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Prognostics Health Management of Electronic
Systems Under Mechanical Shock and Vibration

Using Kalman Filter Models and Metrics
Pradeep Lall, Fellow, IEEE, Ryan Lowe, and Kai Goebel

Abstract—Structural damage to ball grid array interconnects
incurred during vibration testing has been monitored in the
prefailure space using resistance spectroscopy-based state space
vectors, rate of change of the state variable, and acceleration
of the state variable. The technique is intended for condition
monitoring in high reliability applications where the knowledge
of impending failure is critical and the risks in terms of loss of
functionality are too high to bear. Future state of the system has
been estimated based on a second-order Kalman Filter model
and a Bayesian Framework. The measured state variable has
been related to the underlying interconnect damage in the form
of inelastic strain energy density. Performance of the prognostic
health management algorithm during the vibration test has been
quantified using performance evaluation metrics. The method-
ology has been demonstrated on leadfree area-array electronic
assemblies subjected to vibration. Model predictions have been
correlated with experimental data. The presented approach is
applicable to functional systems where corner interconnects in
area-array packages may be often redundant. Prognostic metrics
including α − λ precision, β accuracy, and relative accuracy have
been used to assess the performance of the damage proxies. The
presented approach enables the estimation of residual life based
on level of risk averseness.

Index Terms—Health monitoring, leading indicators of failure,
prognostics, solder joint reliability.

I. INTRODUCTION

H EALTH management in electronics high reliability appli-
cations primarily focuses on damage diagnosis involving

built-in self-test to monitor for failure [1]–[6].
Damage diagnosis typically focuses on reactive failure de-

tection and provides limited to no insight into the system reli-
ability and residual life. Previously damage initiation, damage
progression, and residual life in the prefailure space have been
correlated with microstructural damage-based proxies, feature
vectors based on time, spectral and joint time-frequency char-
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acteristics of electronics [7]–[18]. Precise resistance measure-
ments based on the resistance spectroscopy method have been
used to monitor interconnects for damage and prognosticate
failure [19]–[24]. Avionics systems require ultrahigh reliability
to fulfill critical roles in autonomous aircraft control and navi-
gation, flight path prediction and tracking, and self-separation.
Complex electrical power systems (EPS), which broadly com-
prise of energy generation, energy storage, power distribution,
and power management, have a major impact on the operational
availability and reliability of electronic systems. Technology
trends in evolution of avionics systems pointtoward more elec-
tric aircraft [25] and the prevalent use of powersemiconduc-
tor devices in future aircraft and space platforms.Advanced
health management techniques for electrical powersystems and
avionics systems are required to meet the safety, reliability,
maintainability, and supportability requirements ofaeronautics
and space systems. Current health management techniques in
EPS and avionics systems provide very limited or no visibility
into health of power electronics packaging to predict impending
failures [26]–[30].

Maintenance has evolved over the years from corrective
maintenance to performing time-based preventive maintenance.
Future improvements in reduction of system downtime require
emphasis on early detection of degradation mechanisms. Incen-
tive for development of prognostics and health management
methodologies has been provided by need for reduction in
operation and maintenance process costs [31]. Advances in
sensor technology and failure analysis have catalyzed a broad-
ening of application scope for prognostic systems to include
large electromechanical systems such as aircraft, helicopters,
ships, power plants, and many industrial operations. Current
prognostic health management (PHM) application areas include
fatigue crack damage in mechanical structures such as those in
aircraft [32], surface ships [33], civil infrastructure [34], motors
[35], motors [36], [37], hybrid electric vehicles [38], hydraulic
actuator [39], railway structures [40], and power plants [31].

Kalman filtering is a recursive algorithm that estimates the
true state of a system based on noisy measurements [41], [42].
Previously, the Kalman filter has been used for navigation
[43], economic forecasting [44], online system identification
[45], [46], and feedback control [47]. Typical navigation ex-
amples include tracking [48], ground navigation [49], altitude
and heading [50], auto pilots [51], dynamic positioning [52],
and GPS/INS/IMU guidance [53]. Application domains in-
clude GPS, missiles, satellites, aircraft, air traffic control, and
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TABLE I
PACKAGE ARCHITECTURES USED FOR TEST BOARD

ships. The ability of a Kalman filter to smooth noisy data
measurements is utilized in gyros, accelerometers, radars, and
odometers. Prognostication of failure using Kalman filtering
has been demonstrated in steel bands and aircraft power genera-
tors [54]–[56]. Numerous applications in prognostics also exist
for algorithms using more advanced filtering algorithms, known
as particle filters. The state of charge of a battery was estimated
and remaining useful life (RUL) was predicted in [57], [58].
Use of Kalman filtering for prognostication of electronic relia-
bility based on the underlying damage mechanics is new. The
Kalman filter has been utilized for this work since it is a robust
tool for real-time tracking of noisy signals, with a long history
of successful implementation. In this paper, a prognostic and
health monitoring capability for electrical components based
on changes in resistance has been presented. The presented
PHM framework enables the estimation of RUL in deployed
electronics by interrogation of the system state and evolution
of the state vector. The methodology has been demonstrated on
area-array package board assemblies subjected to mechanical
shock and vibration. Failure modeling of ball grid array (BGA)
interconnects is combined with Kalman filtering for plastic
strain state estimation and a Bayesian framework for PHM.
Prognostics metrics have been used to quantify the degree of
uncertainty in the estimated RUL.

