find both a counterdeanage in the system
and an accepting run of the specification automaton. Thisrgksearch is not needed
when the specification automaton is deterministic, as itéhagique run on a given
input word. (It has been argued in [30], though without exitks that “more determin-
istic” compilation may be an advantageous approach.) Regerk on deterministic
compilation in the context of run-time verification demaagtd both that the doubly
exponential blow-up rarely appears in practice, and thatdisulting deterministic au-
tomata are often actualgmallerthan their nondeterministic counterparts since we can
minimize deterministic automata efficiently [31, 11].

The main result of this paper is that deterministic comjutats indeed an effective
approach to explicit-state model checking of safety priggrTo demonstrate this, we
build on the theoretical foundations developed in [4, 203.8Now how to use SPOT [6],
the best LTL-to-automaton translator (see [27]), BRACS Aut omat on [23], a tool for
determinizing and minimizing finite-word automata, in arttego from a nondetermin-



istic Buichi automatormy representing a safety propetiyto a deterministic automaton
29 that accepts the bad prefixesqofThis construction uses the fact that determiniza-
tion of finite-word automata is much simpler than deternatian of w-automata; while
nondeterministic finite automata can be determinized withrgple subset construction
[14], determinization of nondeterministic-automata requires a complex subset-tree-
based construction [28].

To usead for model checking, we apply Spin, the canonical explitities model
checker [12]. We introduce 26 novel encodings of LTL safetperties as deterministic
automata in the form of Promela (PROcess MEta LAnguagedr claims, describing
behaviors that shouldot occur in the system model. We implement these encodings as
an extension of the open-source CHIMP fo[@1] that creates SystemC monitors for
LTL formulas; our extension, CHIMP-SpiR,creates Spimever claims. Our system-
atic empirical investigation of the effectiveness of thastomata asever claims also
constitutes a novel contribution since earlier works feclisn translation to automata
without considering their encodings asver claims. We show over a large array of
benchmarks that our deterministic encodings for model kihgoof safety properties
consistently result in significantly reduced model-chagkimes over the SPOT encod-
ing. We also demonstrate that the encoding used to représtarministic automata as
never claims has a significantimpact on performance and we idemsfngle encoding
that dominates all other encodings.

Akey point of our approach is that we concentrate on redutiodel-checking time
while typical experimental work in LTL model checking meessitotal time—compile
plus model-checking time, e.g., [9]. Since in real-worlgkgations of model checking,
properties are written once and then checked against a lgpsygstem design multiple
times, we find it worthwhile to reduce model-checking timemat the cost of increased
property-compilation time. This choice is particularlyrfi@ent for regression testing:
when the system is changed to fix a bug or add a new feature &dessary to re-
check all properties checked earlier to ensure that previtxecks produce the same
results. To streamline regression testing future versadrSpin should not require a
recompilation ofhever claims for each run of the model checker, even when they have
not changed. Such an adjustment would more accurately trafticstrial applications
of model checking and, combined with our reduced model dngdikmes, reduce the
amortized cost of model checking.

The structure of the paper is as follows. We detail the themryerlying our con-
struction of deterministic encodings of LTL safety speeifions in Section 2 and de-
scribe our 26 novel constructions of Promeéver claims in Section 3. We then de-
scribe our experimental methodology in Section 4, and pteser experimental re-
sults, which demonstrate that we can consistently outpar®POT, the current best
LTL-compilation tool, in Section 5. We conclude with a dission in Section 6.

Lhttp://sourceforge. net/projects/chinp-ricel
2 Our tool extension is released under an open-source liceas&ct us for a copy.



2 Theoretical Background

We interpret LTL formulas over infinite computations of theerfi 1t: w — 2P™P, where
w is the set non-negative integers dPbp is a set of atomic propositions. We define
TL,i F ¢ (computationtat time instant € w satisfies LTL formulap) as follows [8]:

— 1i F pfor pe Propif p e (i).

—TiFgIAQif TLiF gy andTti F go.

—TikF-gif TLiE Q.

- TmiExgif mi+1kFg.

— T iFgrugif 3j >i, suchthatt j F gz andvk,i <k < j, we haver, kF g;.
—TiEgRgif Vj>i,if L j ¥ g, thendk, i <k < j, such thatt kE g;.

— 1iFQgif 3) >1i, such thatm, j F g.

- miEOgif Vj>i, mjFo.

We takemodel$¢) to be the set of computations that sati¢fgt time 0:{1t: TLOF ¢ }.

In automata-theoretic model checking, we represent LTinfdas using Buchi au-
tomata. ANondeterministic Bchi Word AutomatofNBW) is a quintuplez = (Q,Z,d,
Q% F), whereQ s a finite set of stateg, is a finite alphabe® : Q x = — 2% is a tran-
sition function,Q® C Q is a set of initial states, arfdl C Q is a set of accepting states.
If g € d(q,0) then we say that we have a transition frgrto g’ labeled byo. A run of
a Buchi automatom over an infinite computation= 1, Ty, Th, ... € X iS a sequence
Jo, 01,02, - . . Of states such tha € Qo, and(qi, T5,qi+1) € o6 for all i > 0. 2 acceptst
if the run overm visits states irF infinitely often. We denote the set of infinite words
accepted byt by .%,(4). Computations are infinite words over the alphabet2°"P,

Theorem 1. [34] Given an LTL formula, we can construct an NBWj, = (Q, X, ,do,
F) such thaiQ| is in 20U%) | 5 = 2P™P and L,(44) is exactly models).

In the automata-theoretic approach to model checking [83theck that a model
M under verification satisfies an LTL formulla we translate-¢ into the automa-
ton 4-4 and composer-y with M, forming the automatoriy, -, which the model
checker checks for emptiness. If there is no accepting runot,y (i.e. the language
Z(awm, -¢) = 0), we have proven thadl |= ¢.

The automata-theoretic approach can be refined when deaiihgafety proper-
ties A formula¢ is a safety formula if its failure can always be witnessed Hinide
prefix [1]; that is, if Tt [~ ¢ then there there is a finite wowd € Z* such thatw- T}~ ¢
for every infinite computation € Z%. Herew is called ebad prefixfor ¢. The set of bad
prefixes forp is pref(¢). Itis argued in [19] thapref(¢) is a regular language; conse-
quently, we can use automata on finite words for model chgcdarfiety properties.

A Nondeterministic Finite Word Automat¢NFW) is a quintuplez = (Q,Z,, Qo,
F), whereQ is a finite set of stateg; is a finite alphabe® : Q x = — 2% is a transition
function,Qp C Q is the set of initial states, arfel C Q is a set of accepting states. If
Qo is a singleton, and(q,a) contains at most one state for every sigt@nd lettera,
then we say that is aDeterministic Finite Word AutomatqiDFW). A run of 2 over
a finite wordw € X* is accepting if it terminates in an accepting state.



Theorem 2. [19] Given a safety LTL formulé, we can constructa DFWY = (Q, 2,5,
0o, F) such thatQ] is in 220080 5 pProp and.Z(a%) is exactly prefd).

