
   978-1-4577-0557-1/12/$26.00 ©2012 IEEE  

1 

Optimizing Battery Life for Electric UAVs using a 

Bayesian Framework 
Bhaskar Saha 

Palo Alto Research Center  

3333 Coyote Hill Rd 

Palo Alto, CA 94304 

650-812-4844 

bhaskar.saha@jpl.nasa.gov 

Cuong C. Quach 

NASA Langley Research Center 

1 S. Wright St 

Hampton, VA 23681 

757-864-6688 

cuong.c.quach@nasa.gov 

Kai Goebel 

NASA Ames Research Center 

Moffett Field, CA  94035 

650-604-4204 

kai.goebel@nasa.gov 

 

 
Abstract—The amount of usable charge of a battery for a given 

discharge profile is not only dependent on the starting state-of-

charge (SOC), but also other factors like battery health and the 

discharge or load profile imposed. For electric UAVs 

(unmanned aerial vehicles) the variation in the load profile can 
be very unpredictable. This paper presents a model parameter 

augmented Particle Filtering prognostic framework to explore 

battery behavior under these future load uncertainties. 

Stochastic programming schemes are explored to utilize the 

battery life predictions generated as a function of load, in 
order to infer the most optimal flight profile that would 

maximize the battery charge utilized while constraining the 

probability of a dead stick condition (i.e. battery shut off in 

flight). 
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1. INTRODUCTION 

With electric UAVs (unmanned aerial vehicles) we are 

witnessing the dawn of a new era in aviation. They are 

being increasingly deployed in military, civilian and 

scientific missions all over the globe. While an impressive 

technical feat themselves, these UAVs are but stepping 

stones to the full-scale electric and hybrid aircraft of the 

future. EADS (European Aeronautic Defense and Space 

Company) has been testing a battery electric-powered ultra-

light aircraft for the last year, and recently introduced a 

series-hybrid motor glider as well as an ambitious future 

concept for an all-electric, 50-seat passenger plane powered 

by superconducting drive motors. In 2010, Boeing released 

details of the SUGAR Volt (Subsonic Ultra Green Aircraft 

Research) twin-engine future concept airliner. The 737-size 

transport would be powered by hybrid propulsion system 

that would combine gas turbine and battery/electric motor 

technology.  

However, with the electric car still trying to find its niche, 

battery powered propulsion is a bigger hurdle for aircraft. 

This is because of the large disparity between the energy 

densities of batteries versus jet-fuel. Though some of that 

can be negated by the higher efficiency of electric motors 

than combustion-based engines, the energy and power 

densities of batteries would have to increase several fold to 

make electric propulsion commercially feasible. As 

important as finding better battery materials is to this effort, 

it is equally imperative to utilize the available energy to the 

optimal extent possible, thus reducing the need for bigger, 

heavier batteries. 

Like ground vehicles, battery powered electric aircraft 

suffer from uncertainties in estimating the remaining charge 

and hence most flight plans are highly conservative in 

nature, using only a fraction of the available battery energy. 

The amount of usable charge of a battery for a given 

discharge profile is not only dependent on the starting state-

of-charge (SOC), but also other factors like battery health 

and the discharge or load profile imposed. Just as for an 

electric car the future power draw may be inferred from the 

intended route, speed, and terrain data, the variables of 

interest for a pilot controlled UAV include wind speed and 

direction, air temperature and density, as well as the 

duration and velocity of different flight segments like climb, 

cruise, turns and descent.  

Previous work in battery prognostics  for UAVs has relied 

on assuming knowledge of these future load conditions. [5] 

But given the unpredictable nature of UAV load patterns, it 

is preferable that the system operator not only receive 

prognostics information based on expected load induced on 

the system, but also information about a range of load 

levels, including the extreme load levels (i.e. the maximum 

and minimum loads). Knowledge of how these varying load 

profiles affect the remaining useful life (RUL) of the battery 

provide the operator with a complete picture of how the 

battery charge may be depleting. In this paper a model 

parameter augmented Particle Filtering prognostic 

framework is used to explore these future load uncertainties. 