II. TEST VEHICLE

A set of test boards with multiple package architectures were
used for experimental measurements. The test board includes
package architectures such as plastic ball-grid arrays, chip-
array ball-grid arrays, tape-array ball-grid arrays, and flex-
substrate ball-grid arrays. The experimental matrix has ball
counts in the range of 64 to 676 I/O, pitch sizes are in the
range of 0.5 mm to 1 mm, and package sizes are in the range of
6 mm to 27 mm. The package parameters of this board are
shown in Table I. Representative sample of the test board is
shown in Fig. 1.

Fig. 1. Test board.

III. TEST CONDITIONS

The test assemblies were mounted face down on a Lansmont
Model 23 drop tower (Fig. 2) and subject to a 0.5 millisec-
ond, 1500 g impact pulse in accordance with JEDEC standard
JESD-B211. Continuity for damage detection was done during
the drops. Electrical continuity was monitored at 10 million
samples per second during the test. High-speed digital video for
use with digital image correlation software was also recorded
during the drop test. The boards were subjected to resistance
spectroscopy including both magnitude and phase-shift mea-
surements between drops.

Phase shift measurements were repeated between drops until
all packages on the board failed. The packages show varying de-
grees of damage when electrical continuity failures occur. Each
package is interrogated by the resistance spectroscopy tech-
nique individually. Switching has been used to cycle through
all the packages on the test board.

In addition to shock, the test assemblies were subjected to
vibration testing on a LDS Model V722 vibration table. A step
stress profile was used to gradually ramp up the stress level to
induce damage (Fig. 3). The individual random stress profiles
used in the step stress are shown in Fig. 4. The next section
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Fig. 2. (a) Drop tower and high speed digital cameras for digital image
correlation. (b) Lansmont model 23 shock test system.

Fig. 3. Step stress profile for vibration testing that fatigues interconnects to
failure.

Fig. 4. Random vibration profile at varying g levels corresponding to the step
stress profile outlined in Fig. 4.

will discuss how the transient response of a package during
random vibration testing was monitored for a leading indicators
of failure.

Fig. 5. Raw resistance data. The data used as an input data vector is shown in
the brackets.

IV. TRANSFER FUNCTION FOR INTERCONNECT

STRAIN TO RESISTANCE

The daisy chained resistance of a package was used as a lead-
ing indicator of failure in this paper. The observed history of the
resistance of the package during vibration testing is shown in
Fig. 5. At approximately 5.8 h, the package experiences its first
intermittent open event. In the following plots, large resistance
values have been truncated for clarity.The resistance of an open
event of 300 Ω or more makes it difficult to discuss mili-ohm
changes on a plot. The resistance of the daisy chained package
was recorded using an Agilent 34970A data acquisition unit
with a two wire resistance measurement setup. Measurements
were taken at a frequency of 0.2 Hz. Since data measurements
were recorded every few seconds, but the test lasted for approx-
imately 6 h, this was deemed to be an effectively high sampling
frequency to capture trends in the leading indicator of failure.
The impact of decreasing the sampling frequency to optimize
the computational efficiency of the prognostic algorithms has
not been studied, but would be valuable for future work. Addi-
tional details quantifying the applicability of the measurement
system for capturing intermittent events in advance of the
traditional definition of failure can be found in [21].

The failure criteria for resistance change outlined in industry
standards JESD22-B103 [5], and IPCSM785 [4]for the number,
duration, and severity of intermittent events are used as the
definition of failure. It should be noted that the smaller step
increases of 0.05 Ω during the first 90 min of the test are exper-
imental noise which can be reproduced by motion of the system
connections during shock and vibration. Resistance data 2 h
after the initiation of the test till failure has been studied for the
construction of a feature vector for identification of impending
failure. A subset of the resistance data has been used since
field data will often involve electronic assemblies with accrued
damage and not involve pristine assemblies. Fig. 6 shows a
zoomed view of the input data highlighting the experimental
noise between 2 h and failure. The experimental noise is due in
part to the challenges with overcoming the variance in contact
resistance in the presence of transient dynamic motion in shock
or steady-state vibration. Step changes in the resistance data can
be seen at 2.8 and 4.9 h, respectively. However, the distinctive
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Fig. 6. Zoomed view of resistance data between 2 h and failure.