Therefore, whenp is a safety property, we can opt to form an NFW or a DFW
corresponding te-¢ instead of an NBW, since we only need to construct an autamato
that accepts the set of finite prefixes that witness violatimfi.

A concrete algorithm to construct automata for bad prefix@s gwen in [4]. Given
a safety formulap, we first form the NBWza,. Here we use SPOT [6] for this trans-
lation; we showed earlier that SPOT is the best LTL-to-awtanranslator [27]. Let
empty44) be the set of states iy that cannot appear on an accepting run. SPOT can
compute this set of states and remove them fegynWe now turn this NBW into an

NFW ;4(; by re-labeling all remaining states to be accepting. We navelthe NFW
ﬂqz defined by the quintupleY’,>,d,00NQ,F NQ'), whereQ' = Q —empty.14) and
o' is restricted tdY x . Note that this approach is not sound for liveness formulas.

Theorem 3. [4] ;4({ rejects precisely pre(f).

To model check a safety formula, we need an automaton thaptsyre f(¢) [31].
If we apply the subset constructionxi we obtain a DFWa§, where all nonempty sets

of states OfﬂqI are accepting states, that rejepte f(¢). Its complemenmi’d,, where
only the empty set of states is accepting, acceps(9).

3 Never Claim Generation

A never claim is a Promela code sequence that defines a system bettatishould
never happen. Since we usever claims to specify properties that shouldverhap-
pen, that is, bad properties we wish to assert the systemmadésive, we createver
claim corresponding to the negation of the property we wishdld. In other words,
when we create mever claim that accepts exactly’ (—¢) we are stating that it would
be a correctness violation of the system if there exists anwgion sequence in which
= holds. For the system to be considered correchust always hold.

To generate a Prometever claim for LTL formulad, Spin translates:$ into the
NBW a-¢ = (Q,%,d,00,F ), enumerates and creates label for the stat€} labelso
with 'init’ to designate the state in which threver claim starts, labels accepting states
with 'accept,’ and implemeni& by a nondeterministic choice: for each state, nondeter-
ministically choose from among enabled transitions givenset of propositions true in
the current state. Currently, all LTL-to-Promela transtatfollow this high-level con-
struction. (They vary widely in the details of the formatioina—¢ as described in [27].)

In this paper, we construct Promelaver claims corresponding to the DF\M&,j
for bad prefixes of safety formulas. We now describe sevenatiralternatives for con-
structingnever claims for safety properties.

To prove that a system modél satisfies the LTL property = (CJgood), we create
anever claim that accepts the negation of this property. Spin cathidcautomatically
using the commanslpin -f '![] good' . Intuitively, thenever claim generated by



the formula would restrict system behavior to those state=re((!good) holds. If any
such execution of the system is found, Spin reports a vaiati
In addition to the infinite-behaviaever claims produced by Spin, SPOT, and other

tools, never claims can be also be used to specify finite automata; thanclisin is
implicit in the structure of the claim rather than expligittated. A finite behavior
is matched if the claim can reach its closing curly brace avkitecuting in lockstep
with the system model [13]. Spin automatically checks fas tigpe ofnever claim
termination. Anever claim corresponding to the NFW that acceptef(¢p) simply
needs to reach its closing curly brace, for example, wherfdhaula is [lgood if
lgoodis ever true, thus accepting the finite prefix indicating tmea@ctness violation
of the system. Note that we check the finite-beharewer claim using different Spin
commands than the infinite-behavior version, where thetimme-flag- a explicitly tells
Spin to check for acceptance cycles. Specifically, we checkiriite acceptance using

the following commands:
cat Mdel >"pan_in

cat finite_never_claim>> pan_in

spin -a pan_in

gcc -w -0 pan -D POSI X_SOURCE - DVEMLI M=1550 - DSAFETY - DXUSAFE - DNOFAI R
-DNXT pan.c

.Ipan -v -X -nl0000 -w19 -A -E -cl

3.1 Determinization and Minimization

As in [31], there are two approaches to constructing the DFgNFirst, we can explic-

itly determinize the NFVVZLJ; using an NFW-to-DFW translatoBRl CS Aut omat on[23]),
which we refer to as thdet construction. Second, we can constructezer claim
directly from ﬂqﬁ, essentially performing the subset construction on-theFbr con-
sistancy with previous work [31], we refer to this as ttemdet construction, because
determinism is delayed. The advantage of pre-compilat&ardhinization is the abil-
ity to minimize ﬂg before constructing theever claim; we useBRI CS Aut omat on

to produce a minimal equivalent DFW. We refer to this asrthe construction. The
additional steps of determinization and minimization naguir a nontrivial computa-
tional cost during the construction of thever claim. The trade-off between property-
compilation time and model checking time is a key issue is flaper.

To useBRI CS Aut omat on, we have to find a way to represent the alphabet of the
automata [31]. SPOT labels transitions with Boolean foamuver the seProp of
atomic propositions, whilBRI CS Aut omat on represents the alphabet of the automaton
as Unicode characters. Therefore, we adapt the technidUy84]dor describing the
alphabet in terms of 16-bit integers. We have two alphabatesentations: OBDD-
based and assignment-based.

We can represent Boolean formulas usiglered Binary Decision Diagrams (OB-
DDs) [3]. We implement this approach as follows. First, we obtaferences to all
Boolean formulas that appear as transition labels in thenaaton using SPOT&pot : :
tgba_reachabl e_iterator _breadth_first::process_link() function. Second, we
assign a unique integer label to the OBDD representatioact 8oolean formula (up
to 291 in the worst case) using SPOEpot : : t gba_succ_i terator: : current _cond
ition() function. The formulas labeling automaton transitionswaw be replaced by
the corresponding integers.



Alternatively, we can represent Boolean formulas in teriheir satisfying truth
assignmentsBy selecting an order foProp= {pi,...,pn}, We can represent an as-
signment as an-bit vectora = [ay,ay, . . .,an]. Every such bit vector corresponds to an
integerl (a) in the domain{0,...,2" —1};1(a) = a;2" 1 +a,2" 2+ ... +a,2%. We can
use this domain as a new alphabet, replacing a transiti@ddlby a Boolean formula
a by several transitions labeled by the integers correspgioi truth assignments sat-
isfying a. Once we have usegRl CS Aut omat on to form a DFW, we convert transition
labels back to a Boolean formula that we use to construct Bleomaver claims.

The assignment-based approach sometimes creates a langpemaf transitions.
For example, the Boolean formulleue corresponds to2assignments. We introduce
an edge-abbreviationechnique to merge separate transitions. When we haveasever
transitions with the same source and destination states;ameremove these tran-
sitions and replace them by a single transition labeled kydisjunction of the la-
bels of the removed transitions. For each such disjuncti@nytilize SPOT’s built-in
fornul a_t o_bdd() function to create a BDD representing the disjunction, aottia
simplified formula from the BDD via the reverbdd_t o_f or mul a() function, and then
label the associated transition by this new formula. A eglaiptimization is to replace
all el se branches in the Prometever claims by explicit Boolean formulas corre-
sponding to the negation of the conjunction of the labeldlaffahe other transitions
(reduced using SPOT’s built-in BDD functions). This enahls to eliminate redundant
trap states and reduaever claim code size.