Stochastic programming schemes are explored to utilize the 

RUL distributions generated as a function of the loads, in 

order to infer the most optimal flight profile. Such a profile 

would maximize the battery charge utilized while 

constraining the probability of a dead stick condition (i.e. 
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battery shut off in flight), which can have catastrophic 

consequences. 

In this paper our application platform is  a subscale aerobatic 

UAV, the Edge 540, powered by four 18.5V 6000mAh 

Lithium-polymer (Li-Poly) battery packs. For prognostics, a 

detailed discharge model was developed for the Li-Poly 

cells and verified using hardware-in-the-loop as well as 

flight tests of the Edge 540. This model was then used in a 

Particle Filter (PF) based prognostic framework that 

combines state estimation with model adaptation to 

accurately predict the remaining battery charge. This 

information is used in conjunction with stochastic estimates 

of future usage to give remaining run time for the UAV. 

This paper also discusses how these predictions may be 

used to increase operational safety, optimize mission plans 

and extend battery life. 

2. BATTERY BEHAVIOR 

Batteries are energy storage devices that facilitate the 

conversion, or transduction, of chemical energy into 

electrical energy, and vice versa [3]. The characteristics of a 

Li-Poly battery have also been explained in [5], but some 

information is repeated here to motivate the modeling 

approach. For the purposes of this paper it will suffice to say 

that the internal chemical processes of the battery were 

broken down into three basic electrochemical processes: 

Ohmic Drop 

This refers to the diffusion process through which Li-ions 

migrate to the cathode via the electrolytic medium. The 

internal resistance to this ionic diffusion process is also 

referred to elsewhere as the IR drop, where IR denotes the 

product of current (I) and resistance (R). For a given load 

current this drop usually decreases with time due to the 

increase in internal temperature that increases ion mobility. 

However, when we have step changes in the load, a higher 

load level followed by a lower one presents a period of 

relaxation for the battery. During this period the voltage 

does not immediately jump up but gradually rises which can 

be modeled by an exponential function. A similar effect can 

also be observed for a step increase in current level. These 

effects can be reconciled by considering the battery 

impedance as an RC equivalent circuit [7]. Henceforth, this 

drop is referred to as E
IRC

, given by 
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where t
k
 is  any time instant, I

-1
 is the last step-change in 

load current, tI-1
 is the time instant of that change, and the 


i,k

’s are model parameter values at t
k
. More details about 

the formulation of Eq. (1) can be found in [5]. 

 

Activation Polarization 

All chemical reactions have a certain activation barrier that 

must be overcome in order to proceed and the energy 

needed to overcome this barrier leads to the activation 

polarization voltage drop. The dynamics of this process is 

described by the Butler–Volmer equation. The resulting 

drop in voltage has been modeled as shown in Eq. (2) to 

represent the activation polarization of the battery, referred 

to from now on as E
AP

.  

           kkkkkAP tItE ,5,4 1ln          (2) 

where I
k
 is the instantaneous load current and 

i,k
’s are 

model parameter values at time t
k
. The effect of E

AP
 is 

most pronounced when the electrode reaction is controlled 

by electrical charge transfer at the electrode and not by the 

mass transfer to or from the electrode surface from or to the 

bulk electrolyte. 

Concentration Polarization 

Concentration polarization represents the voltage loss due to 

spatial variations in reactant concentration at the electrodes. 

This is mainly caused when the reactants are consumed by 

the electrochemical reaction faster than they can diffuse into 

the porous electrode, as well as due to variations in the 

volumetric or bulk flow of the ions. The consumption of Li-

ions causes a drop in their concentration along the cell, 

between the electrodes, which causes a drop in the local 

potential near the cathode. This voltage loss is also referred 

to as concentration polarization, represented in this paper by 

the term E
CP

.  

            kkkkkCP tItE ,7,6 exp         (3) 

The value of this factor is low during the initial part of the 

discharge cycle and grows rapidly towards the end of the 

discharge or when the load current increases.  