TABLE II
ANAND’S CONSTANTS FOR SAC305

increase of about 25 mΩ during the vibration test is easily
discernible even in the presence of experimental noise.

The change in resistance is attributed to change in geometry,
since the resistivity of the solder interconnect is expected to
stay constant. Change in trace geometry is the basis of op-
eration for traditional strain gages and can be explained in a
cylindrical conductor by R = ρL/A, where R is the resistance
of the conductor, ρ is the material property resistivity, L is
length and A is the cross-sectional area. By logarithmically
differentiating both sides and assuming linear elastic properties,
a relation between strain and resistance can be derived as
dR = R0εa(1 + 2ν), where dR is the change in resistance, R0

is the initial resistance, εa is the elastic axial strain, and ν is
the Poisson ratio. Since the material properties and geometry of
a solder ball are nonlinear, a finite-element simulation (FEM)
was used to map the change in resistance of an interconnect
to the state of plastic strain that the interconnect was feeling.
The simulation was implemented in ANSYS Version 12 using
Anand’s Viscoplasticity and VISCO107 elements. The Anand’s
constants used for the simulation are shown in Table II.

Table III shows the dimensional parameters for the unde-
formed geometry of a typical solder ball based on the manu-

TABLE III
UNDEFORMED GEOMETRY OF SOLDER BALL

Fig. 7. Constraints on solder ball for FEM simulation.

Fig. 8. Meshed model of solder ball.

facture’s data sheet. Previous studies have shown that tensile
stress in the out-of-plane z-direction is the primary stress
during the shock test in the solder interconnects [59], [60].
The solder interconnect deformation during the shock test was
simulated using nonlinear finite elements by constraining the
solder interconnect along the bottom of the joint and applying
a displacement load on the top (Fig. 7).

Resistance of the solder interconnect was computed by con-
verting the VISOC107 elements to SOLID5 elements after
intermediate steps in the deformation. A steady-state conduc-
tance simulation was run using the deformed geometry after
each substep. Using the built-in macrocommand GMATRIX,
the conductance of the solder ball in the deformed state could
be calculated. The conductance is the inverse of the resistance.
The meshed geometry before deformation can be seen in Fig. 8,
while the deformed geometry can be seen in Fig. 9. Deforma-
tion was applied to the solder joint at a specified strain rate of
1 s−1 typical of a shock test. An example of this mapping is
shown in Fig. 10.

Following a method similar to [8] and [59] the assumed
criteria for failure in the simulated solder joint was based on the
joint exceeding a critical plastic strain value. The critical plastic
strain value was determined from a BGA pull test. Based on the
experimental data at a strain rate of 1/s, an overall strain of the
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Fig. 9. Deformed and undeformed geometry of solder ball.

Fig. 10. Simulated change in resistance of solder ball during pull test. Arrows
indicate expected change in resistance at a strain of 0.1.

solder joint of 0.1 corresponded to failure. Model predictions
indicate a change in resistance of 5 × 10−5 Ω correlates with
interconnect strain of 0.1 prior-to-failure of the interconnect.
This critical resistance value derived from the FEM simulation
will be used as a threshold value to define failure for the PHM
algorithm. Since the daisy chained resistance of a package
is monitored in this study the critical resistance calculated
from the FEM simulation must be scaled up from a single
solder ball to account for changes in resistance of the entire
package. This was achieved by approximating that every inter-
connect feels the same strain. Therefore, the critical resistance
is multiplied by the number of I/O in the package, i.e., 676
for the PBGA 676 to obtain the overall critical resistance
value (676 × 5 × 10−5 Ω = 3.38 × 10−2 Ω). Assuming that
every interconnect feels the same strain is not strictly correct
since failure most often occurs in the corner interconnects.
This implied averaging of strain across all interconnects is
justified since deflections were small for the vibration test.
Ultimately, errors from this approximation add uncertainty to
the RUL calculation. As will be demonstrated later in the
paper, this uncertainty must be managed to obtain meaningful
results.

Fig. 11. Flowchart for PHM framework.

Fig. 12. Inputs and outputs to PHM algorithm.

V. PHM FRAMEWORK

The strain-resistance relationships have been used to corre-
late the measured feature vector with the underlying damage
state of the system. Feature vectors monitoring system damage
have been constructed based on the sensor output (Fig. 11). The
feature vector is an input into the PHM algorithms.