3.2 Never claim encodings

Inspired by the work in [31], we introduce 26 ways of encodimgomata for safety
properties as Prometever claims. We form these encodings by combining mawrer
claim adaptations of the constructions for transition etien ( r ont vsback), deter-
minism @det vsnondet ), state minimizationri n vsnoni n), and alphabet representa-
tion (bdd vsabr) from [31] with the options to encodeever claim states either using
Promela state labels or integer state numbsdrat(e vsnunber ), to employ either finite

or infinite acceptance conditionsi(h vsi nf ), and to reduce the size of the generated
never claim via edge abbreviation and trap-state eliminatiea).(We illustrate our
encodings in Appendix A for benchmark safety formula 4 froabl€ 3.

Nondeterministic encodings We introduce 12 novel Promela encodings that perform
determinization on-the-fly. Inondet never claims we maintain an array used to de-
scribes sets of states ﬂﬂ . An array that corresponds to an empty set indicatesq{éat
got stuck, which means that we have discovered a violatiaf &¥e can encode the
transition relations either in fr ont fashion, where for any statpwe enumerate the
outgoing transitions from, or in aback fashion, where for any statpwe enumerates
the incoming transitions that lead do

Thef ront _nondet encoding uses arf statement to check each outgoing transition
from each possible current state and marks all possiblestatds in thenext _state
array. If there is no possible next state, the automatos fadrnever claims with finite
acceptance conditions, this is accomplished by breakomg thedo loop and coming



to the end} of the claim. Theéback _nondet encoding works similarly, but the branching
is over incoming transitions rather than over outgoinggitons. See Listing 1.4 and
and 1.5 for examples.

Deterministic encodings In contrast tonondet encodings, where we determinize on
the fly, indet encodings we already have the statesqgfand we can encode them

directly. We introduce 14 novel deterministic Promela afiogs that presuma® has
been minimized and determinized using assignment-basextiary. We use two ways
to encode the states. First, we can encode states by usimgRreariable, whose value,
a (hunber), refers to the current states. Second, we can use Spindastastate-label
format coupled witlyot o statements to transition between states. We illustrate efac
these two state representations in turn.

The back_det encoding uses state numbers. Teeer claim first calculates the
syst emst at e_i ndex, the integer corresponding to the current valuation of jfstesn
variables. Like itshack_nondet counterpart, it transitions by checking for an enabled
incoming transition from the current state. Thent _det _swi t ch_nunber _f i n encod-
ing uses a series of statements, the closest Promela construction to a Gslikech
statement, to check for enabled outgoing transitions frieendurrent state. See List-
ing 1.6, Listings 1.7, and 1.8 for examples.

Alternatively, we can encode tlever claim without using any state numbers, by
taking advantage of Promela’s constructs for represeiatingmata states. THeont _
det _swi tch_state_i nf encoding transitions to program labels corresponding ¢o th
names of the states 'uag. The initial state is labeledi hit” and appears first, the
accepting state is labeledccept ,” and all other states are assigned unique names. See
Listings 1.9 and 1.9 for examples.

State Alphabet Automaton Never Claim State
Minimization| Representation) Acceptance Encoding Representatior
no front _nondet
BDDs

back_nondet
front _nondet

number
finite back_nondet
assignments back_det
yes front _det _nenmory_tabl e
infinite
) state
front det switch
assignments number
with edge back_det umber

abbreviation

Table 1. The configuration space for generatimgyer claims. Each row in the table represents
an encoding configuration. Componenets of the winning engaate bolded.

Look-Up Tables The above encodings represent automaton transition amis
i f statements. Alternatively, we can declare a state lookabfetin memory storing



the next state as a function of the current state ancsylseemst at e_i ndex. This
forms very compaatever claims and the next state can be found in one operation. The
front _det _nenory_t abl e encoding declares the table directly as a one-dimensional,
row-major array. See Listing 1.11 for an example.

Configuration space The different options allow 26 possible combinations fongre
atingnever claims, summarized in Table 1.

4 Experimental Method

Platform We ran all tests on the Shared University Grid at Rice (SUG@R)Intel
Xeon compute clustérSUG@R is comprised of 134 SunFire x4150 nodes, each with
two quad-core Intel Xeon processors running at 2.83GHz &@Blof RAM per pro-
cessor. The OS is Red Hat Enterprise 5 Linux, 2.6.18 kerredhEest was run with
exclusive access to one node. Times were measured usingitkéille command.

4.1 Model-Scaling Benchmarks

We chose a set of 14 typical safety formulas, taken from edlditerature, listed in
Table 3. We model checked them against scaled linearlgsinéversal Models (UM)
from [27]. (See also Appendix B.) By scaling up the size ofsth&Ms to dwarf the
sizes of the safety formulas, we create difficult model-&megbenchmarks.

0|0-bad “Something bad never happens.”

1|0(request— x grant) “Every request is immediately fol-
lowed by a grant”

2|0(=(pAQ)) Mutual Exclusion: p and q can
never happen at the same time.”

30(p— (xxxq)) “Always, p implies q will happen 3
time steps from now.”

4\ x ((pAQ)RT) “Conditionr must stay on until but-
tonsp andq are pressed at the same
time.”

5 x (0(p)) slightly modified intentionally safe
formula from [19]

6*|x (O(qvxOp) AO(rvxO-p)) slightly modified accidentally safe
formula from [19]

7 x ([O(qvoOp) AO(rvoO-p)] vOqVvOr) slightly modified pathologically
safeformula from [19]

8|U(p— (gAXgA X XxQ)) safety specification from [31]
9/ (((((pOR.(=p1))R. (—p2))R.(—P3))R (—p4))R.(—p5)) Sieve of Erathostenes [13, 21]

10 (O((pOA—pl) — (O=pl1V (-plu(plOA—-pl)))))  G.L. Peterson’s algorithm for mu-
tual exclusion algorithm [25, 22,13,

T T 24,21]

\ttp://rcsg.rice. edu/ sugar/



11/(O(=p0 — ((—=plu p0) vO-pl))) CORBA General Inter-Orb Protocol
[17,21]

-p0 A =pl)))) A (d(p2 — GNU i-protocol, also called iprot [5,

A (O-p2V (=p2upl))) 24,21]

-p0 A =pl)))) A (O(p2 — Sliding Window protocol [16, 21]

A (O-p2v (-p2upl)))

12[((0(p1 — O(-pl —
O(=p2 — (=p0A—pl)))

13((0(p1 — O(-pl —
O(=p2 — (-p0A—pl)))

z

Table 3.Industrial safety formulas used in model-scaling benchar

For each of the formulas in Table 3, we model checked agaisstias of linearly-sized UMs,
described in [27], starting with the 10-variable UM and swglup the number of variables in
the model, thereby exponentially increasing its stateespae used two configurations of UMs;
starred formulas are checked against UMs that set all yagdbtrue first; see Appendix B.