The output current plays a big role in determining the loss es 

inside a battery and is an important parameter to consider 

when analyzing battery performance. The term most often 

used to indicate the rate at which a battery is discharged is 

the C-Rate [3]. The discharge rate of a battery is expressed 

as C/r, where r is the number of hours required to 

completely discharge its nominal capacity. The terminal 

voltage of a battery, as also the charge delivered, can vary 

appreciably with changes in the C-Rate. Furthermore, the 

amount of energy supplied, related to the area under the 

discharge curve, is also strongly C-Rate dependent. Figure 1 

shows the typical discharge of a battery and its variation 

with C-Rate. Each curve corresponds to a different C-Rate 

or C/r value (the lower the r the higher the current) and 

assumes constant temperature conditions. 
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Figure 1 – Schematic drawing showing the influence of 

C-Rate upon the discharge curve (reproduced from [3]) 

Thus the higher the demand on the battery, the lesser the 

amount of usable charge delivered. This is a key point, since 

for electric UAVs some maneuvers impose a higher C-Rate 

than others. Consequently, when optimizing the future flight 

profile for a constrained remaining battery charge, the 

expected load current and time duration corresponding to 

each flight maneuver need to be taken into consideration.  

3. PROGNOSTIC FRAMEWORK 

The formulation of a model, though, is just a part of the 

solution. As mentioned above there are a number of 

unknown parameters that need to be identified. Even after 

identification, they may not be directly applicable to any 

given test run since the values may differ from one battery 

to another, or for the same battery from one cycle to the 

next. Furthermore, for any given cycle the parameter values 

may be non-stationary. In general, the task of tracking the 

battery voltage (denoted as the state variable x
k
) and 

estimating the unknown model parameters  
i,k

’s can be cast 

as a filtering problem. The state equations with additive 

zero-mean Gaussian noises can be written as 
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A variety of filtering techniques is applicable here since 

manually piloted flight patterns differ from each other and 

so do the atmospheric flight conditions . However, keeping 

the uncertainties inherent to our problem in mind, a Particle 

Filtering (PF) framework is chosen. Particle Filters [2] are a 

novel class of non-linear filters that combine Bayesian 

learning techniques with importance sampling to provide 

good state tracking performance while keeping the 

computational load tractable. The idea is to represent the 

system state as a probability density function (pdf) that is 

approximated by a set of particles (points) representing 

sampled values from the unknown state space, and a set of 

associated weights denoting discrete probability masses. 

The particles are generated from an a priori estimate of the 

state pdf, propagated through time using a nonlinear process 

model, and recursively updated from measurements through 

a measurement model. The main advantage of PFs here is 

that model parameters are included as a part of the state 

vector to be tracked, thus performing model identification in 

conjunction with state estimation [4]. Figure 2 shows a 

flowchart for this filtering process. 

Initialize PF Parameters

Propose Initial Population , x0,w0

Propagate Particles using State 

Model , xk-1xk

Update Weights, wk-1  wk
Measurement

zk

Weights 

degenerated?

Resample

Yes

No

 

Figure 2 – Particle filtering flowchart (reproduced from 

[5]) 

After the model has been tuned to reflect the dynamics of 

the specific system being tracked, it can then be used to 

propagate the particles up to the failure threshold (e.g. 0% 

SOC for the battery or when the voltage per cell reaches the 

cutoff limit) to give the RUL pdf [4], as shown in Figure 3. 

The EOL (end-of-life) threshold refers to the EOD 

threshold, which in our case is the minimum allowable 

battery voltage (EEOD). 

Start Prediction at tp

Estimate Initial Population , xp,wp

Propagate Particles using State 

Model , xp+k-1xp+k

EOL threshold 

exceeded?