Previous researchers have investigated various PHM frame-
works for assessment of accrued damage and estimation
of RUL. Examples include model or physics of failure-
based methods [7]–[22], statistical trending [31], artificial
intelligence-based prognostics [62], and state estimator meth-
ods [54]–[56]. In this paper, a Bayesian framework has been
used [57], [58], [64], [65] to allow statistically defendable
decisions to be made based on the RUL predictions using the
PHM algorithm. The probability that a flaw (F) exists given
a positive indication (I) depends on sensor’s probability of
detection given that a flaw exists P (I|F ), probability of false
alarm P (I| ∼ F ), and prior probability that the flaw exists
before any measurements are made P(F)

P (F |I) =
P (I|F )P (F )

P (I)

=
P (I|F )P (F )

P (I|F )P (F ) + P (I| ∼ F )P (∼ F )
(1)

where the prefix “∼” is used to represent “not,” P (I| ∼ F ) is
the probability of detection if when the flaw does not exist, and
P (∼ F ) is the probability of the nonexistence of a flaw.

The PHM algorithm used in this study requires four inputs
from the user prior to operation (Fig. 12).

1) Maximum allowable probability of failure.
2) Maximum tolerable probability of proactive maintenance.
3) Required lead time to receive a replacement component.
4) Required confidence in the RUL predictions.
The PHM algorithm outputs the RUL at every point that

a measurement is made, and the accompanying confidence



4306 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 59, NO. 11, NOVEMBER 2012

Fig. 13. Generalized shape of feature vector for prognosticating failure.

Fig. 14. Detection and failure thresholds for feature vector.

interval around the RUL prediction. The RUL prediction, cou-
pled with the confidence interval allows statistically defendable
decisions to be made concerning the future use and mainte-
nance of the system being monitored. The performance of the
algorithm is validated offline after failure of the component.
Fig. 13 generalizes the shape of a typical feature vector. The
details of a feature vector for a system can be application
specific; therefore, a normalized value of one for the feature
vector is defined as system failure. A typical feature vector can
be very nonlinear in nature, particularly toward the end of life.
Initial measurements often involve a period where no noticeable
change in the feature vector can be detected. Accrued damage
in the system will shift the feature vector over time and cause
it to cross the detection threshold as shown in Fig. 14. The
component is defined as failed when the feature vector breaks
the failure threshold.

In the Bayesian framework, all predictions have an associated
uncertainty. The uncertainty has been assumed to be Gaussian
in nature, and the probability density function (PDF) of the
predicted time of failure computed. Fig. 15 illustrates how the
mean value of the predicted time to failure, represented as a
probability distribution, is before the actual failure indicated
with an “x.” Prediction error and uncertainty are discussed
in more detail in Section VIII. The shaded region in Fig. 16
represents the area under the PDF curve that is equal to the
maximum allowable probability of failure. Furthermore, the
maximum tolerable probability of proactive maintenance can
be unshaded to represent the window of opportunity that will

Fig. 15. Prediction of failure at time = 0.7.

Fig. 16. Maximum allowable probability of failure (red shaded region).

Fig. 17. Window of opportunity for repair or replacement based on RUL
prediction at time = 0.7.

still meet all of the specified criteria specified by the user as
shown in Fig. 17.

Fig. 17 shows the window of opportunity to replace the
component based on a prediction at time = 0.7. The estimate
of time-to-failure and the RUL is updated at the next time
step. Fig. 18 shows the updated probability distribution function
for the system at time step t = 0.9. In system prognostication,
the estimate of system failure is updated at every time step as
new information becomes available. The Kalman filter has been
used to track the state of the noisy feature vector. The output
from the Kalman filter is an estimate of the damage state of the
BGA solder interconnect. The future system states are predicted
based on the previous state-vectors, process noise, measure-
ment noise, system dynamics matrix, and the measurement
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Fig. 18. Updated RUL prediction at time = 0.9.

Fig. 19. Graphical state space representation of a system.

matrix using the second-order Kalman filter until the feature
vector exceeds the threshold value. Since the Kalman filter is a
recursive algorithm, only one measurement of the feature vector
is stored at one time.

VI. FILTERING AND RUL PREDICTION

System damage state estimation in the presence of mea-
surement noise and process noise has been achieved using the
Kalman Filter. Previously, the Kalman Filter has been used in
guidance and tracking applications [41], [42]. System state has
been described in state space form using the measurement of
the feature vector, the velocity of feature vector change and the
acceleration of the feature vector change. System state at each
future time has been computed based on the state space at the
preceding time step, system dynamics matrix, control vector,
control matrix, measurement matrix, measured vector, process
noise, and measurement noise. Fig. 19 represents the data flow
through the system, where uk is the control vector or input for
the system, wk is process noise, xk is the state space vector
at the kth time step, H is the measurement matrix which is a
constant in this implementation, vk is the measurement noise,
zk the measured state, and Φk is the system dynamics matrix.