4.2 Formula-Scaling Benchmarks

For our formula-scaling benchmarks, we model checked eachuia against a universal model
with 30 variables and 1,073,741,824 states. We employedytpes of formula-scaling bench-
marks: random and syntactically safe random. We scaledafdhb formulas until model check-
ing became unachievable within machine bounds of timepatkout.

We generated two sets each of 580ength safety specifications oveatomic propositions,
for min {5,10,15,20,25} andnin {2..6} (25,000 random formulas in these two benchmark sets,
combined). The probability of each temporal operator Ras0.5. For the first set, we generated
syntactic safety formulas, allowing negation only dirgtttfore atomic propositions and limiting
the temporal operators {X, G, R}. For the second set, we generated each specification rapdoml
over the full syntax of LTL. We then checked if the generatpéciication represented a safety
property using the SPOT commahdl 2t gha - O, adding the specification to our test set if so
and rejecting it if not.

Test MethodWe encoded every benchmark LTL formula as a set of Promalar claims
using SPOT and our novel encodings. We experimented witacicf21] encodings; that tool
produced too many bugs to be included. However, it is redderta assume that the results would
not be comparable to our best encoding since the algorithpfeimented by scheck constructs a
nondeterministic finite automaton from the restricted atesf the formula that accepts precisely
the informative prefixes of the formula and then determimias a last step without employing
optimizations that we found particularly influential, st minimization or edge abbreviation.
Eachnever claim, was model checked by Sgin.

We measured model checking time separately from the timesftous compilation stages.
This is important for two reasons. It is relevant for regiesgesting and system debugging
applications where the system is repeatedly changed buglrobdcked against the same specifi-
cations. It is also essential for demonstrating our claiat tieterministic encoding of LTL safety
formulas can reduce model checking time; it is clear that rgenat, for example, encoding LTL
formulas in a manner that compiles more quickly but requinessame or more time to model
check than the equivalent SPOT-encoding.

Figure 1 depicts the Spin model checking process. Unlikeipus works, which report only
the total time required for analysis via Spin, we measuretithe required for compilation of

4 We also investigated using the SPOT back-end; SPOT is unakiealyze Promelaever
claims at the time of this writing.
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Fig. 1. System Diagram illustrating the Spin model checking prec¥ge present an improved
encoding for the LTL formula-f to the Promelaever claimA_¢.

LTL-to-never claim (by either SPOT or CHIMP-Spinjpever claim-to-C (via thespi n com-
mand), and C-to-binary (vigcc) separately. In the following plots, we refer to the sum @fsth
three times asompile timeand separate this sum from fromodel checking timeor the time
required to run th@an executable produced by Spin. Because we ran SPOT as a stepdret
ation of each of our new encodings, the specification automgeéneration times incurred by our
algorithm will always be greater than running SPOT aloniis(Important to note that our au-
tomaton generation times are consistently dwarfed by thesponding model checking times.)
To streamline regression testing, we argue that futurdomsf Spin should not require us to
recompilenever claims for each run of the model checker, even when they havehanged.
Such an adjustment would more accurately reflect industpplications of model checking and,
combined with our reduced model checking times, reducerti@tized cost of model checking.

5 Experimental Results

Our experiments demonstrate that the new Promel@r claims we have introduced signifi-
cantly improve the translation of LTL safety formulas intgplcit automata, as measured by
model checking time. We found that one of our encodings ipdibestf ront _det _swi t ch
_mi n_abr _ea_stat e_fin. Using this encoding, we can consistently improve on theeholdeck-
ing time required for SPOT encodings. We recommend using oomt _det _swi t ch_ni n_abr
_ea_state_fin encoding for safety formulas and the standard SPOT encddingon-safety
formulas. (Recall that SPOT can test for safety formulas.)

We found certain encoding aspects to be always better. Efps lexplain why thé r ont
_det _swi t ch_mi n_abr _ea_st at e_fi n encoding is always the fastest: it is the encoding that com-
bines all of the fastestever claim components. We found the following trends to hold: de-
terministic (let) never claims are faster than determinized-on-the-fign(det ) never claims;
finite acceptancd ( n) is faster than infinite acceptandenf ); state labelsg at €) are faster than
state numbersn(inber ); minimized automatan{ n) are faster than noném n); edge abbrevia-
tion (ea) always equates to better performance. Note that detestitiincoding det ) enables
faster features such as state minimization and edge ablimviand that, all other encoding as-
pects being equal, there seems to be a positive correlatarebn the code size of a giveever
claim and the required model checking time, explaining ffieiency of this encoding. Also note
that the {ront _det _swi t ch) encoding enables the faster state labels representatiang).

11



5.1 Model-Scaling Experimental Results
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(a) Benchmarks for the iprot specification (fitgr} Benchmarks for the sliding window specifi-
mula 12). cation (formula 13).

Fig. 2. Model scaling benchmarks, showing the model-checking gilveesed on the number of
propositions in the UM.

Figure 2 demonstrates empirically that our determinisitoanata require less time to model
check than SPOT's nondeterministic automata. For somehbesuts, we found that all of our
encodings, whether they determinizefl up front or on the fly, required less model checking time
than the equivalent nondeterministic SP@Ver claims® For example, for the iprot and sliding
window benchmarks, pictured in Figures 2(a) and 2(b), atofnew encodings performed better
than SPOT, though odir ont _det _swi t ch_mi n_abr _ea_st at e_f i n encoding was best. In these
figures, the SPOT encoding is shown in red, our best encodisgdwn in purple, and our 25
other encodings are shown in magenta. Note also that thetedd@monstrate the orthogonality
of automata size and model-checking time: all of our enagglinepresent the same automaton so
the differences in model-checking times in these graphma st&irely from the type of encoding
and not the number of states in the automaton. Determirgstiodings can result in significant
improvements in model checking performance by reducinig tathe internal nested depth-first
search algorithm in the model checker; see Appendix A.1.

Figure 3 shows a speedup of a factor of two when using our bigi¥1E-Spin encoding to
model check our 14-formula workload against a 34-variabl4. Since we terminated the plot
when the first benchmark formula exceeded machine boundspltit does not show instances
where our encoding was able to scale to larger model cheddénghmarks than the equivalent
SPOT encoding. For example, Figure 2 demonstrates thatnmodang was more scalable than
SPOT'’s when model checking formulas 12 and 13.

Out of all of our benchmarks, the formula 4 benchmark dispiathe smallest difference
between our encoding and SPOT. For the 36-variable universdel, the SPOTever claim
took 4606.94 seconds, or roughly 77 minutes whereasiexgr claim took 4281.22 seconds,
or roughly 71 minutes Still, oufrr ont _det _swi t ch_ni n_abr _ea_st at e_f i n encoding encoding
enabled Spin to scale to model check a 40-variable modeleaksemodel checking the SPOT
never claim timed out at 39 variables.

5 Note that not all SPOTiever claims are nondeterministic; for other benchmarks SPOT pro
duced deterministipever claims.
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Model-Scaling Benchmark Workload
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Fig. 3. Sums of the model-checking times for all model-scaling bemark instances, based on
the number of propositions in the UM.