Generate RUL pdf from {wp}

Yes

No

 

 Figure 3 – Prediction flowchart (reproduced from [5]) 

The details of the particle filter equations are given in [5]. 

Here it will suffice to say that  

            kCPkAPkIRCkk tEtEtEEtEx  
 (5) 



 4 

where E(t
k
) or E

k
 denotes the estimated terminal voltage of 

the battery. The measurement z
k
 is the measured terminal 

voltage, denoted by E
*
(t

k
) or E

*

k
. 

          kkkk tEtEz  *          (6) 

If t
p
 be the time instant when a prediction of remaining 

battery life is desired, then there are N state trajectories 

projected forward in time, corresponding to the N particles, 

until the EOD threshold is reached, i.e. E
n
(t

p+k
)<E

EOD
, where 

n is the particle index. The RUL pdf at t
p
, denoted by 

p(t
RUL,p

), is constructed by fitting a mixture of Gaussian 

kernels to the weighted distribution of the individual RUL 

values, {(t
n,EOD

 – t
p
), w

n,p
}, n = 1,…,N, where w

n,p
 is the 

particle importance weight at t
p
 and t

n,EOD
 is the predicted 

time where the nth particle trajectory crosses the EOD 

threshold.   

4. THE ELECTRIC UAV PLATFORM 

The test vehicle used for this research is a COTS 33% scale 

model of the Zivko Edge 540T.  The UAV is powered by 

dual tandem mounted electric out-runner motors capable of 

moving the aircraft up to 85 knots using a 26 inch propeller. 

The motors are powered by a set of 4 Li-Poly rechargeable 

batteries.  The batteries are each rated at 7800 mAh. The 

tandem motors are each controlled by separate motor 

controllers.   

Testing on the Edge 540 UAV platform was carried out with 

the airframe restrained on the ground. The propeller was run 

through various RPM (revolutions per minute) regimes 

indicative of the intended flight profile (takeoff, climb, 

multiple cruise, turn and glide segments, descent and 

landing). Figure 4 and Figure 5 show the currents and 

voltages during a typical flight profile. 
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Figure 4 – Load currents during a typical flight profile 
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Figure 5 – Battery voltages during a typical flight profile 

Based on the data generated by several such tests, the 

nominal values for the model parameters 
i,k

’s are learned. 

Furthermore, for the sake of computational tractability, only 


5,k

 and 
7,k

 are selected to be non-stationary after a model 

sensitivity analysis. The corresponding state updates are 

simply modeled as Gaussian random walks. 
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              (7) 

Additionally, we fit Gaussian kernels to the load (I) 

distribution for different flight maneuvers. Table 1 shows a 

list of the mean, standard deviation, minimum and 

maximum values (rounded off to the nearest integer) for the 

load current (I, I, I, I, respectively) and duration 

(,,,, respectively) corresponding to each maneuver. 

Table 1 – Maneuver characterization (I’s in Amps; ’s in 

secs) 

 I I I I     

M1:Takeoff 80 7 70 100 60 10 50 75 

M2:Climb 30 5 22 40 120 10 90 140 

M3:Cruise 15 3 10 22 90 10 70 115 

M4:Turn 35 5 25 47 120 10 100 145 

M5:Glide 5 1 2 8 90 10 75 120 

M6:Landing 40 5 30 53 60 10 40 80 

5. PROGNOSTIC RESULTS 

The first step to optimizing battery use is the estimation and 

prediction of remaining battery charge. In order to evaluate 

the prognostic algorithm we make several predictions as 

shown in Figure 6.  
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Figure 6 – Battery voltage prediction using Particle 

Filter 

The red crosses show the measured voltage values while the 

blue dots indicate the PF state values. The time instants 

when the predictions are made are shown in green vertical 

dashed lines, with lighter shades indicating earlier 

predictions. The corresponding end-of-discharge (EOD) 

pdfs are shown in green patches on the 17.4 V EOD 

threshold voltage line (shown in dashed gray).   