The equivalent Kalman Filter equation for state space rep-
resentation in the presence of process noise and measurement
noise is:

x̂k = Φkx̂k−1 + Bkuk−1

+ Kk(zk − HΦkx̂k−1 − HBkuk−1) (2)

zk =Hxk (3)

where x̂k is the Kalman Filter estimate of system state at time
kth time step,xk is the actual system state at the kth time
step, and Bk is the control vector. The Kalman gain has been

computed and updated at each time step, while the filter is
operating from the Riccati equations [42]. The Ricatti equations
can be represented in matrix form as:

Mk = ΦkPk−1ΦT
k + Qk (4)

Kk =MkH
T(HMkH

T + Rk)
−1

(5)

Pk = (1 − KkH)Mk (6)

where Mk is the covariance of errors in state estimates before
update, Φk is the fundamental matrix which represents the
system dynamics, Qk is the discrete process noise matrix, Kk

is the Kalman gain, H is the measurement matrix, and Pk is the
covariance matrix representing errors in the state estimate after
an update. Rk is the process noise matrix and has been used as
a device for telling the filter that we know that filter’s model
of the real world is not precise. The diagonal elements of Pk

represent variance of the true state minus the estimated state.
Mk is sometimes referred to as the a priori covariance matrix,
and Pk may be referred to as the posterior covariance matrix.

The feature vector used for prognosis of the system health
is not a constant or a straight line, therefore the zeroth and
first order systems were ruled out and a second order system
was used for representation of system state evolution with
progression of underlying damage. The choice of the second
order filter was also influenced by the general observation
that feature vectors evolve nonlinearly and generally accelerate
toward the end of life. The rate of evolution of a second-order
system can be represented as follows:⎧⎨

⎩
ẋ
ẍ
...
x

⎫⎬
⎭ = [F ]

⎧⎨
⎩

x
ẋ
ẍ

⎫⎬
⎭ =

⎧⎨
⎩

0 1 0
0 0 1
0 0 0

⎫⎬
⎭

⎧⎨
⎩

x
ẋ
ẍ

⎫⎬
⎭ . (7)

The fundamental matrix has been computed from the Taylor
series expansion of the system dynamics matrix, F, as follows:

Φ(t) = eFt = I + Ft +
(Ft)2

2!
+ . . . +

(Ft)n

n!
+ . . .

Φ(t) =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ +

⎛
⎝ 0 1 0

0 0 1
0 0 0

⎞
⎠ t +

⎛
⎝ 0 0 1

0 0 0
0 0 0

⎞
⎠ t2

2!

Φk = Φ(Ts) =

⎛
⎝ 1 Ts 0.5T 2

s

0 1 Ts

0 0 1

⎞
⎠ . (8)

Note that the F 3 terms and above are identically zero; therefore,
the expansion only has three nonzero terms. A model based
on the accrued plastic work in interconnects of the system has
not been used because the inputs to the system are not always
known or measurable and cannot be assumed to always be
constant or known in advance. Therefore, the feature vector
based on resistance spectroscopy has been related to the under-
lying plastic work and its evolution used for prognostication of
system state and residual life. The first and second derivatives
of the feature vector based on resistance spectroscopy have
been computed to estimate the state of the feature vector at
future time steps. The system state vector is represented as
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xk = �x ẋ ẍ�T, where x is the interconnect resistance of the
daisy chained package, ẋ is the ramp rate of the interconnect
resistance, and ẍ is the second derivative with respect to time
of the interconnect resistance. The state vector evolution is
represented as follows:⎧⎨

⎩
xk+1

ẋk+1

ẍk+1

⎫⎬
⎭ =

⎛
⎝ 1 Ts 0.5T 2

s

0 1 Ts

0 0 1

⎞
⎠

⎧⎨
⎩

xk

ẋk

ẍk

⎫⎬
⎭ . (9)

The uncertainty of each prediction was quantified using the
posterior error covariance. As an engineering approximation,
the uncertainty is calculated using a straight line approxima-
tion. Then, the uncertainty from the linear approximation is
superimposed on the failure prediction obtained fromiteratively
solving for the intersection of a quadratic equation with the
critical resistance threshold. This is a trade off in accuracy, for
the benefit of algorithm simplicity.

Assuming that the feature vector and its first derivative
are normal random variables (Gaussian), then a straight line
approximation of the time to failure can be

tf =
xf − x̂

˙̂x
(10)

where tf is the time to failure, xf is the failure threshold, x̂ is the
estimated state of the system (resistance) and ˙̂x is the estimate
of the first derivative. The numerator will have a variance
equal to the variance of the position estimate, which is directly
available in the posterior error covariance matrix as P(1,1). The
denominator will have a variance equal to the variance of the
first derivative estimate, directly available as P(2,2). If

σ2
F = P (1, 1) σ2

R = P (2, 2) (11)

then it is demonstrated in [55] that the non-Gaussian distribu-
tion resulting from the ratio of two normal distributions with
variances of σ2

F and σ2
R can be integrated to find the equivalent

68.4% probability range around the mean.