Since we call SPOT as a step in our encoding, our automatcerafén times must always
be higher than SPOT but compile times were consistently fédstdry model checking times. Our
total compile times were comparable to SPOT for our modalisg benchmarks. For the set of
14 safety formulas in our workload, when model-checkingraga 34-variable UM as shown in
Figure 3, the sum of our compile times was 6.01 seconds (teakb down into a sum of LTL-to-
never claim times of 1.74 seconds, a sum of Promela-to-C timesGH Seconds, and a sum of
C-to-binary times of 4.22 seconds), while the sum of our mhatiecking times was 122662.78
seconds. For SPOT encodings, the sum of compile times w8ssécéonds (including a sum of
LTL-to-never claim times of 0.14 seconds, a sum of Promela-to-C times@§ 8econds, and
a sum of C-to-binary times of 4.33 seconds) with a sum of mobtektking times of 225132.7

seconds. Note that the urixme command is not accurate to hundredths of a second so there is

a potential for some error contributions in these sums.

5.2 Formula-Scaling Experimental Results

Figures 4(a) and 4(b) show the sums of the model checkingstoheandomly-generated safety
formulas: completely randomly generated in Figure 4(a) symtactically safe in Figure 4(b).
Model checking times summed over all non-trivial randoménegrated formulas for our best
encoding were significantly lower than for SPOT encodings.

Since we call SPOT as a step in our encoding, our automatcerafn times were always
higher than SPOT but were consistently dwarfed by modelléhgdimes. This trend holds for
syntactically safe random formulas as well. See Figure 5.2.

BRI CS Aut omat on experienced some errors when encoding some randomly geddos-
mulas. These were rare enough as to not significantly impactiming results, i.e. for the set
of 500 5-variable, 15-length random formulas in Figure AB® CS Aut onat on experienced

13



5 Variable Random Formulas 6 Variable Syntactically Safe Random Formulas
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random formula benchmark. syntactically safe benchmark.

Fig. 4. Graphs of sums of model-checking times for both categorfiearalomly-generated for-
mulas, showing that our model checking times were conglgtemver than SPOT.

nine errors. We summed data only for formulas where both #@®TSand CHIMP-Spin model
checking runs completed without an error or timeout.

The difference in model checking time is not directly caatet! with other statistics we mea-
sured, such as the length of counterexamples returned fimufa violations. Across all of the
randomly-generated formulas, we found that the numberadéstand the lengths of counterex-
amples associated with ofiront _det _swi t ch_mi n_abr _ea_st ate_fi n never claims and with
SPOT'’s were usually very close, within a few states of eatlerotin general, the number of
transitions had a higher variance between these two ergsidimthe median cases, we ended up
with less than or equal to the number of transitions in thevadgnt SPOThever claim.

6 Discussion

In this paper we brought attention to the benefit of deterstimcompilation for safety LTL prop-
erties. We defined novel encodings of safety LTL propertesdeterministimever claims and
showed that one encoding consistently leads to faster rutmaking times than the state-of-
the-art SPOT encoding or any of our other new encodings.eftwer, we recommend a multiple-
pronged property-compilation approach to the Spin modetkér: use SPOT for the compilation
of non-safety properties and use deterministic compitaticth our newf r ont _det _swi t ch_ni n
_abr _ea_st at e_fi n encoding for safety properties. This approackxgensibledifferent encod-
ings ofnever claims may be appropriate for different types of LTL fornajlaee [29].

Determinizingnever claims for safety properties up front, rather than on-tgesttems to
have a major effect on model-checking performance. Whileeeimethod of determinizing yields
better performance due to the simpler structure of the mtogkarch space, determinizing up front
enables the use of other optimizations that improve peidoge: state labels (rather than num-
bers), state minimization, edge abbreviation. There ig alsonsistent time savings associated
with model checking using finite acceptance conditions.

In general, deterministic compilation is more time consugrthan nondeterministic compi-
lation due to the need to determinize and minimize, thoughdberhead is dwarfed by the im-
provements in model-checking time. Still, our experimeavealed théBRI CS Aut ormat on tool
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Fig. 5. Sums of compilation times for both categories of randorméperated formulas, showing

that compilation times were dwarfed by model checking tir\ege that the unixi me command

is not accurate to hundredths of a second; the times preskate may contain substantial error
contributions. These graphs simply show that the sum of dertimes over all formulas in a test

set was always under a minute, for both SPOT and the best CHIpP encoding.

to be a slow link in our tool chain; improving this link is a gebt for future research. In partic-

ular, we plan to investigate replacing tBBI CS Aut omat on tool by (currently undocumented)

determinization functions provided by SPOT. Also, for thagper we implemented our encoding
as an extension of the CHIMP tool. However, in the future weildidike to implement our best

encoding more efficiently rather than relying on a modifimatdf a tool created for a different

purpose.

Finally, Kupferman and Lampert [18] developed an altexgatipproach to model checking
of safety properties, which involves the construction obadeterministic finite-word automaton
for bad prefixes. That approach may yield longer countergkesn but it does not involve the
theoretical additional exponential blow-up that is invadvin the approached pursued here. A
comparison with that approach is another subject for futesearch.
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Appendix A: Promela Code Examples

We show examples of our new Promela encodings of automatavbel

A.l  Examples of the Winning Encoding:
front .det switch_nmi n_abr _eastatefin

The encodings without edge abbreviation have as many*agr&nsitions per state, sometimes
fewer if multiple valuations of lead to automaton acceptance. We can improve model-clgeckin
performance ofiever claims fordet encodings utilizing state labels by abbreviating the trans
tions. For finitenever claims, our edge abbreviation algorithm can take advardbtiee Promela
semantics property that transitioning to a terminal ertatesand failing to find such a transi-
tion are equivalent. This enables us to further reduce tlde size for finite-acceptanaever
claims by employing trap state elimination as we are abhtig the edges. Theever claim

for our winning encodingf,r ont _det _swi t ch_mi n_abr _ea_st at e_fi n, corresponding to bench-
mark formula 4 appears in Listing 1.1.