In order to validate the learned prognostic model several 

flight tests were conducted using the UAV with randomized 

flight profiles. The prediction performance was accurate to 

within 2 minutes, i.e. |t
EOD 

–   
RUL,p

| < 2 mins, over multiple 

flights of durations between 15 to 25 minutes. Figure 7 

shows one such prognostic exercise.  

 

Figure 7 – Battery voltage prediction using Particle 

Filter during flight test 

The blue line indicates the measured voltage while the green 

dots indicate the state values of the PF. The grey lines 

denote the 
RUL,p

 values plotted every second, while the 

amber and red lines represent early alerts for the pilot to 

land the plane before the dead stick condition. 

6. STOCHASTIC PROGRAMMING 

Given this prognostic capability, it is possible to use the 

RUL pdfs in a decision-theoretic framework to optimize 

battery use. In general, many decision problems can be 

modeled using mathematical programs, which seek to 

maximize or minimize some objective which is a function of 

the decisions. The possible decisions are constrained by 

limits in resources, minimum requirements, etc. Decisions 

can take many forms. For our application they can be a 

temporally ordered set of maneuvers, e.g. {M1, M2, M3, 

M4, M3, M4, M5, M2, M4, M5, M3, M6}, executing a 

flight plan.  

The general form of a mathematical program is 

             

 
 

U



u

vu

vu
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
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              (8) 

Where u and v are system variables,  is the objective 

function,  is the constraint function, and U is the set of 

constraints. The constraints can be quite general, but linear 

constraints are sufficient in many cases to capture the 

essence of the model. Stochastic programs [6] are 

mathematical programs where some of the data incorporated 

into the objective or constraints is uncertain. Uncertainty is 

usually characterized by a probability distribution on the 

parameters. Although the uncertainty is rigorously defined, 

in practice it can range in detail from a few scenarios 

(possible outcomes of the data) to specific and precise joint 

probability distributions.  

When some of the data, say v, is random, then solutions and 

the optimal objective value to the optimization problem are 

themselves random. A distribution of optimal decisions is 

generally computationally intractable. There are several 

simplification strategies that can be applied in such a 

scenario.  

Worst-case Analysis 

If the value of  is uncertain, worst-case analysis or robust 

optimization tries to minimize the maximum possible value 

of . Similarly, the constraint criteria needs to be satisfied 

by the maximum value of the constraint function . The 

problem formulation in Eq. (8) then changes to  

         

 
 

V

U







v

u

vu

vu

                

                

0,max   subject to

,max   minimize 





              (9) 

where V is an “uncertainty set” to be specified in advance.  
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Expected Value Model 

Here, the expected value of the functions  and  are used 

in lieu of the functions themselves. The resulting 

formulation is given below. 
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vu

vu
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       (10) 

where   and   denote the respective expected values. 

This scheme can be considered optimization on average. 

Probabilistic Model 

Here, the expected value of the functions  and  are used 

in lieu of the functions themselves. The resulting 

formulation is given below. 

          

 
  
U


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vu
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where p denotes some probability value, 0 ≤ p ≤ 1. 

7. OPTIMIZATION STRATEGY 

For the UAV flight tests under consideration, the goal is to 

maximize the number of maneuvers without exceeding the 

charge available from the battery. Decisions can thus be 

represented as flight plans that include a temporally ordered 

set of maneuvers u ≡ {u
m

; m = 1, …, M}, where M is the 

number of maneuvers and u
m{M1, M2, M3, M4, M5, 

M6}, which denotes the set U in this case. There are some 

obvious constraints like u
1
 will be M1 and u

M
 will be M6. 

The objective then is to find the optimal flight plan given by 

{u
m

; m = 2, …, M –1}. There are other constraints like the 

requirement of keeping the UAV within controllable range 

and having an approximately even mix of flight maneuvers . 