σ = 1.86
σF

σR
. (12)

The mean of the distribution from the straight line approxima-
tion is disregarded since the more iterative method was used
to solve for the intersection of the quadratic equation with the
critical resistance threshold.

The uncertainty estimate around the RUL prediction includes
a number of simplifying assumptions about the nature of the
system and should only be taken as a rough estimate. It will be
shown later that this metric is still useful in understanding the
operation of the algorithm and is necessary for fully utilizing
the PHM framework to make risk-based decisions.

The extrapolation of the estimated state into the future to
determine the RUL was accomplished by using the state evolu-
tion equation to iteratively solve the intersection of a quadratic
equation with the critical resistance threshold. The parameters
of the quadratic equation are estimated from the Kalman filter.

The Kalman filter equations are recursive and must be initial-
ized before the first measurement. The initial state estimate was
taken as zero since the system is expected to have zero change

Fig. 20. Results of Kalman filtering.

in resistance before incurring damage. The measurement noise
term was obtained from the observed variance in the measure-
ment system during the first 30 s of testing (Rk = 5e − 6). The
process noise term was taken as Qk = 1e − 9 and represents
the uncertainty in the process dynamics. The diagonals of the
posterior error covariance matrix were setarbitrarily large to
1000, which indicates a complete lack of trust in the initial state
estimate.The filtering and prediction algorithm is summarized
below.

Algorithm: Filtering and RUL Prediction

1) Initialize variables at time step t = 0.
2) Project state at the next time step, xk = Φkxk−1.
3) Calculate error covariance before update, Mk =

ΦkPk−1ΦT
k + Qk.

4) Calculate Kalman gain, Kk = MkH
T(HMkH

T +
Rk)−1.

5) Take measurement, zk = Hxk.
6) Update estimate with measurement, x̂k = Φkx̂k−1 +

Kk(zk − HΦkx̂k−1).
7) Calculate error covariance after measurement update,

Pk = (1 − KkH)Mk.
8) Extrapolate feature vector many time steps, n, to the

failure threshold value, xk+n = Φk+nxk+n−1.
9) Report predicted RUL (and uncertainty).

10) Iterate to step 2) for next measurement (k = k + 1).

VII. ESTIMATION OF REMAINING USEFUL LIFE

The Kalman filter tracking results used for prognostication
are shown in Fig. 20. The measured data have been obtained
from resistance spectroscopy. The red line in the first plot is
the state estimate from the Kalman filter. Note that the state
estimate from the Kalman Filter is smoother than the raw data-
based feature vector. Smoothing facilitates faster convergence
in the PHM algorithm. The lower two plots are estimates of
the first and second derivative of the field quantity measured
for construction of the feature vector. Any time the velocity is
negative, the PHM algorithm cannot make a prediction. This
causes the RUL predictions to oscillate before convergence.
The convergence of the Kalman gain is shown in Fig. 21.

The Newton-Raphson’s method has been used for calculation
of the RUL. A threshold value of 1 × 10−6 has been used as the
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Fig. 21. Convergence of the Kalman gain for the resistance estimate term.

Fig. 22. RUL prediction at 2.6 h, the red circle shows what data was available
for the prediction. The blue line in both plots is the feature vector, and the green
line is the extrapolated state value used to predict RUL.

threshold for convergence

tn+1 = tn − f(t)
f ′(t)

(13)

tfn+1 = tfn − x0 + ẋtfn + 1
2 ẍt2fn − xf

ẋ + ẍtfn
(14)

where f(t) = x0 + ẋtfn + 1
2 ẍt2fn − xf , x is the state variable in

the state space vector, tfn is the estimate of the failure time at the
time step n, and xf is the failure threshold for the state variable.
The estimate of the failure time is updated in accordance
with evolution of state-space vector which correlates with the
underlying damage.

The results of the RUL prediction are shown in Figs. 22–24.
Fig. 22 is a prediction from early in the test. Based on the data
available, which shows very little change in the state variable
resistance, the RUL prediction is considerably longer than the
actual RUL. Fig. 23 shows a prediction where more information
is available to the algorithm. In Fig. 24, a prediction at the very
end of the test shows the measured feature vector increasing
in an exponential nature. The use of a quadratic model for
predicting future states many time steps into the future was
adequate for most of the test, but results in a prediction error
at the extreme end of the test where failure propagation is
highly nonlinear. A higher order model or a nonlinear model

Fig. 23. RUL prediction at 3.8 h.

Fig. 24. RUL prediction at 5.6 h.

Fig. 25. Comparison of actual RUL versus predicted RUL.