[+«LTL formula: (!(X ((p0 & pl) R p2)))=*/

never {
init_ S2:
atomc {
if
:: (1) -> goto SO;
fi;
}
SO:
atomc {
if
(!p2) -> goto done;
(('p0 && p2) || (!'pl && p2)) -> goto SO;
fi;
}
done: /*signal property violation by |Ianding herex/
ski p;
}

Listing 1.1. lllustrating thef ront _det _swi t ch_mi n_abr _ea_state_fin never claim
encoding of the benchmark formula 4

Deterministic encodings can result in significant improeats in model checking perfor-
mance by reducing calls to the internal nested depth-fiesthealgorithm in the model checker.
Take for example the following variant of benchmark form@ia](qVv xOp) AC(r v xO-p).
The SPOT encoding for the correspondimeyer claim appears in Listing 1.2. As we increase
the size of the universal model, the time required to modekkhhisnever claim increases
exponentially.

never { // F((!pl & XFIp0) | (!p2 & XFpO0))
TO_ init:
if
S

I'(p2)) -> goto accept_S2
((1)

-> goto TO_S3

17
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:o (!'(pl)) -> goto accept_S4
fi;

accept _S2:
i f
:: ((p0)) -> goto accept _al
:o (1(p0)) -> goto TO_S6
fi;
TO_S3:
if
© ('(p2)) -> goto accept_S2
((1)) -> goto TO_S3
:1 (!(pl)) -> goto accept_S4
fi;
accept _S4:
if
:t ('(p0)) -> goto accept _al
:: ((p0)) -> goto TO_S7
fi;
TO_S6:
if
:1 ((p0)) -> goto accept_al
: (!'(p0)) -> goto TO_S6
fi;
TO_S7
i f
:: ('(p0)) -> goto accept_al
:: ((p0)) -> goto TO_S7
fi;
accept _all
skip

}

Listing 1.2. lllustrating the SPOTever claim for the originalaccidentally safdor-
mula from [19], which we modified to form our benchmark foraél

However, if we encode this samever claim deterministically, the time required to model
check thisnever claim remains near zero as we increase the size of the uaiveixsdel. For
comparison, thér ont _det _swi t ch_ni n_abr _ea_st at e_f i n encoding of the same formula from
Listing 1.2 appears in Listing 1.3. Examine the initial stani t _S1, in Listing 1.3. In this case,
Spin initially explores the valuation where the variabfs pl, andp2 are false, in which case
this never claim transitions directly talone, causing Spin to skip the NDFS in the emptiness
check. Itis the NDFS that causes the SR®@Ver claim to require exponentially increasing time
to model check: note that the initial state in Listing 1.2 hasequivalent deterministic path to
termination.

[T LTL formula: (1([1(pl | (X T[] pO)) & [1(p2 | (X ([] ! p0)))))
never {

init_S1:
atomc {
if
(p2 && 'pl ) -> goto S2;

18
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(pl & p2 ) -> goto init_Si1;
(pl && !'p2 ) -> goto SO;

.. else -> goto done;

fi;

}
SO:
atomc {
if
cio(pl & !'p0 ) -> goto SO;
.. else -> goto done;
fi;
}
S2:
atomc {
if
:: (p0 && p2 ) -> goto S2
.. else -> goto done;
fi;
}
done: // signal property violation by |anding here
ski p;

}

Listing 1.3. lllustrating thef r ont _det _swi t ch_m n_abr _ea_stat e_fi n never claim
for the originalaccidentally safdormula from [19], which we modified to form our

benchmark formula 6.

A.2 Examples of Nondeterministic Encodings

[«LTL formula: (!(X ((p0 & pl) R p2)))=*/
int i =0;
bool not_stuck = fal se;

/+Declare state arrays; they are automatically initialized to O/

bool current_state [3];
bool next_state [3];
never {

[ +*This next |line happens in tinme -1; one step before the first

step of the system nodel x/
next _state[2] = 1; /*initialize current to the initial

do
atom c{

/*First, swap of current_state and next_state*/

i = 0;

do
(i <3) ->
current _state[i] = next_state[i];
i ++;
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oo (i >= 3) -> break;
od;

/*reset next_statex/
i =0
do
(i <3) ->
next _state[i] = 0;
i ++;
2o (i >= 3) -> break;
od;
/+*Second, fill in next_state array*/
if
current _state[2] ->
if
(1)
-> next_state[1l] = 1;
el se -> skip;
fi;
.. else -> skip;
fi;
if
;. current_state[0] ->
if
(1)
-> next_state[0] = 1;
el se -> skip;
fi;
.. else -> skip;
fi;
if
;. current_state[1l] ->
if
(p0 && pl && p2 )
-> next_state[0] = 1;
el se -> skip;
fi;
if
((p2 && !'p0) || (p2 && !pl)
-> next_state[1l] = 1;
el se -> skip;
fi;
.. else -> skip;
fi;
/*Third, check if we're stuckx*/
i = 0;
not _stuck = false;
do
(i <3 ->
not _stuck = not_stuck || next_state[i];
i ++;
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oo (i >= 3) -> break;
od;
if
(! not_stuck) -> break;
el se -> skip;
fi;
}
od;
}

Listing 1.4. lllustrating thef r ont _nondet _nomi n_bdd_nunber _fi n never claim en-
coding of formula 4. Note this encoding utilizes finite adeeye.

[+ LTL formula: (!'(X ((pO0 & pl) R p2)))=*/
int i = 0;

/«Decl are state arrays
They are automatically initialized to 0/
bool current_state [3];
bool next_state [3];
never {

SO init: /xinitialize current herex/
atomc {

current _state[0] = 1;

next _state[0] =

0;
next _state[1] ( current_state[2] && (p0 && pl && p2)) ||
( current_state[1l] && (1));
next _state[2] = ( current_state[0] && (1)) ||
( current_state[2] && ((p2&& p0)||(p2&& pl)));

/= if any next state is enabled, |oop */

[+ Note that this if-statement will choose nondeterministically
from anmong the true guards, but that’'s OK since nultiple
guards go to the same place*/

i f
©: next_state[0] -> goto SIi;
next _state[1l] -> goto SIi;
next _state[2] -> goto SIi;
el se -> goto accept_all;
fi;
}
S1: /+loop here forever if property hol ds*/
atomc {
[ *update: current_state = next_statex/
i = 0;
do
(i <38 ->
current _state[i] = next_state[i];
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i ++;

(i >= 3) -> break;
od;

next _state[0]

0;
next _state[1l] = ( current_state[2] && (p0 && pl && p2)) |
( current_state[1l] && (1));
next _state[2] = ( current_state[0] && (1)) |
( current_state[2] && ((p2&& p0)||(p2&&! pl)));

[+ if any next state is enabled, |oop */
if
.. next_state[0] -> goto SIi;
next _state[1l] -> goto SIi;
next _state[2] -> goto Sl
.. else -> goto accept_all;
fi;

accept _all: /+signal property violation by onega-|ooping herex/

ski p;
}

Listing 1.5. lllustrating theback_nondet _m n_bdd_nunber _i nf encoding of formula

4. Note this encoding utilizes infinite acceptance.

A.3 Examples of Deterministic Encodings

[+ LTL formula: (!'(X ((pO0 & pl) R p2)))=*/
int current_state = 2;

int next _state = 2;

int system state_index = O0;

never {

next state = 2; /*initialize current to the initial state
do
atomc {
current _state = next_state; /*update statex/
next _state = -1; /*resetx/

/+Cal cul ate the system state index*/

system state_index = 0; /*resetx/

system state_index=system state_index+ ((p0) -> (1 <<

system state_index=system state_index+ ((pl) -> (1 <<

system state_index=system state_index+ ((p2) -> (1 <<

if
(((current_state ==

current_state ==

current_state ==

current_state ==

&& (system state_index ==
&& (system state_index ==
&& (system state_index ==
&& (system state_index ==

O O NN
—_ — — —

((
((
((
((

herex/
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((current_state 2) && (system state_index == 6)) ||
((current_state 2) && (system state_index == 0)) ||
((current_state 2) && (system state_index == 3)) |
((current_state 2) && (system state_index == 4)) ||
((current_state 0) && (system state_index == 3)) ||
((current_state 2) && (system state_index == 1)) |
((current_state 2) && (system state_index == 2)))
-> next_state =

(((current_state 0) && (system state_index == 7)) |
((current_state 1) && (system state_index == 0)) ||
((current_state 1) && (system state_index == 1)) ||
((current_state 1) && (system state_index == 2)) |
((current_state 1) && (system state_index == 3)) ||
((current_state 1) && (system state_index == 4)) ||
((current_state 1) && (system state_index == 5)) |
((current_state 1) && (system state_index == 6)) ||
((current_state 1) && (system state_index == 7)))
-> next_state =

.. el se break;
fi;
}
od;

}
Listing 1.6. lllustrating theback _det _m n_abr _nunber _f i n encoding of formula 4.