We enforce this by mandating that no two consecutive 

maneuvers be the same, i.e. u
m

 ≠ u
m-1

, and the maneuver 

following any two consecutive non-turn actions will be a 

turn, i.e. u
m-2

 ≠ M4 ˄ u
m-1 

≠ M4   u
m 

= M4. Thus we can 

define the set of constraints by 
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where U denotes a uniform distribution over { M2, M3, M4, 

M5}. 

The stochastic variables in this case represent the state 

variable x
k
 (denoting the battery voltage E(t

k
)) and the 

battery prognostic model parameters 
i,k

’s as given in Eqs. 

(4), (5) and (7). The objective function  is the PF state 

model, H, which gives the remaining battery life, t
RUL

, as a 

function of the battery charge state, the parameters and the 

planned sequence of maneuvers. The value t
RUL

 has to be 

minimized in order to maximize the number of maneuvers , 

M. The constraint function  is given by –H, since t
RUL

 must 

always be positive to prevent a dead stick condition. Thus, 

the problem formulation for the UAV optimal flight plan 

becomes 
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where u
m

 can be quantitatively represented by {I
m

, 
m

}, and 


M6,>

 denotes the time for landing.  

This optimization routine can be run whenever an RUL 

prediction is made at any given t
p
. Each particle in the PF 

has a value of {x
n,p

,
n,i,p

} at time t
p
, where n is the particle 

index. The model H can use this state information and 

propagate it under a given flight plan to output the RUL 

value weighted by the particle weight w
n,p

 at t
p
. A schematic 

of this process is shown in Figure 8. 

State

{xn,p, n,i,p} 

Flight Plan

{Im, m: m = 1, …, M} 

Model
H

RUL

tn,RUL
 

Figure 8 – Schematic of flight plan evaluation 

The three different analysis strategies discussed in Section 6 

can now be applied. For worst-case analysis we need to 

compute the maximum value of H, hence we need to 

consider the minimum load current and duration for each 

maneuver, i.e. {I
m,>

, 
m,>

}. For the expected value model we 

use {I
m,

, 
m,

}, while for the  probabilistic model, we 

sample from the distributions of {I
m

, 
m

} shown in Table 1. 

Since this optimization routine needs to be implemented on 

a resource-constrained embedded computer onboard the 

UAV, a simple heuristic approach was investigated for the 

optimization task. The steps involved in this approach are: 

i. Start with the particle population of state values 

{x
n,p

,
n,i,p

} at time t
p
. 

ii. Generate next maneuver u
m

 subject to the constraints 

in U. 

iii. Compute corresponding load and duration values 

{I
m,>

, 
m,>

} according to the stochastic programming 

analysis strategies chosen. 

iv. Use model H to estimate the next state and predict 

RUL t
RUL. 

v. If tRUL > M6,>, then repeat from step ii, else output the 

sequence of maneuvers except the last one as the 

optimal sequence.  
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vi. In case there are more than one flight plans generated 

by the different particle trajectories (depending on the 

starting state values at t
p
, some particle trajectories 

may take a few extra maneuvers to exceed the EOD 

threshold), use the particle weights w
n,p to compute 

the expected optimal plan. 

8. CONCLUSIONS 

In summary, this paper lays a simple flight plan 

optimization strategy based on the particle filtering 

framework described in [5]. This is meant as a first step in 

formalizing computationally tractable stochastic 

programming techniques to optimally generate flight plans 

in response to battery life predictions. This approach takes 

advantage of the PF framework to simultaneously generate 

the optimal/sub-optimal flight plan simultaneously with 

predicting the RUL. Several steps lie ahead like a 

comparative analysis of alternative stochastic models in 

terms of optimality as well as computational cost. These 

options will need to be validated by flight tests where 

robustness to environmental conditions like air temperature 

and density as well as wind speed can be evaluated. The 

notion of risk-tolerance can be introduced via appropriate 

objective functions, thus allowing a non-zero risk of the 

dead stick condition in order to use more battery power.  
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