(implemented with an extended Kalman filter [22]) may pro-
vide better tracking and performance near the end of life, at
the cost of implementation complexity. Section VIII describes
a quantitative method for evaluating and comparing the choice
of model or algorithm based on prediction performance metrics.
Using the performance metrics, design decisions could be made
to continue developing better system models, or to consider the
error as an acceptable engineering approximation. A summary
of all the RUL predictions compared against the actual RUL is
shown in Fig. 25. The initial estimates of the RUL oscillate and
then gain traction in terms of accuracy following evolution of
state space vector with underlying damage.
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Fig. 26. Alpha-Lambda performance of PHM Algorithm.

VIII. PROGNOSTICS METRICS

The experimental value of time to failure is known after com-
pletion of the accelerated test. A comparison of the actual life
of the component versus the predicted life has been calculated
to quantify and validate the PHM algorithm. The validation
process follows the algorithm assessment metrics proposed in
[66]–[69].

The validation method shown here is a four-step process.
First the alpha-lambda performance has been calculated to
determine the time over which the algorithm successfully pre-
dicted the RUL. Then, the beta statistic is calculated to quantify
the precision of the RUL predictions. Next, the relative accu-
racy is calculated, and finally the convergence of the algorithm
is calculated. Each metric will be briefly discussed using the
experimental results from the previous section. A full treatment
of the validation metrics is included in the original references.

The alpha-lambda metric, shown in Fig. 26, compares the
actual RUL against the predicted RUL. The actual RUL can
only be calculated after the component has been stressed to
failure. The alpha bounds are application specific. They provide
a goal region for the algorithm at ±(α)(100)% of the actual
RUL. If the predicted RUL falls within the alpha bounds, then
it is counted as a correct prediction. The alpha bounds are not
the uncertainty bounds for predicted RUL which indicate the
uncertainty in the predicted RUL. Lambda is defined as the
normalized time and is calculated as λ = (t − to/tf ), where
t is the present time, to is the detection time, and tf is the
final time of failure. A normalized time of zero represents
the beginning of the test, while at a normalized time of one
the component has failed. Normalized time is plotted on the x-
axis and facilitates the comparison of components that fail at
different times. Fig. 27 shows the PDF for the RUL prediction
at lambda = 0.5. Fig. 28 shows multiple PDF’s overlaid from
RUL predictions at different times.

The second metric, the beta calculation, is defined as the
area under the predicted RUL PDF that falls within the alpha
bounds at the specified normalized time, λ. Symbolically, this
is represented as:

β =

α(+)∫
α(−)

φ(x) dx. (15)

Fig. 27. Probability density function for RUL prediction at lambda = 0.5.

Fig. 28. RUL prediction PDF at lambda = 0.5, 0.6, 0.8.

Fig. 29. Beta calculation showing area under RUL prediction PDF that falls
within the alpha bounds.

This metric discriminates against algorithms that have a lot
of uncertainty associated with the RUL prediction. A high
beta-value value indicates a superior RUL prediction. The beta
metric can also be alternatively used in conjunction with the
alpha-lambda plot to define when a prediction is successful.
For example, an arbitrary beta value can be the threshold for
making a correct RUL prediction. The beta calculation is shown
in Fig. 29.

The third metric involves the calculation of the relative
accuracy. Relative accuracy has a value of 1, in absence of error
in the predicted value of RUL. Relative accuracy is defined as:

RAλ = 1 − |RULactual − RULpredicted|
RULactual

. (16)
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Fig. 30. Relative accuracy of RUL prediction.

Relative accuracy is used as a metric to emphasize that errors
closer to the actual failure of a component are more severe, see
Fig. 30. The peaks in Fig. 30 indicate higher accuracy.

In practice, prognostic metrics help to quantify the perfor-
mance of the algorithm demonstrated in this paper and facilitate
comparisons with other algorithms and methods. Each applica-
tion domain will have a specific set of criteria to determine if the
PHM capability is sufficient for inclusion into a larger system.
The use of standardized prognostics metrics facilitates this
comparison. For example by looking at the metrics from this pa-
per, an accurate RUL prediction was made for a period of time,
but there was a systemic error in the algorithm that consistently
over predicted the RUL. Evaluating if the advanced warning
of failure (prognostic distance) at a given accuracy level is
sufficient can only be determined using application specific cri-
teria in conjunction with the prognostic metrics.Hypothetically,
a commercial off the shelf component, like studied in this
paper, may see service in an aerospace vehicle, military jet,
and commercial jet. The electrical component could experience
similar vibration levels in each system. The application specific
requirements for each system may differ drastically for the
same component. In an aerospace vehicle, each mission can
easily be delayed to ensure the ultimate mission success, while
in a military or commercial scenario availability is much more
crucial. The required prognostic performance would therefore
be different for each application. Prognostic metrics provide
a common yardstick for evaluating a PHM implementation
against a specific set of requirements.