[+ LTL formula: (!'(X ((p0 & pl) R p2)))=*/
int current_state = 2;
int next_state = 2;
int system state_index = 0;
never {
next state = 2; /*initialize current to the initial state herex*/

do
cooatomoc {

(current _state
if

->

current _state = next_state; /*update statex/
next state = -1; /*resetx/

/+Cal cul ate the system state indexx*/
system state_i ndex = 0;
system state_i ndex=system state_i ndex +((p0
system state_i ndex=system state_i ndex +((pl)
system state_i ndex=system state_i ndex +((p2

[ *resetx/

)
)

(system state_index == )
-> next_state 0;
(system state_index == 7 )
-> next_state 0;

-> (1 << 2):0);
-> (1 << 1):0);
-> (1 << 0):0);
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od;

fi;

(system state_index

-> next_state

0;

(system state_index

-> next_state

0;

(system state_index

-> next_state

0;

(system state_index

-> next_state

0;

(system state_index

-> next_state

0;

(system state_index

-> next_state
el se break;

(current_state ==

if

fi;

) ->

0;

(system state_index

-> next_state

L

(system state_index

-> next_state

0;

(system state_index

-> next_state

0;

(system state_index

-> next_state
el se break;

(current_state ==

if

fi;

) ->

0;

(system state_index

-> next_state

L

(system state_index

-> next_state

L

(system state_index

-> next_state

1

(system state_index

-> next_state

L

(system state_index

-> next_state

L

(system state_index

-> next_state

1

(system state_index

-> next_state

L

(system state_index

-> next_state
el se break;
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Listing 1.7. lllustrating thef r ont _det _swi t ch_nunber _f i n never claim encoding of

formula 4.
1 /+ LTL formula: ('(X ((p0 & pl) R p2)))=*/
2 int current_state = 2;
3 int next_state = 2;
4 int systemstate_index = 0;
5 never {
6
7 SO_init:/*initialize current herex/
8 atomc {
9 current _state = 2;
10
11 /+Cal cul ate the system state indexx*/
12 system state_index = 0; /*reset*/
13 system state_index = system state_index + ((p0) -> (1 << 2):0);
14 system state_index = system state_index + ((pl) -> (1 << 1):0);
15 system state_index = system state_index + ((p2) -> (1 << 0):0);
16 i f
17 :: (system state_index == 5)
18 -> next _state = 0; goto S1,
19 ;. (system state_index == )
20 -> next _state = 0; goto S1,
21 :: (system state_index == )
22 -> next_state = 0; goto S1;
23 :: (system state_index == )
24 -> next _state = 0; goto S1,
25 ;. (system state_index == )
26 -> next_state = 0; goto S1,
27 :: (system state_index == )
28 -> next_state = 0; goto S1;
29 :: (system state_index == )
30 -> next_state = 0; goto S1;
31 ;. (system state_index == )
32 -> next _state = 0; goto S1,
33 o else
34 -> goto accept_stuck;
35 fi;
36
37

38 S1: /xloop here forever if property hol ds*/
39 atomc {

40 current _state = next_state; /*update state*/

41

42 /+Cal cul ate the system state indexx*/

43 system state_index = 0; /*reset*/

44 system state_i ndex = system state_index + ((p0) -> (1 << 2):0);
45 system state_index = system state_index + ((pl) -> (1 << 1):0);
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system state_index = system state_index + ((p2)

if

(current_state == 2) ->

if
(system state_index == )
-> next _state = 0; goto S1,
(system state_index == )
-> next_state = 0; goto S1;
(system state_index == 6 )
-> next_state = 0; goto S1;
(system state_index == )
-> next _state = 0; goto S1,
(system state_index == )
-> next_state = 0; goto S1;
(system state_index == )
-> next_state = 0; goto S1;
(system state_index == )
-> next _state = 0; goto S1,
(system state_index == )
-> next _state = 0; goto S1,
el se
-> goto accept_stuck;

fi;

(current_state == 0) ->

if
(system state_index == )
-> next _state = 1, goto SIi;
(system state_index == )
-> next _state = 0; goto S1,
(system state_index == )
-> next_state = 0; goto S1;
(system state_index == 3 )
-> next _state = 0; goto S1,
el se
-> goto accept_stuck;

fi;

(current_state == 1) ->

if
(system state_index == )
-> next_state = 1, goto SI;
(system state_index == 1)
-> next _state = 1, goto SIi;
(system state_index == )
-> next _state = 1, goto SI;
(system state_index == 3 )
-> next_state = 1, goto SI;
(system state_index == )
-> next _state = 1, goto SIi;
(system state_index == )
-> next _state = 1, goto SIi;
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. (system state_index == )
-> next_state = 1; goto SI;
© (system state_index == )
-> next_state = 1, goto SIi;
el se
-> goto accept_stuck;
fi;
fi;
}
accept _stuck: /=*signal property violation by onega-looping herex/
ski p;
}

Listing 1.8. lllustrating thef r ont _det _swi t ch_nunber _i nf never claim encoding of
formula 4. It employs the Promela acceptance-cycle acnepteondition.