IX. SENSITIVITY STUDY

A sensitivity study was conducted to quantify the relation-
ship each user-definable parameter had on the performance of
the PHM algorithm. Filtering methods are very sensitive to
posterior “tweaking” that can improve reported performance.
In practice a training data set would be required to enable
prior knowledge of reasonable user-definable parameters. To
quantify the severity of incorrectly picking these parameters a
cumulative beta was calculated to provide a single number that
could represent the performance of the algorithm while user-
definable parameters were varied. Larger values of cumulative
beta sum indicate better performance of the algorithm.

Fig. 31. Variation in the sum of the beta calculation for variations in the
critical-threshold of state variable.

Fig. 32. Variation in the sum of beta calculation for variations in tunable the
process noise parameter.

Parameter variations studied include: state variable failure
threshold and measurement noise in the Kalman filter. State
variable failure threshold is the value at which the system is
deemed to have failed. The process noise is a user-definable
parameter signifying the underlying noise in the measured
process. Increasing the measurement noise makes the estimated
resistance measurement smoother, but less reactive to error
between predicted and actual state values. Fig. 31 shows the
variation in the results of the algorithm when the critical value
of the state variable was varied. Fig. 32 shows the cumulative
beta with respect to the process noise.

The sensitivity study shows that underestimating the critical
value of state variable can severely hurt the performance of the
PHM algorithm. A physics-based understanding of the degra-
dation mechanism and its relationship to system performance is
critical for implementation of the PHM algorithm. The cumu-
lative beta score is less sensitive to process noise and therefore
was varied over a number of orders of magnitude. An incorrect
selection of either critical threshold for state variable or the
process noise will have an adverse effect on the performance
of the PHM algorithm.

X. RISK-BASED DECISION MAKING

The practical result of predicting RUL is to make decisions.
In the Bayesian framework used in this paper, critical decisions
about future use and replacement of a component can be
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Fig. 33. Time to order replacement component calculation versus time, which
demonstrates one method of statistically defendable decision making using
estimates of RUL.

justified using statistics. In an ultrahigh reliability system, a
critical decision is whether to replace a component. In high risk,
mission critical systems for which this technique was designed,
the maximum acceptable probability of failure is limited to
1%. This conservative restriction reflects the highly undesirable
consequences of an unplanned failure.

The calculation to determine when to order a replacement
part and schedule downtime for maintenance is based on the
mean and standard deviation of the RUL prediction. In normally
distributed data, the proportion of values within z standard
deviations of the mean is

proportion = erf

(
z√
2

)
(17)

where erf is the error function. A z value of 2.3263 represents
the case where 98% of samples would be contained within
+/ − 2.3263σ standard deviations of the mean. One percent of
the samples outside +/ − 2.3263σ would fall on the negative
side of the distribution, and the other 1% would fall on the
positive side of the distribution. For predicting failures, we are
only concerned with the negative side of the distribution or the
1% probability of failure. Using this approach, the appropriate
time to order a replacement can be calculated. Assume that it
takes 1 hour to order and receive a replacement component
from the warehouse. Based on the predicted RUL, predicted
RUL standard deviation, and a maximum acceptable probability
of failure of 1%, the time until a replacement part should be
reordered can be predicted by

torder = RULprediction − 2.3263σRUL − tleadtime (18)

where σRUL is the standard deviation of the RUL, and tleadtime

is the lead time for receiving the component after placement
of the order. This equation is implemented on the data for
the vibration test and is shown in Fig. 33. The order for the
replacement component is placed when the torder parameter
reaches a value of zero, indicated by a red arrow in Fig. 33.

XI. SUMMARY AND CONCLUSION

A framework for prognosis of area-array electronics has been
developed based on state-space vectors from resistance spec-

troscopy measurements, Kalman filtering, and Bayesian PHM
framework. The measured state variable has been related to the
underlying damage state by correlating the resistance change
to the plastic strain accrued in interconnects using nonlinear
finite-element analysis. The strain-resistance relationship has
been used to define the critical resistance failure threshold for
the component. The Kalman filter was used to estimate the
state variable, rate of change of the state variable, acceleration
of the state variable, and to construct a feature vector. The
estimated state-space parameters were used to extrapolate the
feature vector into the future and predict the time-to-failure at
which the feature vector will cross the failure threshold. This
procedure was repeated recursively until the component failed.
RUL was calculated based on the evolution of the state space
feature vector. Standard PHM metrics were used to quantify
the performance of the algorithm against the actual RUL. An
example application to part replacement decisions for ultrahigh
reliability systems was demonstrated. Finally, the techniques
described in the paper were used to determine the correct time
to order a replacement for the component being monitored.
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