[+ LTL formula: (!'(X ((pO0 & pl) R p2)))=*/
int system state_index = 0;
never {

init_S2:
atomc {
system state_index = 0; /*resetx*/

system state_index= system state_index + ((p0) -> (1 << 2):0);
system state_index= systemstate_index + ((pl) -> (1 << 1):0);
system state_index= systemstate_index + ((p2) -> (1 << 0):0);
if
:: (system state_index == 5)
-> goto SO;
. (systemstate_index == 7 )
-> goto SO;
: (system state_index == 6 )
-> goto SO;
: (system state_index == 0 )
-> goto SO;
. (systemstate_index == 3 )
-> goto SO;
. (system state_index == 4 )
-> goto SO;
: (system state_index == 1)
-> goto SO;
. (systemstate_index == 2 )
-> goto SO;
el se
-> goto accept_stuck;
fi;
}
SO:
atomc {

system state_index = 0; /*reset*/
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system state_index=
system state_index=
system state_index=

system state_i ndex + (
system state_i ndex + (
system state_index + (

if
(system state_index == )
-> goto S1;
(system state_index == )
-> goto SO;
(system state_index == )
-> goto SO;
(system state_index == )
-> goto SO;
el se
-> goto accept_stuck;
fi;
}
S1:
atomc {

system state_index = 0; /*reset=*/

system state_index= system state_index
system state_index= system state_index
system state_index= system state_index
if
(system state_index == 0 )
-> goto S1;
(system state_index == 1)
-> goto S1;
(system state_index == 2 )
-> goto S1;
(system state_index == 3 )
-> goto S1;
(system state_index == 4 )
-> goto S1;
(system state_index == 5 )
-> goto S1;
(system state_index == 6 )
-> goto S1;
(system state_index == 7 )
-> goto S1;
el se
-> goto accept_stuck;
fi;
}
accept _stuck: /=*signal property
ski p;

}

viol ati on by omega-| oopi ng herex/

Listing 1.9. lllustrating thef r ont _det _swi t ch_mi n_abr _st at e_i nf never claim en-
coding of formula 4. This version employs the Promela notibstates and the Promela

acceptance-cycle acceptance condition.
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1 /+ LTL formula: ('(X ((p0 & pl) R p2)))=*/
2 int system state_index = 0;

3 never {

4

5 init_S2:

6 atomc {

7 system state_index = 0; /*reset=*/

8 system state_index= system state_index + ((p0) -> (1 << 2):0);
9 system state_index= system state_index + ((pl) -> (1 << 1):0);
10 system state_index= system state_index + ((p2) -> (1 << 0):0);
11 if

12 :: (system state_index == 5)

13 -> goto SO;

14 ;. (system state_index == 7 )

15 -> goto SO;

16 ;. (system state_index == 6 )

17 -> goto SO;

18 :: (system state_index == 0 )

19 -> goto SO;

20 :: (system state_index == 3 )

21 -> goto SO;

22 ;. (system state_index == 4 )

23 -> goto SO;

24 :: (system state_index == 2 )

25 -> goto SO;

26 :: (system state_index == 1)

27 -> goto SO;

28 .. else -> goto done;

29 fi;

30 }

31 SO:

32 atomc {

33 system state_index = 0; /*resetx*/

34 system state_index= system state_index + ((p0) -> (1 << 2):0);
35 system state_index= system state_index + ((pl) -> (1 << 1):0);
36 system state_index= system state_index + ((p2) -> (1 << 0):0);
37 if

38 :: (system state_index == )

39 -> goto S1;

40 ;. (system state_index == )

41 -> goto SO;

42 :: (system state_index == )

43 -> goto SO;

44 :: (system state_index == )

45 -> goto SO;

46 .. else -> goto done;

47 fi;

48 }

49 SI:

50 atomc {
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system state_index = 0; /*reset*/
system state_index= system state_index + ((p0) -> (1 << 2):0);
system state_index= systemstate_index + ((pl) -> (1 << 1):0);
system state_index= system state_index + ((p2) -> (1 << 0):0);
if
:: (system state_index == 0 )
-> goto S1;
. (system state_index == 1)
-> goto S1;
. (system state_index == 2 )
-> goto S1;
© (system state_index == 3 )
-> goto S1;
. (system state_index == 4 )
-> goto S1;
. (system state_index == 5 )
-> goto S1;
: (system state_index == 6 )
-> goto S1;
: (system state_index == 7))
-> goto S1;
.. else -> goto done;
fi;
}
done: /=xsignal property violation by |anding herex*/
ski p;
}

Listing 1.10. lllustrating thef r ont _det _swi t ch_m n_abr _st at e_fi n never claim en-
coding of formula 4.

[+ LTL formula: (!'(X ((pO0 & pl) R p2)))=*/
int current_state = 0;

int next _state = 0;

int system state_index = 0;

int table[24];

never {

SO_init:/+initialize current herex*/

atomc {

table[0] = 2; table[1] = 2; table[2] = 2; table[3] = 2;
table[4] = 2; table[5] = 2; table[6] = 2; table[7] = 2;
table[8] = 1; table[9] = 1; table[10] = 1; table[11l] = 1;
table[12] = 1, table[13] = 1; table[14] = 1; table[l5] = 1;
table[16] = -1, table[17] = 2; table[18] = -1, table[19] = 2,
table[20] = -1; table[21] = 2; table[22] = -1; table[23] = 1;

/+Cal cul ate the system state indexx*/
system state_index = 0; /*reset*/
system state_index = system state_index + ((p0) -> (1 << 2):0);
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20 system state_index = system state_index + ((pl) -> (1 << 1):0);

21 system state_index = system state_index + ((p2) -> (1 << 0):0);
22

23 /+*Lookup the next state in the tablex/

24 next _state = table[current_state * 8 + system state_index];

25 if

26 .. (next_state == -1) -> goto accept_stuck;

27 .. else -> goto S1;

28 fi;

29

30

31 S1: /xloop here forever if property hol ds*/
32 atomc {

33 current _state = next_state; /*update state*/

34 next state = -1; /*resetx/

35

36 /+Cal cul ate the system state indexx*/

37 system state_index = 0; /*reset*/

38 system state_index = system state_index + ((p0) -> (1 << 2):0);
39 system state_index = system state_index + ((pl) -> (1 << 1):0);
40 system state_index = system state_index + ((p2) -> (1 << 0):0);
41

42 [ *Lookup the next state in the tablex/

43 next _state = table[current_state * 8 + system state_index];

44 if

45 ;. (next_state == -1) -> goto accept_stuck;

46 :: else -> goto Si;

47 fi;

48 }

49

50 accept_stuck: /=*signal property violation by omega-| oopi ng herex/
51 ski p;
52 }

Listing 1.11. Illustrating thef r ont _det _menory _t abl e_ni n_abr _i nf encoding of for-
mula 4.
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Appendix B: Universal Model from [27]

For each of the formulas in our benchmark sets we model chgalast univeral models that
are linearly-sized in the number of atomic propositionsgdascribed in [27]. For formula-scaling
benchmarks we use a universal model with 30 variables anchéalel-scaling benchmarks we
use a series of universal models starting with the 10-viriadodel and scaling up the number of
variables in the model, thereby exponentially increasiagtate space.

For all benchmarks, our universal system model is a Prontelgram that explicitly enu-
merates all possible evaluations oW p and employs nondeterministic choice to pick a new
valuation at each time step. For example, wReop = {p,q}, the Promela model is:

bool p,q;
active proctype generateVal ues()
{
do
at omi ¢{
if
oo true ->p =0;
cootrue ->p =1,
fi;
i f
oo true ->q =0;
©otrue ->q = 1,
fi;
}
od
}

Starred formulas are checked against universal modelsé¢hat| variables torue
first like this:

bool p,q;
active proctype generateVal ues()
{ do
©1 atomc{
i f
cootrue ->p =1,
©1true ->p =0;
fi;
i f
tlotrue ->q =1,
cootrue ->q =0;
fi, 1}
od }
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